Steps to go beyond the Bethe

 approximation in disordered models: large deviations of critical correlationsand loop corrections
Federico Ricci-Tersenghi
Physics Department
Sapienza University, Roma
in collaboration with
Carlo Lucibello, Flaviano Morone, Giorgio Parisi, Tommaso Rizzo

Motivations

- Strongly disordered systems (e.g. spin glasses, RFIM) are in part well understood at the mean field level.

Still many open questions at the MF level, e.g.:

- dynamics
- state-following
- fRSB solution at the Bethe level
- Non-perturbative phenomena make even more difficult to extend results at finite dimensions
-> forced us to resort to numerical simulations (see talks by Young, Martin-Mayor, Ruiz-Lorenzo)

Fluctuations around mean-field

- At the mean-field level the Parisi solution is very likely to be correct one, but...
- the epsilon expansion (De Dominicis, Kondor, Temesvari) is extremely difficult (for $T<T c$ no full 1-loop exp)
- predictions on propagators decay do not match numerical results, e.g.
\rightarrow Janus equilibrium data on $q=0$ and $q>0$ sectors ($d=3$)
\rightarrow relation between exponents at and below $T c$ in $d=4$ (see Nicolao, Parisi, FRT 2014)
- Need to find a better expansion around mean-field

Mean-field approximations

- naive Mean-Field assumes weakly interacting variables
- TAP approximation = weakly interacting variables + Onsager reaction term
- nMF and TAP are the first terms in the weak couplings Plefka expansion
-> they fail in the strong coupling regime
- Bethe approximation (i.e. cavity method) assumes conditional independence of neighbors, but no weak couplings assumptions -> exact on trees (loopless graphs)

Models on trees

Models on trees

Models on trees

Models on trees

Bethe approximation

- Factorization approximation

$$
P(s)=\prod_{i} P_{i}\left(s_{i}\right) \prod_{i j} \frac{P_{i j}\left(s_{i}, s_{j}\right)}{P_{i}\left(s_{i}\right) P_{j}\left(s_{j}\right)}
$$

- Self-consistent equations for cavity marginals $P_{i, \backslash j}\left(\sigma_{i}\right)$

- From cavity marginals to full marginals $\left\{P_{i}\left(\sigma_{i}\right), P_{i j}\left(\sigma_{i}, \sigma_{j}\right)\right\}$

$$
P_{i}\left(\sigma_{i}\right) \propto \sum_{\left\{\sigma_{k}\right\}_{k \in V(i)}} \prod_{k \in V(i)} P_{k, \backslash i}\left(\sigma_{k}\right) \psi\left(\sigma_{i}, \sigma_{k}\right)
$$

Random c-regular graphs

- Random graphs with fixed degree c for each node
- Construction:
- N vertices, with c "legs" each

$$
M M
$$

- Connected pairs of legs at random (avoiding self-loops and double-links)
- Bethe approximation is correct, but there are multiple solutions depending on the boundary conditions (i.e. initial conditions for the BP iterative algorithm)
- Highly non-trivial low-temperature phases...

Random c-regular graphs

- Random graphs with fixed degree c for each node
- Construction:
- N vertices, with c "legs" each
- Connected pairs of legs at random
 (avoiding self-loops and double-links)
- Bethe approximation is correct, but there are multiple solutions depending on the boundary conditions (i.e. initial conditions for the BP iterative algorithm)
- Highly non-trivial low-temperature phases...

Random c-regular graphs

- Random graphs with fixed degree c for each node
- Construction:
- N vertices, with c "legs" each
- Connected pairs of legs at random
 (avoiding self-loops and double-links)
- Bethe approximation is correct, but there are multiple solutions depending on the boundary conditions (i.e. initial conditions for the BP iterative algorithm)
- Highly non-trivial low-temperature phases...

Previous attempts to add loops to the Bethe approximation

- Montanari, Rizzo (2005): BP + loop corrections
- Chertkov, Chernyak (2006): loop calculus = sum over generalized loops
- Parisi, Slanina (2006): effective field theory for lattice models, whose zero-order is Bethe approximation
- None is really effective nor conclusive...

Fat diagrams

Efetov (1990) Parisi (2006)

$$
P[\phi(x), \phi(y)]=\sum_{L} \mathcal{N}(x-y, L) p[\phi(x), \phi(y), L]+
$$

M-layer model

M-layer model

M-layer model

M-layer model

M-layer model

- In the limit $M \rightarrow \infty$ we get a random graph Bethe approximation is exact (Vontobel, 2012) d-dimensional regular lattice -> 2d-regular random graph
- Typical loops are $O(M)$
- $M=1$-> original model
- $1 /$ M expansion $=$ loop expansion
- First order in $1 / M=$ Bethe + single loops

Rest of the talk

- Computing critical properties of strongly disordered models on random regular graphs (SG in a field and RFIM)
- Computing the effect of adding loops to a random regular graph
-> finite size corrections to models defined on random regular graphs

Computing correlations in Bethe approx.

$$
H=-\sum_{i j} J_{i j} s_{i} s_{j}-\sum_{i} h_{i} s_{i}
$$

- Ising spins
- (ij) on a random c-regular graph with c=z+1
- SG in a field: $J_{i j}= \pm 1 \quad h_{i}=h$
- RFIM: $J_{i j}=1 \quad h_{i} \sim N\left(0, \sigma^{2}\right)$

Self-consistency equations as a message passing algorithm (Belief Propagation)

Averaging over the random graphs ensemble

$$
\begin{gathered}
u_{k \rightarrow i}=\hat{u}\left(\beta, J_{i k}, h_{k \rightarrow i}\right) \\
h_{i \rightarrow j}=h_{i}+\sum_{k \in V(i) \backslash j} u_{k \rightarrow i}
\end{gathered}
$$

$\left\{h_{i \rightarrow j}, u_{i \rightarrow j}\right\}$ are random variables

$$
\begin{aligned}
& P(h)=\int\left[\prod_{i=1}^{z} d Q\left(u_{i}\right)\right] \overline{\delta\left(h-h_{R}-\sum_{i=1}^{z} u_{i}\right)^{h_{R}}} \\
& Q(u)=\int d P(h) \overline{\delta[u-\hat{u}(\beta, J, h)]},
\end{aligned}
$$

Computing correlations in Bethe approx.

Computing correlations in Bethe approx.

Computing correlations in Bethe approx.

$\mathcal{C}(\ell)$ is a random variable depending on $\left(u_{1 \rightarrow 0}, u_{2 \rightarrow 1}, \ldots\right)$

Decay rates and physical interpretation

- on a chain correlations always decay $\mathcal{C}(\ell) \propto e^{-\gamma \ell}$
- decay rate of typical chains $\gamma_{0}=-\lim _{\ell \rightarrow \infty} \frac{\overline{\log \mathcal{C}(\ell)}}{\ell}$
- ferromagnetic susceptibility $\gamma_{1}=-\lim _{\ell \rightarrow \infty} \frac{\log \overline{\mathcal{C}(\ell)}}{\ell}$

$$
\chi_{F} \propto \sum_{\ell=1}^{\infty} z^{\ell} \overline{\mathcal{C}(\ell)} \propto \frac{1}{1-z \exp \left(-\gamma_{1}\right)}
$$

- spin glass susceptibility

$$
\gamma_{2}=-\lim _{\ell \rightarrow \infty} \frac{\log \overline{\mathcal{C}(\ell)^{2}}}{\ell}
$$

$\chi_{S G} \propto \sum_{\ell=1}^{\infty} z^{\ell} \overline{\mathcal{C}(\ell)^{2}} \propto \frac{1}{1-z \exp \left(-\gamma_{2}\right)}$

$$
\text { al criticality } \gamma_{1,2}=\log z
$$

Large deviation function for the decay rate

$$
\begin{gathered}
P_{\ell}(\gamma) \approx e^{-\ell \Sigma(\gamma) \quad \text { for } \quad \ell \rightarrow \infty \quad \Sigma(\gamma) \geq 0 \quad \Sigma\left(\gamma_{0}\right)=0} \begin{array}{c}
\chi_{F} \propto \sum_{\ell} z^{\ell} \int d \gamma e^{-\ell[\Sigma(\gamma)+\gamma]} \simeq \sum_{\ell} z^{\ell} e^{-\ell\left[\Sigma\left(\gamma^{*}\right)+\gamma^{*}\right]} \\
\text { with }\left.\frac{\partial \Sigma(\gamma)}{\partial \gamma}\right|_{\gamma^{*}}=-1 \quad \Longrightarrow \gamma^{*}<\gamma_{0} \quad \Sigma\left(\gamma^{*}\right)>0 \\
\chi_{F} \approx \sum_{\ell} \mathcal{N}_{\ell}\left(\gamma^{*}\right) e^{-\ell \gamma^{*}} \\
\text { number of chains }<z^{\ell} \quad \begin{array}{c}
\text { decaying in a much } \\
\text { more slower way }
\end{array}
\end{array}
\end{gathered}
$$

Large deviation function for the decay rate

- We actually compute $\quad \lambda(q)=-\lim _{\ell \rightarrow \infty} \frac{\log \overline{\mathcal{C}(\ell)^{q}}}{\ell}$
from which we get $\Sigma(\gamma)=\sup _{q \in \mathbb{R}}[\lambda(q)-q \gamma]$.
- We use 2 methods:
$\begin{aligned} & \text { 1) "brute force" }->\text { average over a huge } \\ & \text { number of chains of finite length }\end{aligned} \lambda_{\ell}(q)=-\frac{\log \overline{\mathcal{C}(\ell)^{q}}}{\ell}$
extrapolate to large distances $\quad \lambda_{\ell}(q)=\lambda(q)+\frac{A(q)}{\ell}$

2) solve by population dynamics an integral equation providing the result directly in the thermodynamic limit

Analytic expression for the large deviation function in the thermodynamic limit
$\lambda(q)$ is the largest eigenvalue of the following equation

$$
\mathbb{E}_{r} \int d u^{\prime} g\left(u^{\prime}, q\right) \delta\left[u-\hat{u}\left(\beta, J, u^{\prime}+r\right)\right]\left(\frac{\partial \hat{u}}{\partial u^{\prime}}\right)^{q}=e^{-\lambda(q)} g(u, q)
$$

Analytic expression for the large deviation function in the thermodynamic limit
$\lambda(q)$ is the largest eigenvalue of the following equation

$$
\mathbb{E}_{r} \int d u^{\prime} g\left(u^{\prime}, q\right) \delta\left[u-\hat{u}\left(\beta, J, u^{\prime}+r\right)\right]\left(\frac{\partial \hat{u}}{\partial u^{\prime}}\right)^{q}=e^{-\lambda(q)} g(u, q)
$$

Analytic expression for the large deviation function in the thermodynamic limit

$$
\begin{gathered}
\mathcal{C}(\ell)=\prod_{k=1}^{\ell} \frac{\partial u_{k \rightarrow k-1}}{\partial u_{k+1 \rightarrow k}} \quad u_{k \rightarrow k-1}=\hat{u}\left(\beta, J, r+u_{k+1 \rightarrow k}\right) \\
\mathcal{C}(\ell+1)=\frac{\partial u_{1 \rightarrow 0}}{\partial u_{2 \rightarrow 1}} \mathcal{C}(\ell), \quad u_{1 \rightarrow 0}=\hat{u}\left(\beta, J, r+u_{2 \rightarrow 1}\right) . \\
P_{\ell+1}(\mathcal{C}, u)=\mathbb{E}_{r} \int d \mathcal{C}^{\prime} d u^{\prime} P_{\ell}\left(\mathcal{C}^{\prime}, u^{\prime}\right) \delta\left[\mathcal{C}-\frac{\partial \hat{u}\left(\beta, J, r+u^{\prime}\right)}{\partial u^{\prime}} \mathcal{C}^{\prime}\right] \delta\left[u-\hat{u}\left(\beta, J, r+u^{\prime}\right)\right] . \\
\psi_{\ell}(u, q)=\int d \mathcal{C} P_{\ell}(\mathcal{C}, u) \mathcal{C}^{q}, \quad \psi_{\ell+1}(u, q)=\mathbb{E}_{r} \int d u^{\prime} \psi_{\ell}\left(u^{\prime}, q\right) \delta\left[u-\hat{u}\left(\beta, J, r+u^{\prime}\right)\right]\left(\frac{\partial \hat{u}}{\partial u^{\prime}}\right)^{q} \\
\int d u \psi_{\ell}(u, q)=\overline{\mathcal{C}(\ell)^{q}}, \quad g_{\ell}(u, q)=\psi_{\ell}(u, q) e^{\ell \lambda(q)}, \\
\mathbb{E}_{r} \int d u^{\prime} g\left(u^{\prime}, q\right) \delta\left[u-\hat{u}\left(\beta, J, u^{\prime}+r\right)\right]\left(\frac{\partial \hat{u}}{\partial u^{\prime}}\right)^{q}=e^{-\lambda(q)} g(u, q)
\end{gathered}
$$

Gaussian RFIM on random 3-regular graphs

Gaussian RFIM on random 3-regular graphs

Gaussian RFIM on random 3-regular graphs

Gaussian RFIM on random 3-regular graphs

Gaussian RFIM on random 3-regular graphs

$$
\Sigma\left(\gamma^{*}\right)+\gamma^{*}=\lambda(1)
$$

In the zero temperature limit

- phase transition induced by an infinitesimal fraction of highly correlated chains chains
- responses/couplings at large distances from ground state recursion relation $E_{\ell}\left(s_{0}, s_{\ell}\right)=-h_{0}^{(\ell)} s_{0}-h_{\ell} s_{\ell}-J_{\ell} s_{0} s_{\ell}+\mathcal{E}_{\ell}$.
$E_{\ell+1}\left(s_{0}, s_{\ell+1}\right)=\min _{s_{\ell}} E_{\ell}\left(s_{0}, s_{\ell}\right)+s_{\ell} s_{\ell+1}+h_{\ell+1} s_{\ell+1}$
$P_{\ell(J)}=\rho \lambda^{\ell-1} \ell(\ell-1)(1-\rho J)^{\ell-2}+\left(1-\ell \lambda^{\ell-1}\right) \delta(J)$, $\lambda=\int_{-1}^{1} d h Q_{z}^{\operatorname{cav}}(h)$, $\rho=2 Q_{z}^{\text {cav }}(1) / \lambda$,
- $J_{\ell} \sim 1 / \ell, \quad \overline{J_{\ell}}=\lambda^{\ell-1}$
$\mathcal{N}_{\ell}=\ell(z \lambda)^{\ell}$ for $\quad \ell \gg 1$
- $\overline{\left\langle s_{0} s_{\ell}\right\rangle_{c}} \sim \lambda^{\ell} \quad \overline{\left\langle s_{0}\right\rangle\left\langle s_{\ell}\right\rangle} \sim \ell \lambda^{\ell}$

Loops in a random regular graph

- A random c-regular graph has $\frac{(c-1)^{\ell}}{2 \ell}$ loops of length ℓ
- Density of loops is $O(1 / N)$
- Can we approximate a random graph of finite size as a tree $+O(1 / N)$ corrections due to the loops?

1. Compute analytically physical observables (e.g. energy, free-energy) on a tree with few loops
2. Compute numerically the same observables on a random regular graph of finite size

Finite size corrections by the replica method (i.e. Gaussian fluctuations around the saddle point)

$$
f(N)=f_{0}+\frac{f_{1}}{N} \quad f_{1}=\sum_{\ell=3}^{\infty} \frac{(c-1)^{\ell}}{2 \ell} \Delta \phi_{\ell}
$$

$$
\Delta \phi_{\ell}=\phi_{\ell}^{c}-\ell \phi
$$

Finite size corrections by the replica method (i.e. Gaussian fluctuations around the saddle point)

$$
f(N)=f_{0}+\frac{f_{1}}{N} \quad f_{1}=\sum_{\ell=3}^{\infty} \frac{\left(\frac{c-1)^{\ell}}{2 \ell}\right.}{2 \ell} \quad \Delta \phi_{\ell} \quad \begin{aligned}
& \text { mean number of } \\
& \text { loops of length } \ell
\end{aligned}
$$

free-energy shift for adding a $\rightarrow \Delta \phi_{\ell}=\phi_{\ell}^{c}-\ell \phi$ loop of length ℓ to an infinite tree

Finite size corrections by the replica method (i.e. Gaussian fluctuations around the saddle point)

$$
f(N)=f_{0}+\frac{f_{1}}{N} \quad f_{1}=\sum_{\ell=3}^{\infty}\left(\frac{(c-1)^{\ell}}{2 \ell} \Delta \phi_{\ell}\right.
$$

free-energy shift for adding a $\rightarrow \Delta \phi_{\ell}=\phi_{\ell}^{c}-\ell \phi$ loop of length ℓ to an infinite tree
 $\phi \equiv \lim _{\ell \rightarrow \infty} \frac{\phi_{\ell}^{\ell}}{\ell}$ mean free-energy of a loop of length ℓ
mean free-energy per link on the infinite tree

Finite size corrections by the replica method (i.e. Gaussian fluctuations around the saddle point)

$$
f(N)=f_{0}+\frac{f_{1}}{N} \quad f_{1}=\sum_{\ell=3}^{\infty}\left(\frac{(c-1)^{\ell}}{2 \ell}\right) \Delta \phi_{\ell} \quad \begin{aligned}
& \text { mean number of } \\
& \text { loops of length } \ell
\end{aligned}
$$

free-energy shift for adding a $\rightarrow \Delta \phi_{\ell}=\phi_{\ell}^{c}-\ell \phi$ loop of length ℓ to an infinite tree mean free-energy per link mean free-energy of a loop of length ℓ on the infinite tree

$$
\begin{aligned}
\phi_{\ell}^{c} & \equiv-\frac{1}{\beta}\left[\log Z_{\ell}^{c}\right]_{\mathrm{av}} \\
Z_{\ell}^{c} & \equiv \sum_{\sigma_{1}, \ldots, \sigma_{\ell}} e^{\beta\left(r_{1} \sigma_{1}+J_{1} \sigma_{1} \sigma_{2}+\cdots+r_{\ell} \sigma_{\ell}+J_{\ell} \sigma_{\ell} \sigma_{1}\right)} \\
R(r) & =\mathbb{E}_{J, H} \int \prod_{k=1}^{c-2} \mathrm{~d} h_{k} P\left(h_{k}\right) \delta\left[r-H-\sum_{k=1}^{c-2} \hat{u}\left(\beta, J, h_{k}\right)\right]
\end{aligned}
$$

Probabilistic/cavity derivation

randomly chosen path ($\ell+1$ edges, $\ell+2$ vertices $)$ in an infinite regular tree
remove edges
-> cavity tree
infinite regular tree with a loop of length ℓ

$$
\begin{gathered}
Z_{\text {cav }}\left(\sigma_{0}, \ldots, \sigma_{\ell+1}\right)=\tilde{Z} e^{\beta\left(h_{0} \sigma_{0}+r_{1} \sigma_{1}+\ldots+r_{\ell} \sigma_{\ell}+h_{\ell+1} \sigma_{\ell+1}\right)} \\
Z_{T}=\tilde{Z} \times Z_{\ell+1}^{o} \\
\Delta \phi_{\ell}=-\frac{1}{\beta} \lim _{\mathrm{N} \rightarrow \infty}\left[\log Z_{G}-\log Z_{T}\right]_{\mathrm{av}} \\
\Delta Z_{1}^{o} \times Z_{\ell}^{c}=\phi_{\ell}^{c}+\phi_{1}^{o}-\phi_{\ell+1}^{o}=\phi_{\ell}^{c}-\ell \phi
\end{gathered}
$$

since on a random regular graph holds $\phi_{L}^{o}=L \phi+\phi_{s}$

Probabilistic/cavity derivation

loops are few and very far from each other messages u arriving on loops are like on the infinite tree

Wormald (1981): numbers of "short" loops of lengths
$\ell \geq 3$ are independent Poisson variables with means $\frac{(c-1)^{\ell}}{2 \ell}$

$$
f_{1}=\sum_{\ell=3}^{\infty} \frac{(c-1)^{\ell}}{2 \ell} \Delta \phi_{\ell}
$$

Finite size corrections for spin glass models with magnetic external field on Bethe lattices

- Numerical check of the $O(1 / N)$ corrections to the energy, computed analytically through

$$
e_{1}=f_{1}+\beta \frac{\partial f_{1}}{\partial \beta} \quad f_{1}=\sum_{\ell=3}^{\infty} \frac{(c-1)^{\ell}}{2 \ell} \Delta \phi_{\ell}
$$

- Terms in the series are computed explicitly up to $\ell=7$ and then resumed using the asymptotic $\Delta \phi_{\ell} \sim A \lambda^{\ell}$
- Spin glass models ($\mathrm{J}=+/-1$) in a constant field H
- On random 4-regular graphs of sizes from 64 to 1024

Finite size corrections for SG in a field

Finite size corrections for SG in a field

Summary and outlook

- Bethe approximation for strongly disordered systems is quite well under control (at least at the RS level)
- We know how to compute:
- Full probability distributions of critical correlations (and higher cumulants)
- Energy and free-energy shifts due to short loops
(i.e. finite size corrections to models on random graphs)
- What to do next?
- Compute fat diagrams to study renormalized propagators
- Derive a better loop expansion -> algorithm better than BP

Some recent references

- Large deviations of correlation functions in random magnets Phys. Rev. E 89, 214202 (2014)
F. Morone, G. Parisi, and F. Ricci-Tersenghi
- Finite-size corrections to disordered Ising models on random regular graphs Phys. Rev. E 90, 012146 (2014)
C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi, and T. Rizzo
- One-dimensional disordered Ising models by replica and cavity methods

Phys. Rev. E 90, 012140 (2014)
C. Lucibello, F. Morone, and T. Rizzo

Thank you!

