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Motivations

• Strongly disordered systems (e.g. spin glasses, RFIM) 
are in part well understood at the mean field level.

Still many open questions at the MF level, e.g.:
- dynamics
- state-following
- fRSB solution at the Bethe level

• Non-perturbative phenomena make even more difficult 
to extend results at finite dimensions

-> forced us to resort to numerical simulations
(see talks by Young, Martin-Mayor, Ruiz-Lorenzo)



Fluctuations around mean-field

• At the mean-field level the Parisi solution is very likely 
to be correct one, but...

• the epsilon expansion (De Dominicis, Kondor, Temesvari) 
is extremely difficult (for T<Tc no full 1-loop exp)

• predictions on propagators decay do not match numerical 
results, e.g.
-> Janus equilibrium data on q=0 and q>0 sectors (d=3)
-> relation between exponents at and below Tc in d=4
    (see Nicolao, Parisi, FRT 2014)

• Need to find a better expansion around mean-field



• naive Mean-Field assumes weakly interacting variables

• TAP approximation = weakly interacting variables + 
Onsager reaction term

• nMF and TAP are the first terms in the weak couplings 
Plefka expansion
-> they fail in the strong coupling regime

• Bethe approximation (i.e. cavity method)
assumes conditional independence of neighbors,
but no weak couplings assumptions
-> exact on trees (loopless graphs)

Mean-field approximations
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Bethe approximation

• Factorization approximation

• Self-consistent equations for cavity marginals

• From cavity marginals to full marginals

P (s) =
Q
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Q
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Belief Propagation: iterative
solution to these equations



Random c-regular graphs

• Random graphs with fixed degree c for each node

• Construction:

• N vertices, with c “legs” each

• Connected pairs of legs at random
(avoiding self-loops and double-links)

• Bethe approximation is correct, but there are multiple 
solutions depending on the boundary conditions
(i.e. initial conditions for the BP iterative algorithm)

• Highly non-trivial low-temperature phases...
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Previous attempts to add loops to
the Bethe approximation

• Montanari, Rizzo (2005): BP + loop corrections

• Chertkov, Chernyak (2006): loop calculus = sum over 
generalized loops

• Parisi, Slanina (2006): effective field theory for lattice 
models, whose zero-order is Bethe approximation

• None is really effective nor conclusive...



Fat diagrams
Efetov (1990)   Parisi (2006)
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• In the limit                 we get a random graph
Bethe approximation is exact (Vontobel, 2012)
d-dimensional regular lattice -> 2d-regular random graph

• Typical loops are O(M)

• M=1 -> original model

• 1/M expansion =
loop expansion

• First order in 1/M =
Bethe + single loops

M-layer model

M ! 1



Rest of the talk

• Computing critical properties of strongly disordered 
models on random regular graphs
(SG in a field and RFIM)

• Computing the effect of adding loops to a random 
regular graph

-> finite size corrections to models defined on random 
regular graphs



• Ising spins

• (ij) on a random c-regular graph with c=z+1

• SG in a field:

• RFIM:

Computing correlations in Bethe approx.

H = �
X

ij

Jijsisj �
X

i

hisi

Jij = 1 hi ⇠ N(0,�2)

Jij = ±1 hi = h



Self-consistency equations as a message passing 
algorithm (Belief Propagation)
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two-point connected correlation function and the large devia-
tions function of this decay rate. In Secs. III and IV we present
two methods to compute these functions. The first one is the
same used in Ref. [4], while the second method allows one to
obtain the cumulant generating function from the solution of
an integral eigenvalue equation, thus providing both numerical
and theoretical advantages with respect to the first method. We
use both methods to draw the profiles of the large deviation
function at finite temperature, paying special attention to the
critical line. Section V is devoted to the zero-temperature case.
In this limit situation an analytical form of the correlation prob-
ability distribution can be derived under mild approximations.
A conclusion is to be found at the end of this paper.

II. THE MODEL

The RFIM on the Bethe lattice is defined by the following
Hamiltonian:

H = −
∑

⟨ij⟩
J sisj −

∑

i

hisi, (1)

where the N spins si = ±1 are placed on the nodes of a
Bethe lattice with fixed coordination number z + 1, i.e., a
random regular lattice. The random fields {hi} are drawn
independently from a Gaussian distribution with zero mean
and variance h2 = σ 2. The model can be exactly solved at the
replica-symmetric level, since no replica-symmetry breaking
occurs at any temperature [10]. In the cavity approach the
model solution is obtained from the following self-consistent
equations for the cavity field and cavity bias probability density
functions P (h) and Q(u), respectively:

P (h) =
∫ [

z∏

i=1

dQ(ui)

]

δ

(

h − hR −
z∑

i=1

ui

)hR

,

(2)

Q(u) =
∫

dP (h) δ[u − û(β,J,h)],

where the overbar denotes the average over the random-field
distribution and the function û(β,J,x) is given by the following
expression:

û(β,J,x) = β−1atanh[tanh(βJ ) tanh(βx)]. (3)

The response of the spin si with respect to a field Hj acting on
site j is defined as

R(i,j ) = ∂⟨si⟩
∂Hj

= β⟨sisj ⟩c, (4)

where ⟨sisj ⟩c is the connected correlation function between
spins si and sj . Let us focus on two spins si and sj in the graph
at distance ℓ. In the thermodynamical limit the spins are joined
almost surely by a unique path of length ℓ. Renaming the spins
at the boundaries of the path as s0 and sℓ, the response function
can be written using cavity messages as [4]

R(ℓ) = ∂⟨s0⟩
∂Hℓ

= β(1 − ⟨s0⟩2)
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

, (5)

where uk→k−1 is the cavity bias running along the path from
site ℓ to site 0 (see Fig. 1).

The decay properties of the response function R(ℓ), at large
ℓ, are contained in the product entering in the right-hand side
of Eq. 5. Thus we define a normalized connected correlation
function as [11]

C(ℓ) = R(ℓ)
β(1 − ⟨s0⟩2)

=
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (6)

With this definition we have C(0) = 1. The large distance
behavior of the correlation function is extracted from its decay
rate:

γ0 = − lim
ℓ→∞

log C(ℓ)
ℓ

. (7)

Due to the Fortuin, Kasteleyn, and Ginibre inequality [12],
the correlation function C(ℓ) is positive defined, so that its
logarithm is well behaved for any finite temperature. Because
of the multiplicative ergodic theorem [13] the limit 7 exists
with probability 1. Moreover the decay rate γ0 is a nonrandom
variable, i.e.,

γ0 = − lim
ℓ→∞

log C(ℓ)
ℓ

, (8)

where the overbar indicates the average over the ensemble ' of
all possible cavity bias sequences µℓ ≡ [uℓ→ℓ−1, . . . ,u1→0].
Roughly speaking, we can say that there is a subclass
'∗ of typical sequences which has full measure over the
ensemble of sequences ' and where the correlation C(ℓ)
decays exponentially with rate γ0. For all µℓ ∈ '∗ we have that

FIG. 1. The chain in the factor graph used to compute the response function given by Eq. 5: dots represent the variable nodes and squares
represent the factor nodes. In this case the factor nodes are in one-to-one correspondence with the edges of the original graph. The cavity field
h is the message sent from variable node to factor node, while the bias u is the message from factor node to variable node. The external random
field, called HR in this figure, is represented as a dashed arrow. Equation 5 can be justified by noting that the cavity biases {u} entering a given
node are supposed to be uncorrelated under the hypothesis of the replica-symmetric cavity method. Therefore, deriving the field u1→0 with
respect to the bias u→ℓ arriving at the right boundary of the path, and applying the chain rule for derivatives, one gets the product over k of
Eq. 5. The remaining prefactor β(1 − ⟨s0⟩2) comes from the derivative of the magnetization ⟨s0⟩ of site 0 with respect to a field acting on the
same site 0 (it can be the total field or just the bias u1→0; both would lead to the same result).
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Averaging over the random graphs ensemble 

{hi!j , ui!j} are random variables

large
tree

uk!i = û(�, Jik, hk!i)

hi!j = hi +
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Computing correlations in Bethe approx.
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Computing correlations in Bethe approx.
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Computing correlations in Bethe approx.
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• on a chain correlations always decay

• decay rate of typical chains

• ferromagnetic susceptibility

• spin glass susceptibility

Decay rates and physical interpretation

C(`) / e��`

�SG /
1X

`=1

z` C(`)2 / 1

1� z exp(��2)

�F /
1X

`=1

z` C(`) / 1

1� z exp(��1)

�1 = � lim

`!1

log C(`)
`

�2 = � lim

`!1

log C(`)2
`

�0 = � lim

`!1

log C(`)
`

al criticality �1,2 = log z



Large deviation function for the decay rate
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− limℓ→∞ log C(ℓ)/ℓ = γ0. Despite this, there exist very im-
probable sequences in # which lead to a different asymptotic
limit of the decay rate. They cannot change the logarithmic
average 7, but they are relevant in the evaluation of the decay
rate of the disorder-averaged connected correlation function:

γ1 = − lim
ℓ→∞

log C(ℓ)
ℓ

. (9)

For a general discussion on this problem see, e.g.,
Refs. [1,2,14].

The rate γ1 is the quantity directly involved in the
computation of the ferromagnetic susceptibility χF . In order
to compute χF we use the fact that in a large random sparse
network, by approximating the lattice with a tree rooted on
site 0, the number of spins at distance ℓ from the central
spin s0 is (z + 1)zℓ−1. This allows one to write the nontrivial
contribution to the ferromagnetic susceptibility χF as

χF = z + 1
z

∞∑

ℓ=1

zℓ R(ℓ) ∝
∞∑

ℓ=1

zℓ C(ℓ) ∼ (1 − ze−γ1 )−1.

(10)
The critical point, associated with the divergence of χF , is
reached when γ1 = log(z). We now introduce the distribution
of the decay rate Pℓ(γ ). Physically Pℓ(γ )dγ represents the
probability to measure an effective decay rate − log C(ℓ)/ℓ be-
longing to the interval [γ ,γ + dγ ]. Since Pℓ(γ ) concentrates
on the point γ = γ0 for ℓ → ∞, the following asymptotic
behavior can be predicted:

Pℓ(γ ) ≈ e−ℓ%(γ ) for ℓ → ∞, (11)
with a rate function %(γ ) ! 0. We will be more precise in a
while, but for the moment let us evaluate the susceptibility χF

using the asymptotic distribution 11:

χF ∝
∞∑

ℓ=1

zℓC(ℓ) ≈
∑

ℓ

zℓ

∫
dγ e−ℓ[%(γ )+γ ]

≈
∑

ℓ

zℓe−ℓ[%(γ ∗)+γ ∗], (12)

where in the last step the integral is evaluated via the steepest
descent method and γ ∗ is the solution of the saddle-point
equation

∂%(γ )
∂γ

∣∣∣∣
γ ∗

= −1. (13)

The value γ = γ ∗ selects the correlations which dominate the
average C(ℓ). If we call Nℓ(γ ∗) = zℓe−ℓ%(γ ∗) the number of
spin pairs (σ0,σℓ) whose correlation C(ℓ) decays as e−ℓγ ∗

, we
can write the susceptibility χF as

χF ≈
∑

ℓ

Nℓ(γ ∗)e−ℓγ ∗
. (14)

Equation 14 emphasizes that the main contribution to the
susceptibility comes from rare correlations with atypically
small decay rate γ ∗. This is true also at the phase transition
point, with the physical consequence that the criticality is
driven by a few pairs of strongly correlated variables, whose
number is zℓe−ℓ%(γ ∗), and hence much smaller than the total
number of pairs zℓ. A scaling law of the form Pℓ(γ ) ≈ e−ℓ%(γ ),
where ℓ is assumed to be large and % is a positive function,
is referred to as a large deviation principle. To make it more

precise, let xℓ be a random variable indexed by the integer ℓ,
and let P (xℓ ∈ I ) be the probability that xℓ takes on a value
in a set I . We say that P (xℓ ∈ I ) satisfies a large deviation
principle with rate %I if the limit

lim
ℓ→∞

−1
ℓ

log P (xℓ ∈ I ) = %I (15)

exists. Hence, if P (xℓ ∈ I ) has a dominant exponential
behavior in ℓ, then that limit should exist with %I ̸= 0. If
the limit does not exist, then either P (xℓ ∈ I ) is too singular
to have a limit or else P (xℓ ∈ I ) decays with ℓ faster than e−ℓa

with a > 0. In this case, we say that P (xℓ ∈ I ) decays superex-
ponentially and set % = ∞. The large deviation limit may also
be zero for any set I if P (xℓ ∈ I ) is subexponential in ℓ, i.e., if
P (xℓ ∈ I ) decays slower than e−ℓa, a > 0. The cases of inter-
est in the analysis of large deviations of correlations are those
for which the limit shown in 15 exists. Indeed, a subexponential
behavior of P (xℓ ∈ I ) would lead to an unphysical divergent
susceptibility at all temperatures, while a superexponential
one would give a finite susceptibility at all temperatures, that
corresponds to a model without phase transitions.

To reconstruct the rate function %(γ ), we define the
cumulant generating function of the random variable γ [15]:

λ(q) = − lim
ℓ→∞

log C(ℓ)q

ℓ
, (16)

where q ∈ R and

C(ℓ)q =
∫

dγ Pℓ(γ )e−ℓqγ . (17)

Notice that γ0 = λ′(0) and γ1 = λ(1). The Gärtner-Ellis
theorem [16,17] states that, if λ(q) exists and is differentiable
for all q ∈ R, then γ satisfies a large deviation principle, i.e.,

Pℓ(γ ) ≈ e−ℓ%(γ ), (18)

where the sign “≈” is used to stress that, as ℓ → ∞, the
dominant part of Pℓ(γ ) is the decaying exponential e−ℓ%(γ ).
The rate function %(γ ) is given by the Legendre-Fenchel [16]
transform of λ(q):

%(γ ) = sup
q∈R

[λ(q) − qγ ]. (19)

In the next section we are going to explain how to compute the
cumulant generating function 16 and the rate function 19.

III. HOW TO COMPUTE THE CUMULANT GENERATING
FUNCTION λ(q)

In this section we present two methods to compute the gen-
erating function λ(q). The first method follows from the formal
definition of λ(q). Practically we compute the average C(ℓ)q
at finite ℓ using a stochastic sampling method. Once we have
obtained the average C(ℓ)q we compute the logarithm, then
we divide by ℓ and eventually we extrapolate in the limit
ℓ → ∞. Even if the extrapolation is unambiguous from the
numerical point of view, it remains limited from the theoretical
perspective. It would be better to have a recipe that allows one
to compute directly the asymptotic function λ(q). Fortunately
this method exists and it will be described below. It will be
demonstrated that the cumulant generating function λ(q) is the
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The value γ = γ ∗ selects the correlations which dominate the
average C(ℓ). If we call Nℓ(γ ∗) = zℓe−ℓ%(γ ∗) the number of
spin pairs (σ0,σℓ) whose correlation C(ℓ) decays as e−ℓγ ∗

, we
can write the susceptibility χF as

χF ≈
∑

ℓ

Nℓ(γ ∗)e−ℓγ ∗
. (14)

Equation 14 emphasizes that the main contribution to the
susceptibility comes from rare correlations with atypically
small decay rate γ ∗. This is true also at the phase transition
point, with the physical consequence that the criticality is
driven by a few pairs of strongly correlated variables, whose
number is zℓe−ℓ%(γ ∗), and hence much smaller than the total
number of pairs zℓ. A scaling law of the form Pℓ(γ ) ≈ e−ℓ%(γ ),
where ℓ is assumed to be large and % is a positive function,
is referred to as a large deviation principle. To make it more

precise, let xℓ be a random variable indexed by the integer ℓ,
and let P (xℓ ∈ I ) be the probability that xℓ takes on a value
in a set I . We say that P (xℓ ∈ I ) satisfies a large deviation
principle with rate %I if the limit

lim
ℓ→∞

−1
ℓ

log P (xℓ ∈ I ) = %I (15)

exists. Hence, if P (xℓ ∈ I ) has a dominant exponential
behavior in ℓ, then that limit should exist with %I ̸= 0. If
the limit does not exist, then either P (xℓ ∈ I ) is too singular
to have a limit or else P (xℓ ∈ I ) decays with ℓ faster than e−ℓa

with a > 0. In this case, we say that P (xℓ ∈ I ) decays superex-
ponentially and set % = ∞. The large deviation limit may also
be zero for any set I if P (xℓ ∈ I ) is subexponential in ℓ, i.e., if
P (xℓ ∈ I ) decays slower than e−ℓa, a > 0. The cases of inter-
est in the analysis of large deviations of correlations are those
for which the limit shown in 15 exists. Indeed, a subexponential
behavior of P (xℓ ∈ I ) would lead to an unphysical divergent
susceptibility at all temperatures, while a superexponential
one would give a finite susceptibility at all temperatures, that
corresponds to a model without phase transitions.

To reconstruct the rate function %(γ ), we define the
cumulant generating function of the random variable γ [15]:

λ(q) = − lim
ℓ→∞

log C(ℓ)q

ℓ
, (16)

where q ∈ R and

C(ℓ)q =
∫

dγ Pℓ(γ )e−ℓqγ . (17)

Notice that γ0 = λ′(0) and γ1 = λ(1). The Gärtner-Ellis
theorem [16,17] states that, if λ(q) exists and is differentiable
for all q ∈ R, then γ satisfies a large deviation principle, i.e.,

Pℓ(γ ) ≈ e−ℓ%(γ ), (18)

where the sign “≈” is used to stress that, as ℓ → ∞, the
dominant part of Pℓ(γ ) is the decaying exponential e−ℓ%(γ ).
The rate function %(γ ) is given by the Legendre-Fenchel [16]
transform of λ(q):

%(γ ) = sup
q∈R

[λ(q) − qγ ]. (19)

In the next section we are going to explain how to compute the
cumulant generating function 16 and the rate function 19.

III. HOW TO COMPUTE THE CUMULANT GENERATING
FUNCTION λ(q)

In this section we present two methods to compute the gen-
erating function λ(q). The first method follows from the formal
definition of λ(q). Practically we compute the average C(ℓ)q
at finite ℓ using a stochastic sampling method. Once we have
obtained the average C(ℓ)q we compute the logarithm, then
we divide by ℓ and eventually we extrapolate in the limit
ℓ → ∞. Even if the extrapolation is unambiguous from the
numerical point of view, it remains limited from the theoretical
perspective. It would be better to have a recipe that allows one
to compute directly the asymptotic function λ(q). Fortunately
this method exists and it will be described below. It will be
demonstrated that the cumulant generating function λ(q) is the
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− limℓ→∞ log C(ℓ)/ℓ = γ0. Despite this, there exist very im-
probable sequences in # which lead to a different asymptotic
limit of the decay rate. They cannot change the logarithmic
average 7, but they are relevant in the evaluation of the decay
rate of the disorder-averaged connected correlation function:

γ1 = − lim
ℓ→∞

log C(ℓ)
ℓ

. (9)

For a general discussion on this problem see, e.g.,
Refs. [1,2,14].

The rate γ1 is the quantity directly involved in the
computation of the ferromagnetic susceptibility χF . In order
to compute χF we use the fact that in a large random sparse
network, by approximating the lattice with a tree rooted on
site 0, the number of spins at distance ℓ from the central
spin s0 is (z + 1)zℓ−1. This allows one to write the nontrivial
contribution to the ferromagnetic susceptibility χF as

χF = z + 1
z

∞∑

ℓ=1

zℓ R(ℓ) ∝
∞∑

ℓ=1

zℓ C(ℓ) ∼ (1 − ze−γ1 )−1.

(10)
The critical point, associated with the divergence of χF , is
reached when γ1 = log(z). We now introduce the distribution
of the decay rate Pℓ(γ ). Physically Pℓ(γ )dγ represents the
probability to measure an effective decay rate − log C(ℓ)/ℓ be-
longing to the interval [γ ,γ + dγ ]. Since Pℓ(γ ) concentrates
on the point γ = γ0 for ℓ → ∞, the following asymptotic
behavior can be predicted:

Pℓ(γ ) ≈ e−ℓ%(γ ) for ℓ → ∞, (11)
with a rate function %(γ ) ! 0. We will be more precise in a
while, but for the moment let us evaluate the susceptibility χF

using the asymptotic distribution 11:

χF ∝
∞∑

ℓ=1

zℓC(ℓ) ≈
∑

ℓ

zℓ

∫
dγ e−ℓ[%(γ )+γ ]

≈
∑

ℓ

zℓe−ℓ[%(γ ∗)+γ ∗], (12)

where in the last step the integral is evaluated via the steepest
descent method and γ ∗ is the solution of the saddle-point
equation

∂%(γ )
∂γ

∣∣∣∣
γ ∗

= −1. (13)

The value γ = γ ∗ selects the correlations which dominate the
average C(ℓ). If we call Nℓ(γ ∗) = zℓe−ℓ%(γ ∗) the number of
spin pairs (σ0,σℓ) whose correlation C(ℓ) decays as e−ℓγ ∗

, we
can write the susceptibility χF as

χF ≈
∑

ℓ

Nℓ(γ ∗)e−ℓγ ∗
. (14)

Equation 14 emphasizes that the main contribution to the
susceptibility comes from rare correlations with atypically
small decay rate γ ∗. This is true also at the phase transition
point, with the physical consequence that the criticality is
driven by a few pairs of strongly correlated variables, whose
number is zℓe−ℓ%(γ ∗), and hence much smaller than the total
number of pairs zℓ. A scaling law of the form Pℓ(γ ) ≈ e−ℓ%(γ ),
where ℓ is assumed to be large and % is a positive function,
is referred to as a large deviation principle. To make it more

precise, let xℓ be a random variable indexed by the integer ℓ,
and let P (xℓ ∈ I ) be the probability that xℓ takes on a value
in a set I . We say that P (xℓ ∈ I ) satisfies a large deviation
principle with rate %I if the limit

lim
ℓ→∞

−1
ℓ

log P (xℓ ∈ I ) = %I (15)

exists. Hence, if P (xℓ ∈ I ) has a dominant exponential
behavior in ℓ, then that limit should exist with %I ̸= 0. If
the limit does not exist, then either P (xℓ ∈ I ) is too singular
to have a limit or else P (xℓ ∈ I ) decays with ℓ faster than e−ℓa

with a > 0. In this case, we say that P (xℓ ∈ I ) decays superex-
ponentially and set % = ∞. The large deviation limit may also
be zero for any set I if P (xℓ ∈ I ) is subexponential in ℓ, i.e., if
P (xℓ ∈ I ) decays slower than e−ℓa, a > 0. The cases of inter-
est in the analysis of large deviations of correlations are those
for which the limit shown in 15 exists. Indeed, a subexponential
behavior of P (xℓ ∈ I ) would lead to an unphysical divergent
susceptibility at all temperatures, while a superexponential
one would give a finite susceptibility at all temperatures, that
corresponds to a model without phase transitions.

To reconstruct the rate function %(γ ), we define the
cumulant generating function of the random variable γ [15]:

λ(q) = − lim
ℓ→∞

log C(ℓ)q

ℓ
, (16)

where q ∈ R and

C(ℓ)q =
∫

dγ Pℓ(γ )e−ℓqγ . (17)

Notice that γ0 = λ′(0) and γ1 = λ(1). The Gärtner-Ellis
theorem [16,17] states that, if λ(q) exists and is differentiable
for all q ∈ R, then γ satisfies a large deviation principle, i.e.,

Pℓ(γ ) ≈ e−ℓ%(γ ), (18)

where the sign “≈” is used to stress that, as ℓ → ∞, the
dominant part of Pℓ(γ ) is the decaying exponential e−ℓ%(γ ).
The rate function %(γ ) is given by the Legendre-Fenchel [16]
transform of λ(q):

%(γ ) = sup
q∈R

[λ(q) − qγ ]. (19)

In the next section we are going to explain how to compute the
cumulant generating function 16 and the rate function 19.

III. HOW TO COMPUTE THE CUMULANT GENERATING
FUNCTION λ(q)

In this section we present two methods to compute the gen-
erating function λ(q). The first method follows from the formal
definition of λ(q). Practically we compute the average C(ℓ)q
at finite ℓ using a stochastic sampling method. Once we have
obtained the average C(ℓ)q we compute the logarithm, then
we divide by ℓ and eventually we extrapolate in the limit
ℓ → ∞. Even if the extrapolation is unambiguous from the
numerical point of view, it remains limited from the theoretical
perspective. It would be better to have a recipe that allows one
to compute directly the asymptotic function λ(q). Fortunately
this method exists and it will be described below. It will be
demonstrated that the cumulant generating function λ(q) is the
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− limℓ→∞ log C(ℓ)/ℓ = γ0. Despite this, there exist very im-
probable sequences in # which lead to a different asymptotic
limit of the decay rate. They cannot change the logarithmic
average 7, but they are relevant in the evaluation of the decay
rate of the disorder-averaged connected correlation function:

γ1 = − lim
ℓ→∞

log C(ℓ)
ℓ

. (9)

For a general discussion on this problem see, e.g.,
Refs. [1,2,14].

The rate γ1 is the quantity directly involved in the
computation of the ferromagnetic susceptibility χF . In order
to compute χF we use the fact that in a large random sparse
network, by approximating the lattice with a tree rooted on
site 0, the number of spins at distance ℓ from the central
spin s0 is (z + 1)zℓ−1. This allows one to write the nontrivial
contribution to the ferromagnetic susceptibility χF as

χF = z + 1
z

∞∑

ℓ=1

zℓ R(ℓ) ∝
∞∑

ℓ=1

zℓ C(ℓ) ∼ (1 − ze−γ1 )−1.

(10)
The critical point, associated with the divergence of χF , is
reached when γ1 = log(z). We now introduce the distribution
of the decay rate Pℓ(γ ). Physically Pℓ(γ )dγ represents the
probability to measure an effective decay rate − log C(ℓ)/ℓ be-
longing to the interval [γ ,γ + dγ ]. Since Pℓ(γ ) concentrates
on the point γ = γ0 for ℓ → ∞, the following asymptotic
behavior can be predicted:

Pℓ(γ ) ≈ e−ℓ%(γ ) for ℓ → ∞, (11)
with a rate function %(γ ) ! 0. We will be more precise in a
while, but for the moment let us evaluate the susceptibility χF

using the asymptotic distribution 11:

χF ∝
∞∑

ℓ=1

zℓC(ℓ) ≈
∑

ℓ

zℓ

∫
dγ e−ℓ[%(γ )+γ ]

≈
∑

ℓ

zℓe−ℓ[%(γ ∗)+γ ∗], (12)

where in the last step the integral is evaluated via the steepest
descent method and γ ∗ is the solution of the saddle-point
equation

∂%(γ )
∂γ

∣∣∣∣
γ ∗

= −1. (13)

The value γ = γ ∗ selects the correlations which dominate the
average C(ℓ). If we call Nℓ(γ ∗) = zℓe−ℓ%(γ ∗) the number of
spin pairs (σ0,σℓ) whose correlation C(ℓ) decays as e−ℓγ ∗

, we
can write the susceptibility χF as

χF ≈
∑

ℓ

Nℓ(γ ∗)e−ℓγ ∗
. (14)

Equation 14 emphasizes that the main contribution to the
susceptibility comes from rare correlations with atypically
small decay rate γ ∗. This is true also at the phase transition
point, with the physical consequence that the criticality is
driven by a few pairs of strongly correlated variables, whose
number is zℓe−ℓ%(γ ∗), and hence much smaller than the total
number of pairs zℓ. A scaling law of the form Pℓ(γ ) ≈ e−ℓ%(γ ),
where ℓ is assumed to be large and % is a positive function,
is referred to as a large deviation principle. To make it more

precise, let xℓ be a random variable indexed by the integer ℓ,
and let P (xℓ ∈ I ) be the probability that xℓ takes on a value
in a set I . We say that P (xℓ ∈ I ) satisfies a large deviation
principle with rate %I if the limit

lim
ℓ→∞

−1
ℓ

log P (xℓ ∈ I ) = %I (15)

exists. Hence, if P (xℓ ∈ I ) has a dominant exponential
behavior in ℓ, then that limit should exist with %I ̸= 0. If
the limit does not exist, then either P (xℓ ∈ I ) is too singular
to have a limit or else P (xℓ ∈ I ) decays with ℓ faster than e−ℓa

with a > 0. In this case, we say that P (xℓ ∈ I ) decays superex-
ponentially and set % = ∞. The large deviation limit may also
be zero for any set I if P (xℓ ∈ I ) is subexponential in ℓ, i.e., if
P (xℓ ∈ I ) decays slower than e−ℓa, a > 0. The cases of inter-
est in the analysis of large deviations of correlations are those
for which the limit shown in 15 exists. Indeed, a subexponential
behavior of P (xℓ ∈ I ) would lead to an unphysical divergent
susceptibility at all temperatures, while a superexponential
one would give a finite susceptibility at all temperatures, that
corresponds to a model without phase transitions.

To reconstruct the rate function %(γ ), we define the
cumulant generating function of the random variable γ [15]:

λ(q) = − lim
ℓ→∞

log C(ℓ)q

ℓ
, (16)

where q ∈ R and

C(ℓ)q =
∫

dγ Pℓ(γ )e−ℓqγ . (17)

Notice that γ0 = λ′(0) and γ1 = λ(1). The Gärtner-Ellis
theorem [16,17] states that, if λ(q) exists and is differentiable
for all q ∈ R, then γ satisfies a large deviation principle, i.e.,

Pℓ(γ ) ≈ e−ℓ%(γ ), (18)

where the sign “≈” is used to stress that, as ℓ → ∞, the
dominant part of Pℓ(γ ) is the decaying exponential e−ℓ%(γ ).
The rate function %(γ ) is given by the Legendre-Fenchel [16]
transform of λ(q):

%(γ ) = sup
q∈R

[λ(q) − qγ ]. (19)

In the next section we are going to explain how to compute the
cumulant generating function 16 and the rate function 19.

III. HOW TO COMPUTE THE CUMULANT GENERATING
FUNCTION λ(q)

In this section we present two methods to compute the gen-
erating function λ(q). The first method follows from the formal
definition of λ(q). Practically we compute the average C(ℓ)q
at finite ℓ using a stochastic sampling method. Once we have
obtained the average C(ℓ)q we compute the logarithm, then
we divide by ℓ and eventually we extrapolate in the limit
ℓ → ∞. Even if the extrapolation is unambiguous from the
numerical point of view, it remains limited from the theoretical
perspective. It would be better to have a recipe that allows one
to compute directly the asymptotic function λ(q). Fortunately
this method exists and it will be described below. It will be
demonstrated that the cumulant generating function λ(q) is the
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− limℓ→∞ log C(ℓ)/ℓ = γ0. Despite this, there exist very im-
probable sequences in # which lead to a different asymptotic
limit of the decay rate. They cannot change the logarithmic
average 7, but they are relevant in the evaluation of the decay
rate of the disorder-averaged connected correlation function:

γ1 = − lim
ℓ→∞

log C(ℓ)
ℓ

. (9)

For a general discussion on this problem see, e.g.,
Refs. [1,2,14].

The rate γ1 is the quantity directly involved in the
computation of the ferromagnetic susceptibility χF . In order
to compute χF we use the fact that in a large random sparse
network, by approximating the lattice with a tree rooted on
site 0, the number of spins at distance ℓ from the central
spin s0 is (z + 1)zℓ−1. This allows one to write the nontrivial
contribution to the ferromagnetic susceptibility χF as

χF = z + 1
z

∞∑

ℓ=1

zℓ R(ℓ) ∝
∞∑

ℓ=1

zℓ C(ℓ) ∼ (1 − ze−γ1 )−1.

(10)
The critical point, associated with the divergence of χF , is
reached when γ1 = log(z). We now introduce the distribution
of the decay rate Pℓ(γ ). Physically Pℓ(γ )dγ represents the
probability to measure an effective decay rate − log C(ℓ)/ℓ be-
longing to the interval [γ ,γ + dγ ]. Since Pℓ(γ ) concentrates
on the point γ = γ0 for ℓ → ∞, the following asymptotic
behavior can be predicted:

Pℓ(γ ) ≈ e−ℓ%(γ ) for ℓ → ∞, (11)
with a rate function %(γ ) ! 0. We will be more precise in a
while, but for the moment let us evaluate the susceptibility χF

using the asymptotic distribution 11:

χF ∝
∞∑

ℓ=1

zℓC(ℓ) ≈
∑

ℓ

zℓ

∫
dγ e−ℓ[%(γ )+γ ]

≈
∑

ℓ

zℓe−ℓ[%(γ ∗)+γ ∗], (12)

where in the last step the integral is evaluated via the steepest
descent method and γ ∗ is the solution of the saddle-point
equation

∂%(γ )
∂γ

∣∣∣∣
γ ∗

= −1. (13)

The value γ = γ ∗ selects the correlations which dominate the
average C(ℓ). If we call Nℓ(γ ∗) = zℓe−ℓ%(γ ∗) the number of
spin pairs (σ0,σℓ) whose correlation C(ℓ) decays as e−ℓγ ∗

, we
can write the susceptibility χF as

χF ≈
∑

ℓ

Nℓ(γ ∗)e−ℓγ ∗
. (14)

Equation 14 emphasizes that the main contribution to the
susceptibility comes from rare correlations with atypically
small decay rate γ ∗. This is true also at the phase transition
point, with the physical consequence that the criticality is
driven by a few pairs of strongly correlated variables, whose
number is zℓe−ℓ%(γ ∗), and hence much smaller than the total
number of pairs zℓ. A scaling law of the form Pℓ(γ ) ≈ e−ℓ%(γ ),
where ℓ is assumed to be large and % is a positive function,
is referred to as a large deviation principle. To make it more

precise, let xℓ be a random variable indexed by the integer ℓ,
and let P (xℓ ∈ I ) be the probability that xℓ takes on a value
in a set I . We say that P (xℓ ∈ I ) satisfies a large deviation
principle with rate %I if the limit

lim
ℓ→∞

−1
ℓ

log P (xℓ ∈ I ) = %I (15)

exists. Hence, if P (xℓ ∈ I ) has a dominant exponential
behavior in ℓ, then that limit should exist with %I ̸= 0. If
the limit does not exist, then either P (xℓ ∈ I ) is too singular
to have a limit or else P (xℓ ∈ I ) decays with ℓ faster than e−ℓa

with a > 0. In this case, we say that P (xℓ ∈ I ) decays superex-
ponentially and set % = ∞. The large deviation limit may also
be zero for any set I if P (xℓ ∈ I ) is subexponential in ℓ, i.e., if
P (xℓ ∈ I ) decays slower than e−ℓa, a > 0. The cases of inter-
est in the analysis of large deviations of correlations are those
for which the limit shown in 15 exists. Indeed, a subexponential
behavior of P (xℓ ∈ I ) would lead to an unphysical divergent
susceptibility at all temperatures, while a superexponential
one would give a finite susceptibility at all temperatures, that
corresponds to a model without phase transitions.

To reconstruct the rate function %(γ ), we define the
cumulant generating function of the random variable γ [15]:

λ(q) = − lim
ℓ→∞

log C(ℓ)q

ℓ
, (16)

where q ∈ R and

C(ℓ)q =
∫

dγ Pℓ(γ )e−ℓqγ . (17)

Notice that γ0 = λ′(0) and γ1 = λ(1). The Gärtner-Ellis
theorem [16,17] states that, if λ(q) exists and is differentiable
for all q ∈ R, then γ satisfies a large deviation principle, i.e.,

Pℓ(γ ) ≈ e−ℓ%(γ ), (18)

where the sign “≈” is used to stress that, as ℓ → ∞, the
dominant part of Pℓ(γ ) is the decaying exponential e−ℓ%(γ ).
The rate function %(γ ) is given by the Legendre-Fenchel [16]
transform of λ(q):

%(γ ) = sup
q∈R

[λ(q) − qγ ]. (19)

In the next section we are going to explain how to compute the
cumulant generating function 16 and the rate function 19.

III. HOW TO COMPUTE THE CUMULANT GENERATING
FUNCTION λ(q)

In this section we present two methods to compute the gen-
erating function λ(q). The first method follows from the formal
definition of λ(q). Practically we compute the average C(ℓ)q
at finite ℓ using a stochastic sampling method. Once we have
obtained the average C(ℓ)q we compute the logarithm, then
we divide by ℓ and eventually we extrapolate in the limit
ℓ → ∞. Even if the extrapolation is unambiguous from the
numerical point of view, it remains limited from the theoretical
perspective. It would be better to have a recipe that allows one
to compute directly the asymptotic function λ(q). Fortunately
this method exists and it will be described below. It will be
demonstrated that the cumulant generating function λ(q) is the
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solution of an integral eigenvalue equation. This equation was
already present in the literature [18] and it was first derived
using the replica theory. Here we give a parallel derivation,
using the language of the cavity method.

A. Method I

To obtain λ(q) we first compute the moments of the
correlation function C(ℓ)q :

C(ℓ)q =
ℓ∏

k=1

(
∂uk→k−1

∂uk+1→k

)q

. (20)

The variables {uk→k−1}ℓk=1 are correlated variables and this
makes the analytical computation hard to pursue in full gener-
ality. Nevertheless, the estimation of λ(q) can be accomplished
numerically with the following method. For any fixed value
of q, one generates many instances of C(ℓ)q by iterating the
following map:

uk→k−1 = β−1atanh

⎡

⎣ tanh(βJ ) tanh

⎛

⎝βhR + βuk+1→k

+ β

z−1∑

j=1

uj→k

⎞

⎠

⎤

⎦ , for k = ℓ,ℓ − 1, . . . ,1,

(21)

and applying Eq. 20. The variables uj→k are the cavity
bias coming from the (z − 1) branches outside the path
that merge on the node k. Within the cavity approach they
are assumed to be independent and identically distributed
according to the distribution Q(u) given by Eq. 2. The starting
cavity bias uℓ+1→ℓ is also extracted from the distribution
Q(u). The average C(ℓ)q is obtained as the mean over the
instances generated with this method. Defining an intermediate
generating function λℓ(q) as

λℓ(q) = − log C(ℓ)q

ℓ
, (22)

eventually we have to take the limit:

lim
ℓ→∞

λℓ(q) = λ(q). (23)

Assuming for λℓ(q), in the limit ℓ → ∞, an expansion in
powers of ℓ−1 of the form

λℓ(q) = λ(q) + A(q)
ℓ

+ o(ℓ−1), (24)

we obtain the value λ(q) extrapolating λℓ(q) with the func-
tion 24. In practice we take 1250 values of q in the range

TABLE I. Some critical temperatures Tc(σ ) in
the RFIM on the Bethe lattice with coordination
number z + 1 = 3 and Gaussian random fields.
The last line corresponds to the zero-temperature
critical point, estimated with the method described
in Sec. V.

σ Tc(σ )

0.00 1.820478
0.20 1.7805(5)
0.50 1.5755(5)
0.80 1.1590(5)
1.00 0.5495(5)
1.02 0.3980(5)
1.035 0.1635(5)
1.037(1) 0.0

q ∈ [−0.25,6.0], equally spaced by &q = 0.005, and vary ℓ
from ℓ = 1 to ℓ = 10. For each value of q and ℓ we take
the average C(ℓ)q over 107 instances and compute λℓ(q). We
collect 100 values of the same λℓ(q) and estimate statistical
errors. In the end the extrapolation λℓ(q) → λ(q) is performed
using Eq. 24.

In Fig. 2 we show the function λ(q) obtained with this
method. The curve is computed at the critical temperature
corresponding to the random-field strength σ = 1.0 (and fer-
romagnetic coupling J = 1), for a Bethe lattice of connectivity
z + 1 = 3. We recall that the critical point is defined by the
following condition:

λ(1) = log(z) for T = Tc(σ ). (25)

The inset in Fig. 2 corresponding to q = 1 shows that, in
our case, λ(1) = log(2). In general, the condition 25 defines a
curve in the plane (T ,σ ), separating the paramagnetic and the
ferromagnetic phases. Some of the critical temperatures for
the corresponding values of the random field σ are sketched
in Table I. The other insets in Fig. 2 report the function
λℓ(q) for some representative values of q, together with the
extrapolation to ℓ → ∞.

Method I works quite well for values of q in the range
shown in Fig. 2, i.e., for 0.25 ! q ! 6. Outside this interval
the error on the intermediate generating function 22 is quite
large, so that the extrapolation ℓ → ∞ is far less reliable. This
numerical shortcoming will be cured by method II.

B. Method II

Another route to work out the function λ(q), getting rid of
the extrapolation ℓ → ∞, leads to the following eigenvalue
equation [19,20]:

Er

∫
du′g(u′,q)δ[u − û(β,J,u′ + r)]

(
∂û

∂u′

)q

= e−λ(q)g(u,q) , (26)

where û(β,J,x) is given by Eq. 3 and the average over the variable r is performed using the distribution P cav
z−1(r) defined as

P cav
z−1(r) =

∫ [
z−1∏

i=1

dQ(ui)

]

δ

(

r − hR −
z−1∑

i=1

ui

)hR

. (27)
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solution of an integral eigenvalue equation. This equation was
already present in the literature [18] and it was first derived
using the replica theory. Here we give a parallel derivation,
using the language of the cavity method.

A. Method I

To obtain λ(q) we first compute the moments of the
correlation function C(ℓ)q :

C(ℓ)q =
ℓ∏

k=1

(
∂uk→k−1

∂uk+1→k

)q

. (20)

The variables {uk→k−1}ℓk=1 are correlated variables and this
makes the analytical computation hard to pursue in full gener-
ality. Nevertheless, the estimation of λ(q) can be accomplished
numerically with the following method. For any fixed value
of q, one generates many instances of C(ℓ)q by iterating the
following map:

uk→k−1 = β−1atanh

⎡

⎣ tanh(βJ ) tanh

⎛

⎝βhR + βuk+1→k

+ β

z−1∑

j=1

uj→k

⎞

⎠

⎤

⎦ , for k = ℓ,ℓ − 1, . . . ,1,

(21)

and applying Eq. 20. The variables uj→k are the cavity
bias coming from the (z − 1) branches outside the path
that merge on the node k. Within the cavity approach they
are assumed to be independent and identically distributed
according to the distribution Q(u) given by Eq. 2. The starting
cavity bias uℓ+1→ℓ is also extracted from the distribution
Q(u). The average C(ℓ)q is obtained as the mean over the
instances generated with this method. Defining an intermediate
generating function λℓ(q) as

λℓ(q) = − log C(ℓ)q

ℓ
, (22)

eventually we have to take the limit:

lim
ℓ→∞

λℓ(q) = λ(q). (23)

Assuming for λℓ(q), in the limit ℓ → ∞, an expansion in
powers of ℓ−1 of the form

λℓ(q) = λ(q) + A(q)
ℓ

+ o(ℓ−1), (24)

we obtain the value λ(q) extrapolating λℓ(q) with the func-
tion 24. In practice we take 1250 values of q in the range

TABLE I. Some critical temperatures Tc(σ ) in
the RFIM on the Bethe lattice with coordination
number z + 1 = 3 and Gaussian random fields.
The last line corresponds to the zero-temperature
critical point, estimated with the method described
in Sec. V.

σ Tc(σ )

0.00 1.820478
0.20 1.7805(5)
0.50 1.5755(5)
0.80 1.1590(5)
1.00 0.5495(5)
1.02 0.3980(5)
1.035 0.1635(5)
1.037(1) 0.0

q ∈ [−0.25,6.0], equally spaced by &q = 0.005, and vary ℓ
from ℓ = 1 to ℓ = 10. For each value of q and ℓ we take
the average C(ℓ)q over 107 instances and compute λℓ(q). We
collect 100 values of the same λℓ(q) and estimate statistical
errors. In the end the extrapolation λℓ(q) → λ(q) is performed
using Eq. 24.

In Fig. 2 we show the function λ(q) obtained with this
method. The curve is computed at the critical temperature
corresponding to the random-field strength σ = 1.0 (and fer-
romagnetic coupling J = 1), for a Bethe lattice of connectivity
z + 1 = 3. We recall that the critical point is defined by the
following condition:

λ(1) = log(z) for T = Tc(σ ). (25)

The inset in Fig. 2 corresponding to q = 1 shows that, in
our case, λ(1) = log(2). In general, the condition 25 defines a
curve in the plane (T ,σ ), separating the paramagnetic and the
ferromagnetic phases. Some of the critical temperatures for
the corresponding values of the random field σ are sketched
in Table I. The other insets in Fig. 2 report the function
λℓ(q) for some representative values of q, together with the
extrapolation to ℓ → ∞.

Method I works quite well for values of q in the range
shown in Fig. 2, i.e., for 0.25 ! q ! 6. Outside this interval
the error on the intermediate generating function 22 is quite
large, so that the extrapolation ℓ → ∞ is far less reliable. This
numerical shortcoming will be cured by method II.

B. Method II

Another route to work out the function λ(q), getting rid of
the extrapolation ℓ → ∞, leads to the following eigenvalue
equation [19,20]:

Er

∫
du′g(u′,q)δ[u − û(β,J,u′ + r)]

(
∂û

∂u′

)q

= e−λ(q)g(u,q) , (26)

where û(β,J,x) is given by Eq. 3 and the average over the variable r is performed using the distribution P cav
z−1(r) defined as

P cav
z−1(r) =

∫ [
z−1∏

i=1

dQ(ui)

]

δ

(

r − hR −
z−1∑

i=1

ui

)hR

. (27)
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FIG. 2. (Color online) Use of method I to compute the cumulant generating function λ(q). This plot refers to a function λ(q) computed on
a Bethe lattice with coordination number z + 1 = 3, at the critical temperature corresponding to the random-field strength σ = 1.0, which is
approximatively Tc(σ = 1.0) ≈ 0.549. For the meaning of the insets, see the discussion in Sec. III A. Notice that in most of the cases the errors
are practically invisible.

Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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solution of an integral eigenvalue equation. This equation was
already present in the literature [18] and it was first derived
using the replica theory. Here we give a parallel derivation,
using the language of the cavity method.

A. Method I

To obtain λ(q) we first compute the moments of the
correlation function C(ℓ)q :

C(ℓ)q =
ℓ∏

k=1

(
∂uk→k−1

∂uk+1→k

)q

. (20)

The variables {uk→k−1}ℓk=1 are correlated variables and this
makes the analytical computation hard to pursue in full gener-
ality. Nevertheless, the estimation of λ(q) can be accomplished
numerically with the following method. For any fixed value
of q, one generates many instances of C(ℓ)q by iterating the
following map:

uk→k−1 = β−1atanh

⎡

⎣ tanh(βJ ) tanh

⎛

⎝βhR + βuk+1→k

+ β

z−1∑

j=1

uj→k

⎞

⎠

⎤

⎦ , for k = ℓ,ℓ − 1, . . . ,1,

(21)

and applying Eq. 20. The variables uj→k are the cavity
bias coming from the (z − 1) branches outside the path
that merge on the node k. Within the cavity approach they
are assumed to be independent and identically distributed
according to the distribution Q(u) given by Eq. 2. The starting
cavity bias uℓ+1→ℓ is also extracted from the distribution
Q(u). The average C(ℓ)q is obtained as the mean over the
instances generated with this method. Defining an intermediate
generating function λℓ(q) as

λℓ(q) = − log C(ℓ)q

ℓ
, (22)

eventually we have to take the limit:

lim
ℓ→∞

λℓ(q) = λ(q). (23)

Assuming for λℓ(q), in the limit ℓ → ∞, an expansion in
powers of ℓ−1 of the form

λℓ(q) = λ(q) + A(q)
ℓ

+ o(ℓ−1), (24)

we obtain the value λ(q) extrapolating λℓ(q) with the func-
tion 24. In practice we take 1250 values of q in the range

TABLE I. Some critical temperatures Tc(σ ) in
the RFIM on the Bethe lattice with coordination
number z + 1 = 3 and Gaussian random fields.
The last line corresponds to the zero-temperature
critical point, estimated with the method described
in Sec. V.

σ Tc(σ )

0.00 1.820478
0.20 1.7805(5)
0.50 1.5755(5)
0.80 1.1590(5)
1.00 0.5495(5)
1.02 0.3980(5)
1.035 0.1635(5)
1.037(1) 0.0

q ∈ [−0.25,6.0], equally spaced by &q = 0.005, and vary ℓ
from ℓ = 1 to ℓ = 10. For each value of q and ℓ we take
the average C(ℓ)q over 107 instances and compute λℓ(q). We
collect 100 values of the same λℓ(q) and estimate statistical
errors. In the end the extrapolation λℓ(q) → λ(q) is performed
using Eq. 24.

In Fig. 2 we show the function λ(q) obtained with this
method. The curve is computed at the critical temperature
corresponding to the random-field strength σ = 1.0 (and fer-
romagnetic coupling J = 1), for a Bethe lattice of connectivity
z + 1 = 3. We recall that the critical point is defined by the
following condition:

λ(1) = log(z) for T = Tc(σ ). (25)

The inset in Fig. 2 corresponding to q = 1 shows that, in
our case, λ(1) = log(2). In general, the condition 25 defines a
curve in the plane (T ,σ ), separating the paramagnetic and the
ferromagnetic phases. Some of the critical temperatures for
the corresponding values of the random field σ are sketched
in Table I. The other insets in Fig. 2 report the function
λℓ(q) for some representative values of q, together with the
extrapolation to ℓ → ∞.

Method I works quite well for values of q in the range
shown in Fig. 2, i.e., for 0.25 ! q ! 6. Outside this interval
the error on the intermediate generating function 22 is quite
large, so that the extrapolation ℓ → ∞ is far less reliable. This
numerical shortcoming will be cured by method II.

B. Method II

Another route to work out the function λ(q), getting rid of
the extrapolation ℓ → ∞, leads to the following eigenvalue
equation [19,20]:

Er

∫
du′g(u′,q)δ[u − û(β,J,u′ + r)]

(
∂û

∂u′

)q

= e−λ(q)g(u,q) , (26)

where û(β,J,x) is given by Eq. 3 and the average over the variable r is performed using the distribution P cav
z−1(r) defined as

P cav
z−1(r) =

∫ [
z−1∏

i=1

dQ(ui)

]

δ

(

r − hR −
z−1∑

i=1

ui

)hR

. (27)
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solution of an integral eigenvalue equation. This equation was
already present in the literature [18] and it was first derived
using the replica theory. Here we give a parallel derivation,
using the language of the cavity method.

A. Method I

To obtain λ(q) we first compute the moments of the
correlation function C(ℓ)q :

C(ℓ)q =
ℓ∏

k=1

(
∂uk→k−1

∂uk+1→k

)q

. (20)

The variables {uk→k−1}ℓk=1 are correlated variables and this
makes the analytical computation hard to pursue in full gener-
ality. Nevertheless, the estimation of λ(q) can be accomplished
numerically with the following method. For any fixed value
of q, one generates many instances of C(ℓ)q by iterating the
following map:

uk→k−1 = β−1atanh

⎡

⎣ tanh(βJ ) tanh

⎛

⎝βhR + βuk+1→k

+ β

z−1∑

j=1

uj→k

⎞

⎠

⎤

⎦ , for k = ℓ,ℓ − 1, . . . ,1,

(21)

and applying Eq. 20. The variables uj→k are the cavity
bias coming from the (z − 1) branches outside the path
that merge on the node k. Within the cavity approach they
are assumed to be independent and identically distributed
according to the distribution Q(u) given by Eq. 2. The starting
cavity bias uℓ+1→ℓ is also extracted from the distribution
Q(u). The average C(ℓ)q is obtained as the mean over the
instances generated with this method. Defining an intermediate
generating function λℓ(q) as

λℓ(q) = − log C(ℓ)q

ℓ
, (22)

eventually we have to take the limit:

lim
ℓ→∞

λℓ(q) = λ(q). (23)

Assuming for λℓ(q), in the limit ℓ → ∞, an expansion in
powers of ℓ−1 of the form

λℓ(q) = λ(q) + A(q)
ℓ

+ o(ℓ−1), (24)

we obtain the value λ(q) extrapolating λℓ(q) with the func-
tion 24. In practice we take 1250 values of q in the range

TABLE I. Some critical temperatures Tc(σ ) in
the RFIM on the Bethe lattice with coordination
number z + 1 = 3 and Gaussian random fields.
The last line corresponds to the zero-temperature
critical point, estimated with the method described
in Sec. V.

σ Tc(σ )

0.00 1.820478
0.20 1.7805(5)
0.50 1.5755(5)
0.80 1.1590(5)
1.00 0.5495(5)
1.02 0.3980(5)
1.035 0.1635(5)
1.037(1) 0.0

q ∈ [−0.25,6.0], equally spaced by &q = 0.005, and vary ℓ
from ℓ = 1 to ℓ = 10. For each value of q and ℓ we take
the average C(ℓ)q over 107 instances and compute λℓ(q). We
collect 100 values of the same λℓ(q) and estimate statistical
errors. In the end the extrapolation λℓ(q) → λ(q) is performed
using Eq. 24.

In Fig. 2 we show the function λ(q) obtained with this
method. The curve is computed at the critical temperature
corresponding to the random-field strength σ = 1.0 (and fer-
romagnetic coupling J = 1), for a Bethe lattice of connectivity
z + 1 = 3. We recall that the critical point is defined by the
following condition:

λ(1) = log(z) for T = Tc(σ ). (25)

The inset in Fig. 2 corresponding to q = 1 shows that, in
our case, λ(1) = log(2). In general, the condition 25 defines a
curve in the plane (T ,σ ), separating the paramagnetic and the
ferromagnetic phases. Some of the critical temperatures for
the corresponding values of the random field σ are sketched
in Table I. The other insets in Fig. 2 report the function
λℓ(q) for some representative values of q, together with the
extrapolation to ℓ → ∞.

Method I works quite well for values of q in the range
shown in Fig. 2, i.e., for 0.25 ! q ! 6. Outside this interval
the error on the intermediate generating function 22 is quite
large, so that the extrapolation ℓ → ∞ is far less reliable. This
numerical shortcoming will be cured by method II.

B. Method II

Another route to work out the function λ(q), getting rid of
the extrapolation ℓ → ∞, leads to the following eigenvalue
equation [19,20]:

Er

∫
du′g(u′,q)δ[u − û(β,J,u′ + r)]

(
∂û

∂u′

)q

= e−λ(q)g(u,q) , (26)

where û(β,J,x) is given by Eq. 3 and the average over the variable r is performed using the distribution P cav
z−1(r) defined as

P cav
z−1(r) =

∫ [
z−1∏

i=1

dQ(ui)

]

δ

(

r − hR −
z−1∑

i=1

ui

)hR

. (27)
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FIG. 3. (Color online) The cumulant generating function λ(q)
computed with method I (red line) and method II (black line) on
a Bethe lattice with fixed coordination number z + 1 = 3, at the
critical point corresponding to the random-field strength σ = 1.0 and
temperature Tc = 0.549. In the inset we show the eigenfunctions
g(u,q) computed for the values of q marked by dots in the main
panel.

importance, particularly in the computation of the finite
size 1/N corrections in finitely connected models (see, for
example, Refs. [21,22]).

Method II looks much more robust than method I, mainly
because it circumvents the annoying problem of extrapolating
the ℓ → ∞ limit. A way to numerically solve the eigenvalue
equation 26 requires discretizing the variables and replacing
integral by sum. If the integral kernel is positive defined (as
in the case of the RFIM) it can be solved also by means of a
population dynamics algorithm. In adopting the latter scheme
one has to distinguish the algorithm for q > 0 from that for
q < 0. If q > 0 the population is reweighted by the factor
( ∂û
∂u′ )q < 1. Practically, when running the population dynamics

algorithm, the updates are accepted with probability ( ∂û
∂u′ )q .

Instead if q < 0 the same factor is bigger than 1, ( ∂û
∂u′ )q >

1. The effect on the algorithm is that of introducing in the
population, at each update, more copies of the same elements.
This requires one to filter the population at each step of the
algorithm, in order to reduce the fraction of twins from the
pool of evolving fields representing the population.

In Fig. 3 we compare the function λ(q) computed with
method I and method II. In the same figure we also show some
of the eigenfunctions g(u,q).

In Fig. 4 we draw the profiles of the function λ(q) at different
critical points on the critical line, ranging from the zero-field
critical point to the zero-temperature critical point.

In the zero-field case the function λ(q) is simply given
by λ(q) = q log(z). At the zero-temperature critical point the
function λ(q) becomes singular. This is due to the fact that
Eq. 26, in the limit β → ∞, becomes

e−λ(q)g(u,q) = Er

∫
du′ g(u′,q)

δ[u − û(J,r + u′)]'(J − |r + u′|)q, (42)
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FIG. 4. (Color online) Profiles of the cumulant generating func-
tion λ(q) computed at different critical points along the critical line,
shown in the inset. In zero field λ(q) assumes the simple form
λ(q) = q log(z). At zero temperature λ(q) is piecewise constant:
λ(q) = −∞ for q < 0, λ(q) = 0 for q = 0, and λ(q) = log(z) for
q > 0.

where û(J,r + u′) = sgn(r + u′) min(J,|r + u′|). We deduce
that for any q > 0 the function λ(q) must be a constant.
At the zero-temperature critical point it remains true that
λ(1) = log(z), so that λ(q) = log(z) for any q > 0. For q = 0
the eigenvalue equation reduces to a cavity equation at zero
temperature and we find λ(q = 0) = 0. Lastly for q < 0 we
have λ(q) = −∞.

A further comment on the limits q → ∞ and q → −∞ can
be useful. In the q → ∞ limit, the average C(ℓ)q is dominated
by the largest correlations C(ℓ). By noting that each term in
the product in Eq. (6) is bounded by

∂uk→k−1

∂uk+1→k

! tanh(βJ ),

we have that the largest correlations approach the upper bound

C(ℓ)q ! tanh(βJ )qℓ,

that in turn implies

λ(q) " −q log tanh(βJ ).

Since the function λ(q) is concave, it cannot be superlinear
and so, for large q values, it must grow linearly

λ(q) ≈ −q log tanh(βJ ).

On the contrary, the q → −∞ limit depends on the
distribution of the random fields: If random fields are bounded,
then a linear behavior in λ(q) can be derived with an argument
similar to the one above, but if random fields are unbounded
(as in the case of Gaussian random fields) the behavior of λ(q)
for q → −∞ depends on the tail of the distribution of the
random fields. Indeed a correlation can become very close to
zero only if a large random field is generated, since

∂uk→k−1

∂uk+1→k

≈ 2 sinh(2βJ )e−β|hR | for |hR| ≫ 1.
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a Bethe lattice with coordination number z + 1 = 3, at the critical temperature corresponding to the random-field strength σ = 1.0, which is
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Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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a Bethe lattice with coordination number z + 1 = 3, at the critical temperature corresponding to the random-field strength σ = 1.0, which is
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Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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FIG. 2. (Color online) Use of method I to compute the cumulant generating function λ(q). This plot refers to a function λ(q) computed on
a Bethe lattice with coordination number z + 1 = 3, at the critical temperature corresponding to the random-field strength σ = 1.0, which is
approximatively Tc(σ = 1.0) ≈ 0.549. For the meaning of the insets, see the discussion in Sec. III A. Notice that in most of the cases the errors
are practically invisible.

Equation 26, for any fixed q, is a homogeneous Fredholm’s integral equation of the second kind, which has a continuous spectrum.
Luckily, the function λ(q) we are interested in (i.e., the cumulant generating function of the decay rate) is obtained by solving
Eq. 26, for any fixed q, only for the largest eigenvalue.

In order to derive Eq. 26 we start from the correlation function C(ℓ):

C(ℓ) =
ℓ∏

k=1

∂uk→k−1

∂uk+1→k

. (28)

The random variables uk→k−1 and uk+1→k are related by the following equation:

uk→k−1 = û(β,J,r + uk+1→k). (29)

The correlation function at distance ℓ + 1 can be written as

C(ℓ + 1) = ∂u1→0

∂u2→1
C(ℓ), u1→0 = û(β,J,r + u2→1). (30)

Let us consider the joint probability distribution of the variables C(ℓ + 1) and u1→0, which we call Pℓ+1(C,u). Equation 30 defines
the following recursion relation for the function Pℓ(C,u):

Pℓ+1(C,u) = Er

∫
dC ′ du′ Pℓ(C ′,u′)δ

[
C − ∂û(β,J,r + u′)

∂u′ C ′
]

δ[u − û(β,J,r + u′)]. (31)

Taking the partial moments:

ψℓ(u,q) =
∫

dC Pℓ(C,u)Cq, (32)

we find the following recursion for ψℓ(u,q):

ψℓ+1(u,q) = Er

∫
du′ ψℓ(u′,q)δ[u − û(β,J,r + u′)]

(
∂û

∂u′

)q

.

(33)

For ℓ → ∞, Eq. 33 has only the solutions ψ∞(u,q) ≡ 0 for
q > 0 and ψ∞(u,q) ≡ ∞ for q < 0, while for q = 0 the
asymptotic distribution is the cavity distribution ψ∞(u,0) ≡
Q(u). Noting that

∫
du ψℓ(u,q) = C(ℓ)q, (34)

we define the renormalized function gℓ(u,q) as

gℓ(u,q) = ψℓ(u,q)eℓλ(q), (35)
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solution of an integral eigenvalue equation. This equation was
already present in the literature [18] and it was first derived
using the replica theory. Here we give a parallel derivation,
using the language of the cavity method.

A. Method I

To obtain λ(q) we first compute the moments of the
correlation function C(ℓ)q :

C(ℓ)q =
ℓ∏

k=1

(
∂uk→k−1

∂uk+1→k

)q

. (20)

The variables {uk→k−1}ℓk=1 are correlated variables and this
makes the analytical computation hard to pursue in full gener-
ality. Nevertheless, the estimation of λ(q) can be accomplished
numerically with the following method. For any fixed value
of q, one generates many instances of C(ℓ)q by iterating the
following map:

uk→k−1 = β−1atanh

⎡

⎣ tanh(βJ ) tanh

⎛

⎝βhR + βuk+1→k

+ β

z−1∑

j=1

uj→k

⎞

⎠

⎤

⎦ , for k = ℓ,ℓ − 1, . . . ,1,

(21)

and applying Eq. 20. The variables uj→k are the cavity
bias coming from the (z − 1) branches outside the path
that merge on the node k. Within the cavity approach they
are assumed to be independent and identically distributed
according to the distribution Q(u) given by Eq. 2. The starting
cavity bias uℓ+1→ℓ is also extracted from the distribution
Q(u). The average C(ℓ)q is obtained as the mean over the
instances generated with this method. Defining an intermediate
generating function λℓ(q) as

λℓ(q) = − log C(ℓ)q

ℓ
, (22)

eventually we have to take the limit:

lim
ℓ→∞

λℓ(q) = λ(q). (23)

Assuming for λℓ(q), in the limit ℓ → ∞, an expansion in
powers of ℓ−1 of the form

λℓ(q) = λ(q) + A(q)
ℓ

+ o(ℓ−1), (24)

we obtain the value λ(q) extrapolating λℓ(q) with the func-
tion 24. In practice we take 1250 values of q in the range

TABLE I. Some critical temperatures Tc(σ ) in
the RFIM on the Bethe lattice with coordination
number z + 1 = 3 and Gaussian random fields.
The last line corresponds to the zero-temperature
critical point, estimated with the method described
in Sec. V.

σ Tc(σ )

0.00 1.820478
0.20 1.7805(5)
0.50 1.5755(5)
0.80 1.1590(5)
1.00 0.5495(5)
1.02 0.3980(5)
1.035 0.1635(5)
1.037(1) 0.0

q ∈ [−0.25,6.0], equally spaced by &q = 0.005, and vary ℓ
from ℓ = 1 to ℓ = 10. For each value of q and ℓ we take
the average C(ℓ)q over 107 instances and compute λℓ(q). We
collect 100 values of the same λℓ(q) and estimate statistical
errors. In the end the extrapolation λℓ(q) → λ(q) is performed
using Eq. 24.

In Fig. 2 we show the function λ(q) obtained with this
method. The curve is computed at the critical temperature
corresponding to the random-field strength σ = 1.0 (and fer-
romagnetic coupling J = 1), for a Bethe lattice of connectivity
z + 1 = 3. We recall that the critical point is defined by the
following condition:

λ(1) = log(z) for T = Tc(σ ). (25)

The inset in Fig. 2 corresponding to q = 1 shows that, in
our case, λ(1) = log(2). In general, the condition 25 defines a
curve in the plane (T ,σ ), separating the paramagnetic and the
ferromagnetic phases. Some of the critical temperatures for
the corresponding values of the random field σ are sketched
in Table I. The other insets in Fig. 2 report the function
λℓ(q) for some representative values of q, together with the
extrapolation to ℓ → ∞.

Method I works quite well for values of q in the range
shown in Fig. 2, i.e., for 0.25 ! q ! 6. Outside this interval
the error on the intermediate generating function 22 is quite
large, so that the extrapolation ℓ → ∞ is far less reliable. This
numerical shortcoming will be cured by method II.

B. Method II

Another route to work out the function λ(q), getting rid of
the extrapolation ℓ → ∞, leads to the following eigenvalue
equation [19,20]:

Er

∫
du′g(u′,q)δ[u − û(β,J,u′ + r)]

(
∂û

∂u′

)q

= e−λ(q)g(u,q) , (26)

where û(β,J,x) is given by Eq. 3 and the average over the variable r is performed using the distribution P cav
z−1(r) defined as

P cav
z−1(r) =

∫ [
z−1∏

i=1

dQ(ui)

]

δ

(

r − hR −
z−1∑

i=1

ui

)hR

. (27)
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FIG. 3. (Color online) The cumulant generating function λ(q)
computed with method I (red line) and method II (black line) on
a Bethe lattice with fixed coordination number z + 1 = 3, at the
critical point corresponding to the random-field strength σ = 1.0 and
temperature Tc = 0.549. In the inset we show the eigenfunctions
g(u,q) computed for the values of q marked by dots in the main
panel.

importance, particularly in the computation of the finite
size 1/N corrections in finitely connected models (see, for
example, Refs. [21,22]).

Method II looks much more robust than method I, mainly
because it circumvents the annoying problem of extrapolating
the ℓ → ∞ limit. A way to numerically solve the eigenvalue
equation 26 requires discretizing the variables and replacing
integral by sum. If the integral kernel is positive defined (as
in the case of the RFIM) it can be solved also by means of a
population dynamics algorithm. In adopting the latter scheme
one has to distinguish the algorithm for q > 0 from that for
q < 0. If q > 0 the population is reweighted by the factor
( ∂û
∂u′ )q < 1. Practically, when running the population dynamics

algorithm, the updates are accepted with probability ( ∂û
∂u′ )q .

Instead if q < 0 the same factor is bigger than 1, ( ∂û
∂u′ )q >

1. The effect on the algorithm is that of introducing in the
population, at each update, more copies of the same elements.
This requires one to filter the population at each step of the
algorithm, in order to reduce the fraction of twins from the
pool of evolving fields representing the population.

In Fig. 3 we compare the function λ(q) computed with
method I and method II. In the same figure we also show some
of the eigenfunctions g(u,q).

In Fig. 4 we draw the profiles of the function λ(q) at different
critical points on the critical line, ranging from the zero-field
critical point to the zero-temperature critical point.

In the zero-field case the function λ(q) is simply given
by λ(q) = q log(z). At the zero-temperature critical point the
function λ(q) becomes singular. This is due to the fact that
Eq. 26, in the limit β → ∞, becomes

e−λ(q)g(u,q) = Er

∫
du′ g(u′,q)

δ[u − û(J,r + u′)]'(J − |r + u′|)q, (42)
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q

log(z)

σ = 0.0             T = 1.8205
σ = 0.5             T = 1.5755
σ = 0.8             T = 1.1590
σ = 0.95           T = 0.7760
σ = 1.02           T = 0.3980
σ = 1.035         T = 0.1635
σ = 1.037         T = 0.0

Phase Diagram (z = 2)
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T

FIG. 4. (Color online) Profiles of the cumulant generating func-
tion λ(q) computed at different critical points along the critical line,
shown in the inset. In zero field λ(q) assumes the simple form
λ(q) = q log(z). At zero temperature λ(q) is piecewise constant:
λ(q) = −∞ for q < 0, λ(q) = 0 for q = 0, and λ(q) = log(z) for
q > 0.

where û(J,r + u′) = sgn(r + u′) min(J,|r + u′|). We deduce
that for any q > 0 the function λ(q) must be a constant.
At the zero-temperature critical point it remains true that
λ(1) = log(z), so that λ(q) = log(z) for any q > 0. For q = 0
the eigenvalue equation reduces to a cavity equation at zero
temperature and we find λ(q = 0) = 0. Lastly for q < 0 we
have λ(q) = −∞.

A further comment on the limits q → ∞ and q → −∞ can
be useful. In the q → ∞ limit, the average C(ℓ)q is dominated
by the largest correlations C(ℓ). By noting that each term in
the product in Eq. (6) is bounded by

∂uk→k−1

∂uk+1→k

! tanh(βJ ),

we have that the largest correlations approach the upper bound

C(ℓ)q ! tanh(βJ )qℓ,

that in turn implies

λ(q) " −q log tanh(βJ ).

Since the function λ(q) is concave, it cannot be superlinear
and so, for large q values, it must grow linearly

λ(q) ≈ −q log tanh(βJ ).

On the contrary, the q → −∞ limit depends on the
distribution of the random fields: If random fields are bounded,
then a linear behavior in λ(q) can be derived with an argument
similar to the one above, but if random fields are unbounded
(as in the case of Gaussian random fields) the behavior of λ(q)
for q → −∞ depends on the tail of the distribution of the
random fields. Indeed a correlation can become very close to
zero only if a large random field is generated, since

∂uk→k−1

∂uk+1→k

≈ 2 sinh(2βJ )e−β|hR | for |hR| ≫ 1.
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FIG. 6. (Color online) Behaviors of the rate γ ∗ (upper panel), the inverse of the typical rate 1/γ0 (central panel), and the decay rate of the
average correlation function λ(1) with the temperature T for a fixed random-field strength equal to σ = 0.85. The rates γ ∗ and λ(1) are related
by the equation $(γ ∗) + γ ∗ = λ(1).

more rare. This observation suggests that, exactly at zero tem-
perature, the critical behavior is induced by a subexponential
number of correlated spin variables. This number can be esti-
mated in the following way. Let us consider a chain of spins of
length ℓ. The energy of the chain conditioned on the boundary
spins, apart from an additive constant, can be written as

Eℓ(s0,sℓ) = −h0s0 − hℓsℓ − Jℓs0sℓ. (51)
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FIG. 7. (Color online) Profiles of the logarithmic scaled number
n(γ ) of correlations with decay rate γ in a graph of connectivity z +
1 = 3. The curves were computed on the critical line for several values
of the random-field strength. Crosses are solutions of the equation
$(γ ) = 0 and represent the typical correlations in the system. Circles
represent correlations contributing the most to the average C(ℓ) and
they are obtained as solutions of the equation $′(γ ) = −1.

Knowing the triplet (h0,hℓ,Jℓ), we can compute the
magnetization ⟨s0⟩:

⟨s0⟩ = tanh {βh0 + atanh[tanh(βJℓ) tanh(βhℓ)]} . (52)

From ⟨s0⟩ we obtain the response function R(ℓ; h0,hℓ,Jℓ):

R(ℓ; h0,hℓ,Jℓ) = ∂⟨s0⟩
∂hℓ

= β(1 − ⟨s0⟩2)
th(βJℓ)[1 − th2(βhℓ)]

1 − th2(βJℓ)th2(βhℓ)
, (53)

and the normalized correlation function C(ℓ; hℓ,Jℓ):

C(ℓ; hℓ,Jℓ) = th(βJℓ)[1 − th2(βhℓ)]

1 − th2(βJℓ)th2(βhℓ)
. (54)

In the limit β → ∞, the correlation C(ℓ; hℓ,Jℓ) becomes a
theta function:

C(ℓ; hℓ,Jℓ) = ((Jℓ − |hℓ|). (55)

Now, let us take the average of C(ℓ; hℓ,Jℓ) with respect to hℓ:

C(ℓ; Jℓ) =
∫

dh Pℓ(h) ((Jℓ − |h|). (56)

For ℓ large enough we can assume Jℓ ≪ 1 and we find

C(ℓ; Jℓ) ∝ Jℓ, for ℓ → ∞. (57)

This means that all nonzero correlations still have a nontrivial
distribution, which can be asymptotically inferred from the
distribution of the effective coupling between two spins. If
we get this distribution, we can find the number of critical
correlations with subexponential accuracy. This is precisely
the goal of the next section.
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For Gaussian random fields the leading behavior for q → −∞
is

λ(q) ≈ −2β2σ 2q2.

IV. COMPUTING THE RATE FUNCTION !(γ )

The rate function $(γ ) is the Legendre-Fenchel transform
of the function λ(q) via Eq. 19. To estimate $(γ ) from λ(q)
we use the following routine. The input data are the pairs
{qi,λ(qi)}

Nq

i=1, where Nq is the number of available values of
q. We start by computing the local slopes si :

si = λ(qi+1) − λ(qi)
qi+1 − qi

. (43)

Since the function λ(q) is concave, the sequence is only
decreasing. Then we choose Nγ values γ1, . . . ,γNγ

, and for
each γk we obtain $(γk) as follows:

If si < γk ! si−1 then $(γk) = λ(qi−1) − qi−1γk. (44)

We note that Nq = Nγ is required to obtain good numerical
accuracy.

Let us recall two properties concerning the rate function
$(γ ). The point where $(γ ) = 0 identifies the typical value
γ = γ0 of the decay rate. This quantity is rather easy to
compute, since from definition 16 we have

γ0 = dλ(q)
dq

∣∣∣∣
q=0

= − lim
ℓ→∞

log C(ℓ)
ℓ

= −Eh log
[

∂

∂h
û(β,J,h)

]
, (45)

where û(β,J,x) is given by Eq. 3 and the expectation over the
cavity field h is taken using the distribution 2.

The point γ ∗, defined by the equation

∂$(γ )
∂γ

∣∣∣∣
γ ∗

= −1, (46)

gives the rate of correlations which dominate the average C(ℓ).
The value of $(γ ) in this point is $(γ ∗) = λ(1) − γ ∗. At the
critical point we know from Eq. 25 that λ(1) = log(z), and
then we have

$(γ ∗) = log(z) − γ ∗ for T = Tc(σ ). (47)

In Fig. 5 we show the profiles of the rate function $(γ ),
computed on a Bethe lattice of connectivity z + 1 = 3, at
a fixed random-field strength equal to σ = 0.85 and four
temperatures: T = 1.8 > Tc, T = 1.3 > Tc, T = 1.055 = Tc,
and T = 0.9 < Tc. This gives an idea on how the function
$(γ ) changes when lowering the temperature. Two opposite
effects should be noted: Close to Tc, γ0 grows while the
curvature of the function decreases. The critical temperature
Tc is the only temperature such that the curve $(γ ) touches
the straight line log(z) − γ .

The behaviors of the quantities γ ∗, γ 0, and λ(1) as functions
of the temperature, at fixed random-field strength σ = 0.85,
are depicted in Fig. 6. We recall that the rate γ ∗ and the rate λ(1)
[i.e., the decay rate of the average correlation function: C(ℓ) =
e−ℓλ(1)] are related by the equation λ(1) = γ ∗ + $(γ ∗).
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FIG. 5. (Color online) Rate function $(γ ), computed at fixed
random-field strength σ = 0.85 and four different temperatures:
T = 1.8 (purple line), T = 1.3 (green line), T = 1.055 = Tc (red
line), and T = 0.9 (blue line). The point γ = γ0 is the solution of the
equation $(γ ) = 0 and represents the typical value of the decay rate.
The point γ = γ ∗ is the solution of the equation $′(γ ) + 1 = 0 and
represents the decay rate of correlations contributing the most to the
assessment of C(ℓ).

It is interesting to see how the rate function changes when
moving along the critical line. To this end we consider the total
number of correlations C(ℓ) decaying with rate γ :

Nℓ(γ ) = zℓe−ℓ$(γ ), (48)

and we define the logarithmic scaled number as

n(γ ) = lim
ℓ→∞

log Nℓ(γ )
ℓ

= log(z) − $(γ ). (49)

The word “scaled” is used to indicate that n(γ ) is the logarithm
of Nℓ(γ ) scaled by ℓ. From the definition of n(γ ) we will have
that n(γ0) = log(z) and n(γ ∗) = γ ∗.

In Fig. 7 we show the logarithmic scaled number n(γ )
computed in three different critical points along the critical
line.

In Fig. 8 we report the behavior of the saddle-point decay
rate γ ∗ and the typical decay rate γ0, as functions of the critical
temperature Tc(σ ).

We note that, moving toward the zero-temperature critical
point, the typical rate γ0 becomes bigger and bigger and it can
be seen, from Eq. 45, that it diverges as T −1 for T → 0. Indeed
in the limit T → 0 Eq. 45 becomes

γ0 ≃
∫

dh P (h) log[1 + e2β(|h|−J )]

≃
∫

|h|<J

dh P (h)e−2β(J−|h|) + 2β

×
∫

|h|>J

dh P (h)(|h| − J ) ∝ 1
T

for T → 0. (50)

On the contrary the rate γ ∗ becomes smaller and smaller and
it is expected to vanish for T → 0. This means that stronger
and stronger correlations dominate the critical behavior when
going to low temperatures. By virtue of the fact that n(γ ∗) =
γ ∗ this also means that dominant correlations become even
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V. LARGE DEVIATIONS AT ZERO TEMPERATURE

In the limit T → 0 the normalized connected correlation
function C(ℓ) can assume only two values, namely, 0 and
1, so that the cumulant generating function λ(q) becomes
not differentiable. If we imagine going to lower and lower
temperatures, we would find, on one hand, that typical
correlations become closer and closer to zero and the typical
rate γ0 would be pushed to +∞. On the other hand, correlations
which dominate the susceptibility would become closer and
closer to 1 and the rate γ ∗ would tend to 0. At the same
time the number Nℓ(γ ∗) of atypical correlations becomes
subexponential in the limit T → 0, so that large deviations
on the exponential scale disappear.

The really interesting observable at T = 0 is the response
function R(ℓ), which is the quantity directly involved in the
computation of the susceptibility χF . In this section we derive
the analytical form of the response function distribution. To
this end we again consider two spins in the graph, named s0
and sℓ, joined by a chain of length ℓ. Calling h0 and hℓ the
local fields acting on s0 and sℓ, and Jℓ their effective coupling,
the state of the spin s0 in the ground state is

σ GS
0 = &(Jℓ − |h0|)sgn(h0 + hℓ) + &(|h0| − Jℓ)sgn(h0),

(58)

and the response function is given by

R(ℓ; h0,hℓ,Jℓ) = ∂σ GS
0

∂hℓ

= 2δ(h0 + hℓ)&(Jℓ − |h0|). (59)

Calling P(h0,hℓ) the joint density of h0 and hℓ and taking the
average of R(ℓ) we have

R(ℓ; Jℓ) = 2
∫

dhP(h, − h)&(Jℓ − |h|). (60)

When ℓ → ∞, the effective coupling is very small, Jℓ ≪ 1,
and Eq. 60 can be approximated as

R(ℓ; Jℓ) ≈ 4P(0,0)Jℓ. (61)

The response function, averaged over the boundary fields, be-
comes proportional to the effective coupling between the vari-
ables, for large distances. The ferromagnetic susceptibility is

χF =
∑

ℓ

zℓ R(ℓ) ∝
∑

ℓ

zℓ Jℓ. (62)

The information about rare correlations is contained in the
probability distribution function (PDF) Pℓ(J ). To compute the
function Pℓ(J ), we consider the energy of a chain in the graph
connecting two spins s0 and sℓ, conditioned on the boundary
spins:

Eℓ(s0,sℓ) = −h
(ℓ)
0 s0 − hℓsℓ − Jℓs0sℓ + Eℓ, (63)

where Eℓ is a constant not depending on the boundary spins.
Adding a new spin at the end of the path sℓ+1 and minimizing
the energy over sℓ, one gets the new energy function [23]
Eℓ+1(s0,sℓ+1):

Eℓ+1(s0,sℓ+1) = −h
(ℓ+1)
0 s0 − hℓ+1sℓ+1 − Jℓ+1s0sℓ+1 + Eℓ+1,

(64)

with

h
(ℓ+1)
0 = h

(ℓ)
0 + sgn(hℓ))h

(ℓ+1)
0 , (65)

hℓ+1 = r + sgn(hℓ))hℓ+1, (66)

Eℓ+1 = Eℓ + )
(ℓ+1)
E , (67)

where r is the cavity field coming from the z − 1 branches
outside the path that merge on the node ℓ + 1. The evolution
rules for )h

(ℓ)
0 , )hℓ, Jℓ, and )

(ℓ)
E are reported in Table II.
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For Gaussian random fields the leading behavior for q → −∞
is

λ(q) ≈ −2β2σ 2q2.

IV. COMPUTING THE RATE FUNCTION !(γ )

The rate function $(γ ) is the Legendre-Fenchel transform
of the function λ(q) via Eq. 19. To estimate $(γ ) from λ(q)
we use the following routine. The input data are the pairs
{qi,λ(qi)}

Nq

i=1, where Nq is the number of available values of
q. We start by computing the local slopes si :

si = λ(qi+1) − λ(qi)
qi+1 − qi

. (43)

Since the function λ(q) is concave, the sequence is only
decreasing. Then we choose Nγ values γ1, . . . ,γNγ

, and for
each γk we obtain $(γk) as follows:

If si < γk ! si−1 then $(γk) = λ(qi−1) − qi−1γk. (44)

We note that Nq = Nγ is required to obtain good numerical
accuracy.

Let us recall two properties concerning the rate function
$(γ ). The point where $(γ ) = 0 identifies the typical value
γ = γ0 of the decay rate. This quantity is rather easy to
compute, since from definition 16 we have

γ0 = dλ(q)
dq

∣∣∣∣
q=0

= − lim
ℓ→∞

log C(ℓ)
ℓ

= −Eh log
[

∂

∂h
û(β,J,h)

]
, (45)

where û(β,J,x) is given by Eq. 3 and the expectation over the
cavity field h is taken using the distribution 2.

The point γ ∗, defined by the equation

∂$(γ )
∂γ

∣∣∣∣
γ ∗

= −1, (46)

gives the rate of correlations which dominate the average C(ℓ).
The value of $(γ ) in this point is $(γ ∗) = λ(1) − γ ∗. At the
critical point we know from Eq. 25 that λ(1) = log(z), and
then we have

$(γ ∗) = log(z) − γ ∗ for T = Tc(σ ). (47)

In Fig. 5 we show the profiles of the rate function $(γ ),
computed on a Bethe lattice of connectivity z + 1 = 3, at
a fixed random-field strength equal to σ = 0.85 and four
temperatures: T = 1.8 > Tc, T = 1.3 > Tc, T = 1.055 = Tc,
and T = 0.9 < Tc. This gives an idea on how the function
$(γ ) changes when lowering the temperature. Two opposite
effects should be noted: Close to Tc, γ0 grows while the
curvature of the function decreases. The critical temperature
Tc is the only temperature such that the curve $(γ ) touches
the straight line log(z) − γ .

The behaviors of the quantities γ ∗, γ 0, and λ(1) as functions
of the temperature, at fixed random-field strength σ = 0.85,
are depicted in Fig. 6. We recall that the rate γ ∗ and the rate λ(1)
[i.e., the decay rate of the average correlation function: C(ℓ) =
e−ℓλ(1)] are related by the equation λ(1) = γ ∗ + $(γ ∗).
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FIG. 5. (Color online) Rate function $(γ ), computed at fixed
random-field strength σ = 0.85 and four different temperatures:
T = 1.8 (purple line), T = 1.3 (green line), T = 1.055 = Tc (red
line), and T = 0.9 (blue line). The point γ = γ0 is the solution of the
equation $(γ ) = 0 and represents the typical value of the decay rate.
The point γ = γ ∗ is the solution of the equation $′(γ ) + 1 = 0 and
represents the decay rate of correlations contributing the most to the
assessment of C(ℓ).

It is interesting to see how the rate function changes when
moving along the critical line. To this end we consider the total
number of correlations C(ℓ) decaying with rate γ :

Nℓ(γ ) = zℓe−ℓ$(γ ), (48)

and we define the logarithmic scaled number as

n(γ ) = lim
ℓ→∞

log Nℓ(γ )
ℓ

= log(z) − $(γ ). (49)

The word “scaled” is used to indicate that n(γ ) is the logarithm
of Nℓ(γ ) scaled by ℓ. From the definition of n(γ ) we will have
that n(γ0) = log(z) and n(γ ∗) = γ ∗.

In Fig. 7 we show the logarithmic scaled number n(γ )
computed in three different critical points along the critical
line.

In Fig. 8 we report the behavior of the saddle-point decay
rate γ ∗ and the typical decay rate γ0, as functions of the critical
temperature Tc(σ ).

We note that, moving toward the zero-temperature critical
point, the typical rate γ0 becomes bigger and bigger and it can
be seen, from Eq. 45, that it diverges as T −1 for T → 0. Indeed
in the limit T → 0 Eq. 45 becomes

γ0 ≃
∫

dh P (h) log[1 + e2β(|h|−J )]

≃
∫

|h|<J

dh P (h)e−2β(J−|h|) + 2β

×
∫

|h|>J

dh P (h)(|h| − J ) ∝ 1
T

for T → 0. (50)

On the contrary the rate γ ∗ becomes smaller and smaller and
it is expected to vanish for T → 0. This means that stronger
and stronger correlations dominate the critical behavior when
going to low temperatures. By virtue of the fact that n(γ ∗) =
γ ∗ this also means that dominant correlations become even
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FIG. 6. (Color online) Behaviors of the rate γ ∗ (upper panel), the inverse of the typical rate 1/γ0 (central panel), and the decay rate of the
average correlation function λ(1) with the temperature T for a fixed random-field strength equal to σ = 0.85. The rates γ ∗ and λ(1) are related
by the equation $(γ ∗) + γ ∗ = λ(1).

more rare. This observation suggests that, exactly at zero tem-
perature, the critical behavior is induced by a subexponential
number of correlated spin variables. This number can be esti-
mated in the following way. Let us consider a chain of spins of
length ℓ. The energy of the chain conditioned on the boundary
spins, apart from an additive constant, can be written as

Eℓ(s0,sℓ) = −h0s0 − hℓsℓ − Jℓs0sℓ. (51)
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FIG. 7. (Color online) Profiles of the logarithmic scaled number
n(γ ) of correlations with decay rate γ in a graph of connectivity z +
1 = 3. The curves were computed on the critical line for several values
of the random-field strength. Crosses are solutions of the equation
$(γ ) = 0 and represent the typical correlations in the system. Circles
represent correlations contributing the most to the average C(ℓ) and
they are obtained as solutions of the equation $′(γ ) = −1.

Knowing the triplet (h0,hℓ,Jℓ), we can compute the
magnetization ⟨s0⟩:

⟨s0⟩ = tanh {βh0 + atanh[tanh(βJℓ) tanh(βhℓ)]} . (52)

From ⟨s0⟩ we obtain the response function R(ℓ; h0,hℓ,Jℓ):

R(ℓ; h0,hℓ,Jℓ) = ∂⟨s0⟩
∂hℓ

= β(1 − ⟨s0⟩2)
th(βJℓ)[1 − th2(βhℓ)]

1 − th2(βJℓ)th2(βhℓ)
, (53)

and the normalized correlation function C(ℓ; hℓ,Jℓ):

C(ℓ; hℓ,Jℓ) = th(βJℓ)[1 − th2(βhℓ)]

1 − th2(βJℓ)th2(βhℓ)
. (54)

In the limit β → ∞, the correlation C(ℓ; hℓ,Jℓ) becomes a
theta function:

C(ℓ; hℓ,Jℓ) = ((Jℓ − |hℓ|). (55)

Now, let us take the average of C(ℓ; hℓ,Jℓ) with respect to hℓ:

C(ℓ; Jℓ) =
∫

dh Pℓ(h) ((Jℓ − |h|). (56)

For ℓ large enough we can assume Jℓ ≪ 1 and we find

C(ℓ; Jℓ) ∝ Jℓ, for ℓ → ∞. (57)

This means that all nonzero correlations still have a nontrivial
distribution, which can be asymptotically inferred from the
distribution of the effective coupling between two spins. If
we get this distribution, we can find the number of critical
correlations with subexponential accuracy. This is precisely
the goal of the next section.
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by the equation $(γ ∗) + γ ∗ = λ(1).

more rare. This observation suggests that, exactly at zero tem-
perature, the critical behavior is induced by a subexponential
number of correlated spin variables. This number can be esti-
mated in the following way. Let us consider a chain of spins of
length ℓ. The energy of the chain conditioned on the boundary
spins, apart from an additive constant, can be written as

Eℓ(s0,sℓ) = −h0s0 − hℓsℓ − Jℓs0sℓ. (51)
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FIG. 7. (Color online) Profiles of the logarithmic scaled number
n(γ ) of correlations with decay rate γ in a graph of connectivity z +
1 = 3. The curves were computed on the critical line for several values
of the random-field strength. Crosses are solutions of the equation
$(γ ) = 0 and represent the typical correlations in the system. Circles
represent correlations contributing the most to the average C(ℓ) and
they are obtained as solutions of the equation $′(γ ) = −1.

Knowing the triplet (h0,hℓ,Jℓ), we can compute the
magnetization ⟨s0⟩:

⟨s0⟩ = tanh {βh0 + atanh[tanh(βJℓ) tanh(βhℓ)]} . (52)

From ⟨s0⟩ we obtain the response function R(ℓ; h0,hℓ,Jℓ):

R(ℓ; h0,hℓ,Jℓ) = ∂⟨s0⟩
∂hℓ

= β(1 − ⟨s0⟩2)
th(βJℓ)[1 − th2(βhℓ)]

1 − th2(βJℓ)th2(βhℓ)
, (53)

and the normalized correlation function C(ℓ; hℓ,Jℓ):

C(ℓ; hℓ,Jℓ) = th(βJℓ)[1 − th2(βhℓ)]

1 − th2(βJℓ)th2(βhℓ)
. (54)

In the limit β → ∞, the correlation C(ℓ; hℓ,Jℓ) becomes a
theta function:

C(ℓ; hℓ,Jℓ) = ((Jℓ − |hℓ|). (55)

Now, let us take the average of C(ℓ; hℓ,Jℓ) with respect to hℓ:

C(ℓ; Jℓ) =
∫

dh Pℓ(h) ((Jℓ − |h|). (56)

For ℓ large enough we can assume Jℓ ≪ 1 and we find

C(ℓ; Jℓ) ∝ Jℓ, for ℓ → ∞. (57)

This means that all nonzero correlations still have a nontrivial
distribution, which can be asymptotically inferred from the
distribution of the effective coupling between two spins. If
we get this distribution, we can find the number of critical
correlations with subexponential accuracy. This is precisely
the goal of the next section.
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FIG. 8. (Color online) The rate γ ∗ (upper panel) and the inverse of the typical rate 1/γ0 (lower panel) as functions of the critical temperature
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V. LARGE DEVIATIONS AT ZERO TEMPERATURE

In the limit T → 0 the normalized connected correlation
function C(ℓ) can assume only two values, namely, 0 and
1, so that the cumulant generating function λ(q) becomes
not differentiable. If we imagine going to lower and lower
temperatures, we would find, on one hand, that typical
correlations become closer and closer to zero and the typical
rate γ0 would be pushed to +∞. On the other hand, correlations
which dominate the susceptibility would become closer and
closer to 1 and the rate γ ∗ would tend to 0. At the same
time the number Nℓ(γ ∗) of atypical correlations becomes
subexponential in the limit T → 0, so that large deviations
on the exponential scale disappear.

The really interesting observable at T = 0 is the response
function R(ℓ), which is the quantity directly involved in the
computation of the susceptibility χF . In this section we derive
the analytical form of the response function distribution. To
this end we again consider two spins in the graph, named s0
and sℓ, joined by a chain of length ℓ. Calling h0 and hℓ the
local fields acting on s0 and sℓ, and Jℓ their effective coupling,
the state of the spin s0 in the ground state is

σ GS
0 = &(Jℓ − |h0|)sgn(h0 + hℓ) + &(|h0| − Jℓ)sgn(h0),

(58)

and the response function is given by

R(ℓ; h0,hℓ,Jℓ) = ∂σ GS
0

∂hℓ

= 2δ(h0 + hℓ)&(Jℓ − |h0|). (59)

Calling P(h0,hℓ) the joint density of h0 and hℓ and taking the
average of R(ℓ) we have

R(ℓ; Jℓ) = 2
∫

dhP(h, − h)&(Jℓ − |h|). (60)

When ℓ → ∞, the effective coupling is very small, Jℓ ≪ 1,
and Eq. 60 can be approximated as

R(ℓ; Jℓ) ≈ 4P(0,0)Jℓ. (61)

The response function, averaged over the boundary fields, be-
comes proportional to the effective coupling between the vari-
ables, for large distances. The ferromagnetic susceptibility is

χF =
∑

ℓ

zℓ R(ℓ) ∝
∑

ℓ

zℓ Jℓ. (62)

The information about rare correlations is contained in the
probability distribution function (PDF) Pℓ(J ). To compute the
function Pℓ(J ), we consider the energy of a chain in the graph
connecting two spins s0 and sℓ, conditioned on the boundary
spins:

Eℓ(s0,sℓ) = −h
(ℓ)
0 s0 − hℓsℓ − Jℓs0sℓ + Eℓ, (63)

where Eℓ is a constant not depending on the boundary spins.
Adding a new spin at the end of the path sℓ+1 and minimizing
the energy over sℓ, one gets the new energy function [23]
Eℓ+1(s0,sℓ+1):

Eℓ+1(s0,sℓ+1) = −h
(ℓ+1)
0 s0 − hℓ+1sℓ+1 − Jℓ+1s0sℓ+1 + Eℓ+1,

(64)

with

h
(ℓ+1)
0 = h

(ℓ)
0 + sgn(hℓ))h

(ℓ+1)
0 , (65)

hℓ+1 = r + sgn(hℓ))hℓ+1, (66)

Eℓ+1 = Eℓ + )
(ℓ+1)
E , (67)

where r is the cavity field coming from the z − 1 branches
outside the path that merge on the node ℓ + 1. The evolution
rules for )h

(ℓ)
0 , )hℓ, Jℓ, and )

(ℓ)
E are reported in Table II.
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Eq. 78 becomes

Rℓ+1(J ) =
Rℓ(J )(1 − ρJ ) + 2ρ

∫ 1
J

dJ ′Rℓ(J ′)
1 + ρ⟨Jℓ⟩R

, (81)

where ⟨Jℓ⟩R =
∫

dJ Rℓ(J )J satisfies the equation

⟨Jℓ+1⟩R = ⟨Jℓ⟩R
1 + ρ⟨Jℓ⟩R

. (82)

The solution, with the initial condition ⟨J1⟩R = 1, is

⟨Jℓ+1⟩R = 1
1 + ℓρ

≈ 1
ℓρ

. (83)

The recursion equation 81 for the function Rℓ(J ) reads

Rℓ+1(J ) = ℓ

ℓ + 1

[
Rℓ(J )(1 − ρJ ) + 2ρ

∫ 1

J

dJ ′ Rℓ(J ′)
]
,

(84)

whose solution is

Rℓ(J ) = ρ(ℓ − 1)(1 − ρJ )ℓ−2[1 + aℓ], (85)

where a = 1−ρ
1−ρJ

< 1. The coefficients pℓ can be fixed via the
following equation:

pℓ+1 = λpℓ[1 + ρ⟨Jℓ+1⟩R] −→ pℓ = ℓλℓ−1. (86)

In conclusion, the distribution of the effective coupling Pℓ(J )
is

Pℓ(J ) = ρλℓ−1ℓ(ℓ − 1)(1 − ρJ )ℓ−2 + (1 − ℓλℓ−1)δ(J ) .

(87)

In the large ℓ limit the distribution Pℓ(J ) behaves as

Pℓ(J ) ≈ ρ ℓ2λℓe−ℓρJ + (1 − ℓλℓ)δ(J ). (88)

The previous expression shows that the relevant effective
couplings different from zero are of order Jℓ = O(1/ℓ). The
mean value of the effective coupling Jℓ is

Jℓ =
∫

dJ Pℓ(J )J = λℓ−1. (89)

Even if the mean value Jℓ is exponentially small in ℓ, the values
of Jℓ which mostly contribute to the average are of order 1/ℓ.
The asymptotical form 88 could have been predicted knowing
the scaling of the moments J

q
ℓ ≈ λℓ/ℓq−1 for ℓ → ∞.

The knowledge of the average Jℓ allows us to evaluate the
ferromagnetic susceptibility:

χF ∝
∑

ℓ

zℓ Jℓ ∼ (1 − zλ)−1, (90)

which diverges when zλ = 1.
The total number of pairs with effective coupling Jℓ ̸= 0,

for large separations ℓ ≫ 1, is

Nℓ = ℓ(zλ)ℓ for ℓ ≫ 1. (91)
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FIG. 9. (Color online) PDF of the effective coupling Pℓ(J ) com-
puted numerically for ℓ = 5,10,20,30 and the analytical prediction
given by Eq. 87 (black dashed line). The curves are computed at
the zero-temperature critical point on a graph with connectivity
z + 1 = 3, where σc(T = 0) ≈ 1.037(1).

At the critical point zλ = 1, so that the number of correlated
not-frozen pairs (i.e., for which the response Jℓ ̸= 0) is linear
in the spin separation: Nℓ ∼ ℓ.

In Fig. 9 we compare the analytical formula for the effective
coupling PDF, given by Eq. 87, against the exact numerical
estimate obtained by solving Eq. 68.

In Fig. 10 we report the distribution Qcav
z (h), obtained by

solving Eq. 74 at the critical point. The knowledge of Qcav
z (h)

allows us to determine the parameters λ and ρ, which (at
the critical point) we find to be equal to λ = z−1 = 0.5 and
ρ ∼ 0.868.

Before concluding this work let us make some observations
regarding the disconnected correlation function ⟨s0⟩⟨sℓ⟩. This
correlation function plays a crucial role in the analysis of
the critical behavior of the RFIM, since in finite dimensional
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FIG. 10. (Color online) The distribution Qcav
z (h) (red line) and

P cav
z (h) (blue line) computed numerically at the zero-temperature

critical point on a graph with connectivity z + 1 = 3. The black dot
corresponds to the point Qcav

z (1) ≃ 0.217.
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TABLE II. Flow of the parameters of the boundary-spin-conditioned energy function Eℓ(σ0,σℓ) in the evolution Eℓ(σ0,σℓ) → Eℓ+1(σ0,σℓ+1).

#h
(ℓ+1)
0 #hℓ+1 Jℓ+1 #

(ℓ+1)
E

I |hℓ| < 1 − Jℓ 0 |hℓ| Jℓ −1
II 1 − Jℓ < |hℓ| < 1 + Jℓ (|hℓ| + Jℓ − 1)/2 (|hℓ| + 1 − Jℓ)/2 (1 + Jℓ − |hℓ|)/2 −(1 + |hℓ| + Jℓ)/2
III |hℓ| > 1 + Jℓ Jℓ 1 0 −|hℓ|

The recursive equation for the joint distribution of hℓ and Jℓ is

Pℓ+1(J,h) = Er

∫ 1

0
dJ ′

{ ∫

I
dh′ Pℓ(J ′,h′)δ(J − J ′)δ(h − r − h′)

+
∫

II
dh′ Pℓ(J ′,h′)δ

(
J − 1 + J ′ − |h′|

2

)
δ

(
h − r − sgn(h′)

|h′| + 1 − J ′

2

)

+
∫

III
dh′ Pℓ(J ′,h′)δ(J )δ[h − r − sgn(h′)]

}
, (68)

whereEr is the expectation over the field r , which is distributed
according to P cav

z−1(r). The integration domains I, II, and III are
defined in Table II. Equation 68 has to be solved with the initial
condition P1(J,h) = δ(J − 1)P cav

z−1(h).
The most general form of the function Pℓ(J,h) is

Pℓ(J,h) = pℓQℓ(J,h) + (1 − pℓ)δ(J )Sℓ(h). (69)

For ℓ → ∞, the following limit must hold:

lim
ℓ→∞

∫
dJ Pℓ(J,h) = P cav

z (h), (70)

and then

lim
ℓ→∞

pℓ = 0, (71)

lim
ℓ→∞

Sℓ(h) = P cav
z (h). (72)

Moreover we can define the following limit:

Qcav
z (h) ≡ lim

ℓ→∞

∫
dJ Qℓ(J,h), (73)

corresponding to the PDF of cavity fields on chains with
nonzero effective coupling Jℓ. The limiting distribution

Qcav
z (h) is different from P cav

z (h) (see Fig. 10) and fulfills the
following equation:

Qcav
z (h) = δ

(

h − hR −
z−1∑

k=1

uk − w

)

, (74)

where w is the asymptotical cavity bias running along a path
with Jℓ ̸= 0. The random variable w is drawn from the PDF
g(w), which obeys the following equation:

g(w) = 1
zg

Er

∫
dw′ g(w′)δ[w − û(w′,r)]%(1 − |w′ + r|),

(75)

where û(w′,r) = sgn(w′ + r) min(1,|w′ + r|), the expectation
over the field r is taken using the distribution P cav

z−1(r), and the
constant zg guarantees that g(w) is properly normalized. In
the large ℓ limit it is reasonable to make the approximation
Qℓ(J,h) ≈ Qcav

z (h)Rℓ(J ), so that the full distribution 69
becomes

Pℓ(J,h) ≈ pℓQ
cav
z (h)Rℓ(J )

+ (1 − pℓ)δ(J )P cav
z (h) for ℓ → ∞. (76)

The only unknown function is Rℓ(J ) and the distribution of the effective coupling can be estimated as

Pℓ(J ) =
∫

dh Pℓ(J,h) ≈ pℓRℓ(J ) + (1 − pℓ)δ(J ) for ℓ → ∞. (77)

Putting 76 into Eq. 68 gives the recursion equation for Rℓ(J ):

Rℓ+1(J ) =
Rℓ(J )

∫
I
dh Qcav

z (h) +
∫ 1

0 dJ ′Rℓ(J ′)
∫

II dh Qcav
z (h)δ[J − (1 + J ′ − |h|)/2]

∫ 1
0 dJ Rℓ(J )

∫
|h|<1+J

dh Qcav
z (h)

. (78)

Since the distribution Pℓ(J ) concentrates on the point J = 0, a further simplification is achieved by taking into account only the
lowest order in J into Eq. 78 for ℓ → ∞. Calling

λ =
∫ 1

−1
dh Qcav

z (h), (79)

ρ = 2Qcav
z (1)/λ, (80)
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Eq. 78 becomes

Rℓ+1(J ) =
Rℓ(J )(1 − ρJ ) + 2ρ

∫ 1
J

dJ ′Rℓ(J ′)
1 + ρ⟨Jℓ⟩R

, (81)

where ⟨Jℓ⟩R =
∫

dJ Rℓ(J )J satisfies the equation

⟨Jℓ+1⟩R = ⟨Jℓ⟩R
1 + ρ⟨Jℓ⟩R

. (82)

The solution, with the initial condition ⟨J1⟩R = 1, is

⟨Jℓ+1⟩R = 1
1 + ℓρ

≈ 1
ℓρ

. (83)

The recursion equation 81 for the function Rℓ(J ) reads

Rℓ+1(J ) = ℓ

ℓ + 1

[
Rℓ(J )(1 − ρJ ) + 2ρ

∫ 1

J

dJ ′ Rℓ(J ′)
]
,

(84)

whose solution is

Rℓ(J ) = ρ(ℓ − 1)(1 − ρJ )ℓ−2[1 + aℓ], (85)

where a = 1−ρ
1−ρJ

< 1. The coefficients pℓ can be fixed via the
following equation:

pℓ+1 = λpℓ[1 + ρ⟨Jℓ+1⟩R] −→ pℓ = ℓλℓ−1. (86)

In conclusion, the distribution of the effective coupling Pℓ(J )
is

Pℓ(J ) = ρλℓ−1ℓ(ℓ − 1)(1 − ρJ )ℓ−2 + (1 − ℓλℓ−1)δ(J ) .

(87)

In the large ℓ limit the distribution Pℓ(J ) behaves as

Pℓ(J ) ≈ ρ ℓ2λℓe−ℓρJ + (1 − ℓλℓ)δ(J ). (88)

The previous expression shows that the relevant effective
couplings different from zero are of order Jℓ = O(1/ℓ). The
mean value of the effective coupling Jℓ is

Jℓ =
∫

dJ Pℓ(J )J = λℓ−1. (89)

Even if the mean value Jℓ is exponentially small in ℓ, the values
of Jℓ which mostly contribute to the average are of order 1/ℓ.
The asymptotical form 88 could have been predicted knowing
the scaling of the moments J

q
ℓ ≈ λℓ/ℓq−1 for ℓ → ∞.

The knowledge of the average Jℓ allows us to evaluate the
ferromagnetic susceptibility:

χF ∝
∑

ℓ

zℓ Jℓ ∼ (1 − zλ)−1, (90)

which diverges when zλ = 1.
The total number of pairs with effective coupling Jℓ ̸= 0,

for large separations ℓ ≫ 1, is

Nℓ = ℓ(zλ)ℓ for ℓ ≫ 1. (91)
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FIG. 9. (Color online) PDF of the effective coupling Pℓ(J ) com-
puted numerically for ℓ = 5,10,20,30 and the analytical prediction
given by Eq. 87 (black dashed line). The curves are computed at
the zero-temperature critical point on a graph with connectivity
z + 1 = 3, where σc(T = 0) ≈ 1.037(1).

At the critical point zλ = 1, so that the number of correlated
not-frozen pairs (i.e., for which the response Jℓ ̸= 0) is linear
in the spin separation: Nℓ ∼ ℓ.

In Fig. 9 we compare the analytical formula for the effective
coupling PDF, given by Eq. 87, against the exact numerical
estimate obtained by solving Eq. 68.

In Fig. 10 we report the distribution Qcav
z (h), obtained by

solving Eq. 74 at the critical point. The knowledge of Qcav
z (h)

allows us to determine the parameters λ and ρ, which (at
the critical point) we find to be equal to λ = z−1 = 0.5 and
ρ ∼ 0.868.

Before concluding this work let us make some observations
regarding the disconnected correlation function ⟨s0⟩⟨sℓ⟩. This
correlation function plays a crucial role in the analysis of
the critical behavior of the RFIM, since in finite dimensional
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FIG. 10. (Color online) The distribution Qcav
z (h) (red line) and

P cav
z (h) (blue line) computed numerically at the zero-temperature

critical point on a graph with connectivity z + 1 = 3. The black dot
corresponds to the point Qcav

z (1) ≃ 0.217.
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• A random c-regular graph has             loops of length

• Density of loops is

• Can we approximate a random graph of finite size as
a tree +             corrections due to the loops ?

1. Compute analytically physical observables (e.g. energy, 
free-energy) on a tree with few loops

2. Compute numerically the same observables on a random 
regular graph of finite size

Loops in a random regular graph

3

Inserting the parametrization (10) into the saddle
point equation (9), and performing the limit n ! 0, we
obtain a self consistent equation for the density P (h):

P (h) = EJ,H

Z c�1Y

k=1

dhk P (hk) �

"
h�H �

c�1X

k=1

û(�, J, hk)

#
,

(11)
where û(�, x, y) = ��1 tanh�1[tanh(�x) tanh(�y)]. We
recognize Eq. (11) as the self-consistent equation for the
probability distribution P (h) of the cavity field on a RRG
of connectivity c. Solving the last equation for P (h) one
can eventually evaluate the n = 0 limit of Eq. (6) and re-

cover the thermodynamic free energy f
0

⌘ limN!1
f(N)

N ,
given by the Bethe free energy approximation [2].

III. FINITE SIZE CORRECTIONS

In this section we present the analytical expression of
the first finite size corrections to the free energy density
of disordered Ising models on the RRG ensemble. As we
anticipated in the introduction, we assume the leading
correction to the thermodynamical free energy density
to be proportional to 1/N . Therefore, we split f(N) into
the sum of the leading term plus the 1/N correction, that
is

f(N) = f
0

+
f
1

N
+ o

✓
1

N

◆
. (12)

The detailed calculation of the coe�cient f
1

, the main
result of this paper, is given in the Appendices B and
C. The derivation is based on the expansion of the con-
tributions of the Gaussian fluctuations of the replicated
action around the saddle point, given by

� 1

2
log det

 
@2S

0

@⇢(�)@⇢(⌧)

����
⇢⇤

!
, (13)

as a power series containing the replicated transfer matrix
of the system [19, 20]. The final result reads

f
1

=
1X

`=3

(c� 1)`

2`
��`. (14)

The terms appearing in last equation and computed in
the replica formalism have a clear physical meaning, as
we will readily explain. We call ��` the quantity defined
by

��` = �c
` � ` �. (15)

where �c
` is the average free energy of a closed chain

(loop) of length ` embedded in the graph, that is

�c
` ⌘ � 1

�

⇥
logZc

`

⇤
av

(16)

with

Zc
` ⌘

X

�1,...,�`

e�(r1�1+J1�1�2+···+r`�`+J`�`�1). (17)

The cavity fields ri are i.i.d. random variables sampled
from the distribution

R(r) = EJ,H

Z c�2Y

k=1

dhk P (hk) �

"
r �H �

c�2X

k=1

û(�, J, hk)

#
.

(18)
In other words, the cavity fields ri represent the e↵ective
fields coming from the rest of the graph on the nodes in a
loop. The quantity � is the intensive average free energy
of a closed chain with random couplings Ji, and random
fields ri, i.e. � ⌘ lim`!1

�c
`
` , and can be easily computed

through cavity method [19, 20].
The fact that the fields ri are independently dis-

tributed and that they obey Eq. 18, containing the fixed
point distribution P (h), indicates that the contribution
of each loop can be considered independently from the
others. In fact the factor (c � 1)`/2` in Eq. (14) is ex-
actly the average number of loops of length ` in a RRG of
connectivity c. Therefore, the coe�cient f

1

of the O
�

1

N

�

correction can be expressed as a sum over all the loops in
a graph, each one contributing with the amount ��` to
the free energy. We call ��` a free energy shift since it is
the free energy di↵erence observes in a infinite tree after
the addition of a single loop of size `, as we will argue in
the next Section.
It is yet to be investigated the relation between (14)

for f
1

and an analogous result that one could derive using
the loop calculus formalism [12, 13].
We notice that the loops considered here are de-

fined as non-self intersecting closed paths. In fact, self-
intersecting loops would give a contribution of order
O(1/N2) to the average free energy for simple combi-
natorial arguments.

IV. PROBABILISTIC ARGUMENT

The computation of the O(1/N) correction to the free
energy in the RRG ensemble can be easily done through
simple probabilistic arguments, as one realizes a posteri-
ori analysing the final result Eq. (14) obtained with the
replica formalism. In fact, as already discussed at the
end of the previous Section, at the O(1/N) order loops
are sparsely distributed in the graph and do not inter-
act with each other. Therefore their contributions to the
free energy can be summed up separately and each one
of them can be considered as embedded in an infinite
tree. In order to compute the free energy shift due to the
presence of a loop of length `, we consider a very large
random tree, with partition function ZT , and remove the
` + 1 edges of an open chain of length ` + 1, as showed
in Figure 1. We call �

0

, . . . ,�` + 1 the cavity spins of
the new graph, that is the ones who lost one (this is the

`

O(1/N)

O(1/N)



Finite size corrections by the replica method
(i.e. Gaussian fluctuations around the saddle point)

3

Inserting the parametrization (10) into the saddle
point equation (9), and performing the limit n ! 0, we
obtain a self consistent equation for the density P (h):

P (h) = EJ,H

Z c�1Y

k=1

dhk P (hk) �

"
h�H �

c�1X

k=1

û(�, J, hk)

#
,

(11)
where û(�, x, y) = ��1 tanh�1[tanh(�x) tanh(�y)]. We
recognize Eq. (11) as the self-consistent equation for the
probability distribution P (h) of the cavity field on a RRG
of connectivity c. Solving the last equation for P (h) one
can eventually evaluate the n = 0 limit of Eq. (6) and re-

cover the thermodynamic free energy f
0

⌘ limN!1
f(N)

N ,
given by the Bethe free energy approximation [2].

III. FINITE SIZE CORRECTIONS

In this section we present the analytical expression of
the first finite size corrections to the free energy density
of disordered Ising models on the RRG ensemble. As we
anticipated in the introduction, we assume the leading
correction to the thermodynamical free energy density
to be proportional to 1/N . Therefore, we split f(N) into
the sum of the leading term plus the 1/N correction, that
is

f(N) = f
0

+
f
1

N
+ o

✓
1

N

◆
. (12)

The detailed calculation of the coe�cient f
1

, the main
result of this paper, is given in the Appendices B and
C. The derivation is based on the expansion of the con-
tributions of the Gaussian fluctuations of the replicated
action around the saddle point, given by

� 1
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@⇢(�)@⇢(⌧)

����
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, (13)

as a power series containing the replicated transfer matrix
of the system [19, 20]. The final result reads

f
1

=
1X

`=3

(c� 1)`

2`
��`. (14)

The terms appearing in last equation and computed in
the replica formalism have a clear physical meaning, as
we will readily explain. We call ��` the quantity defined
by

��` = �c
` � ` �. (15)

where �c
` is the average free energy of a closed chain

(loop) of length ` embedded in the graph, that is

�c
` ⌘ � 1

�

⇥
logZc

`

⇤
av

(16)

with

Zc
` ⌘

X

�1,...,�`

e�(r1�1+J1�1�2+···+r`�`+J`�`�1). (17)

The cavity fields ri are i.i.d. random variables sampled
from the distribution

R(r) = EJ,H

Z c�2Y

k=1

dhk P (hk) �

"
r �H �

c�2X

k=1

û(�, J, hk)

#
.

(18)
In other words, the cavity fields ri represent the e↵ective
fields coming from the rest of the graph on the nodes in a
loop. The quantity � is the intensive average free energy
of a closed chain with random couplings Ji, and random
fields ri, i.e. � ⌘ lim`!1

�c
`
` , and can be easily computed

through cavity method [19, 20].
The fact that the fields ri are independently dis-

tributed and that they obey Eq. 18, containing the fixed
point distribution P (h), indicates that the contribution
of each loop can be considered independently from the
others. In fact the factor (c � 1)`/2` in Eq. (14) is ex-
actly the average number of loops of length ` in a RRG of
connectivity c. Therefore, the coe�cient f

1

of the O
�

1

N

�

correction can be expressed as a sum over all the loops in
a graph, each one contributing with the amount ��` to
the free energy. We call ��` a free energy shift since it is
the free energy di↵erence observes in a infinite tree after
the addition of a single loop of size `, as we will argue in
the next Section.
It is yet to be investigated the relation between (14)

for f
1

and an analogous result that one could derive using
the loop calculus formalism [12, 13].
We notice that the loops considered here are de-

fined as non-self intersecting closed paths. In fact, self-
intersecting loops would give a contribution of order
O(1/N2) to the average free energy for simple combi-
natorial arguments.

IV. PROBABILISTIC ARGUMENT

The computation of the O(1/N) correction to the free
energy in the RRG ensemble can be easily done through
simple probabilistic arguments, as one realizes a posteri-
ori analysing the final result Eq. (14) obtained with the
replica formalism. In fact, as already discussed at the
end of the previous Section, at the O(1/N) order loops
are sparsely distributed in the graph and do not inter-
act with each other. Therefore their contributions to the
free energy can be summed up separately and each one
of them can be considered as embedded in an infinite
tree. In order to compute the free energy shift due to the
presence of a loop of length `, we consider a very large
random tree, with partition function ZT , and remove the
` + 1 edges of an open chain of length ` + 1, as showed
in Figure 1. We call �

0

, . . . ,�` + 1 the cavity spins of
the new graph, that is the ones who lost one (this is the
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Inserting the parametrization (10) into the saddle
point equation (9), and performing the limit n ! 0, we
obtain a self consistent equation for the density P (h):

P (h) = EJ,H
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k=1

dhk P (hk) �
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h�H �

c�1X

k=1

û(�, J, hk)
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where û(�, x, y) = ��1 tanh�1[tanh(�x) tanh(�y)]. We
recognize Eq. (11) as the self-consistent equation for the
probability distribution P (h) of the cavity field on a RRG
of connectivity c. Solving the last equation for P (h) one
can eventually evaluate the n = 0 limit of Eq. (6) and re-

cover the thermodynamic free energy f
0

⌘ limN!1
f(N)

N ,
given by the Bethe free energy approximation [2].

III. FINITE SIZE CORRECTIONS

In this section we present the analytical expression of
the first finite size corrections to the free energy density
of disordered Ising models on the RRG ensemble. As we
anticipated in the introduction, we assume the leading
correction to the thermodynamical free energy density
to be proportional to 1/N . Therefore, we split f(N) into
the sum of the leading term plus the 1/N correction, that
is

f(N) = f
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+
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The detailed calculation of the coe�cient f
1

, the main
result of this paper, is given in the Appendices B and
C. The derivation is based on the expansion of the con-
tributions of the Gaussian fluctuations of the replicated
action around the saddle point, given by
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as a power series containing the replicated transfer matrix
of the system [19, 20]. The final result reads
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The terms appearing in last equation and computed in
the replica formalism have a clear physical meaning, as
we will readily explain. We call ��` the quantity defined
by
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where �c
` is the average free energy of a closed chain

(loop) of length ` embedded in the graph, that is
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with
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The cavity fields ri are i.i.d. random variables sampled
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In other words, the cavity fields ri represent the e↵ective
fields coming from the rest of the graph on the nodes in a
loop. The quantity � is the intensive average free energy
of a closed chain with random couplings Ji, and random
fields ri, i.e. � ⌘ lim`!1

�c
`
` , and can be easily computed

through cavity method [19, 20].
The fact that the fields ri are independently dis-

tributed and that they obey Eq. 18, containing the fixed
point distribution P (h), indicates that the contribution
of each loop can be considered independently from the
others. In fact the factor (c � 1)`/2` in Eq. (14) is ex-
actly the average number of loops of length ` in a RRG of
connectivity c. Therefore, the coe�cient f

1

of the O
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correction can be expressed as a sum over all the loops in
a graph, each one contributing with the amount ��` to
the free energy. We call ��` a free energy shift since it is
the free energy di↵erence observes in a infinite tree after
the addition of a single loop of size `, as we will argue in
the next Section.
It is yet to be investigated the relation between (14)

for f
1

and an analogous result that one could derive using
the loop calculus formalism [12, 13].
We notice that the loops considered here are de-

fined as non-self intersecting closed paths. In fact, self-
intersecting loops would give a contribution of order
O(1/N2) to the average free energy for simple combi-
natorial arguments.

IV. PROBABILISTIC ARGUMENT

The computation of the O(1/N) correction to the free
energy in the RRG ensemble can be easily done through
simple probabilistic arguments, as one realizes a posteri-
ori analysing the final result Eq. (14) obtained with the
replica formalism. In fact, as already discussed at the
end of the previous Section, at the O(1/N) order loops
are sparsely distributed in the graph and do not inter-
act with each other. Therefore their contributions to the
free energy can be summed up separately and each one
of them can be considered as embedded in an infinite
tree. In order to compute the free energy shift due to the
presence of a loop of length `, we consider a very large
random tree, with partition function ZT , and remove the
` + 1 edges of an open chain of length ` + 1, as showed
in Figure 1. We call �

0

, . . . ,�` + 1 the cavity spins of
the new graph, that is the ones who lost one (this is the
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Inserting the parametrization (10) into the saddle
point equation (9), and performing the limit n ! 0, we
obtain a self consistent equation for the density P (h):
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where û(�, x, y) = ��1 tanh�1[tanh(�x) tanh(�y)]. We
recognize Eq. (11) as the self-consistent equation for the
probability distribution P (h) of the cavity field on a RRG
of connectivity c. Solving the last equation for P (h) one
can eventually evaluate the n = 0 limit of Eq. (6) and re-

cover the thermodynamic free energy f
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⌘ limN!1
f(N)

N ,
given by the Bethe free energy approximation [2].

III. FINITE SIZE CORRECTIONS
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are sparsely distributed in the graph and do not inter-
act with each other. Therefore their contributions to the
free energy can be summed up separately and each one
of them can be considered as embedded in an infinite
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intersecting loops would give a contribution of order
O(1/N2) to the average free energy for simple combi-
natorial arguments.
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energy in the RRG ensemble can be easily done through
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ori analysing the final result Eq. (14) obtained with the
replica formalism. In fact, as already discussed at the
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act with each other. Therefore their contributions to the
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of them can be considered as embedded in an infinite
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` + 1 edges of an open chain of length ` + 1, as showed
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probability distribution P (h) of the cavity field on a RRG
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result of this paper, is given in the Appendices B and
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intersecting loops would give a contribution of order
O(1/N2) to the average free energy for simple combi-
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replica formalism. In fact, as already discussed at the
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are sparsely distributed in the graph and do not inter-
act with each other. Therefore their contributions to the
free energy can be summed up separately and each one
of them can be considered as embedded in an infinite
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where û(�, x, y) = ��1 tanh�1[tanh(�x) tanh(�y)]. We
recognize Eq. (11) as the self-consistent equation for the
probability distribution P (h) of the cavity field on a RRG
of connectivity c. Solving the last equation for P (h) one
can eventually evaluate the n = 0 limit of Eq. (6) and re-

cover the thermodynamic free energy f
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given by the Bethe free energy approximation [2].
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In this section we present the analytical expression of
the first finite size corrections to the free energy density
of disordered Ising models on the RRG ensemble. As we
anticipated in the introduction, we assume the leading
correction to the thermodynamical free energy density
to be proportional to 1/N . Therefore, we split f(N) into
the sum of the leading term plus the 1/N correction, that
is
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The detailed calculation of the coe�cient f
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, the main
result of this paper, is given in the Appendices B and
C. The derivation is based on the expansion of the con-
tributions of the Gaussian fluctuations of the replicated
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FIG. 1. Pictorial representation of the argument, given in Section IV, to compute the free energy shift due to the addition of
a loop to a large tree graph. It is shown an open chain embedded in a tree graph (left), its removal from the tree (center) and
the addition of a loop (right).

case of �
0

and �`+1

) or two (�
1

, . . . ,�`) of their adjacent
edges. We call Zcav(�0

, . . . ,�`+1

) the partition function
of this new system, conditioned on the values of the cav-
ity spins. Since we assumed to start from a tree graph,
the partition function Zcav takes the form

Zcav(�0

, . . . ,�`+1

) = Z̃eh0�0+r1�1+...+r`�`+h`+1�`+1 ,
(19)

where Z̃ � 0 and the cavity fields hi and r
0/`+1

are inde-
pendently distributed according to P (h) from (11) and
R(r) from Eq. (18) respectively. We recover the parti-
tion function of the original tree adding back the missing
links, therefore we establish the relation

ZT = Z̃ ⇥ Zo
`+1

, (20)

where Zo
`+1

is the partition function of an open chain of
length `+ 1 with incoming fields h

0

, r
1

, . . . , r`, h`+1

. On
the other hand, starting from the cavity graph, we can
create another graph G containing exactly one loop. This
can be achieved adding an edge between the spin �

0

and
�`+1

, and adding other ` edges to form a loop among the
` internal cavity spins (see Figure 1). Notice that with
this construction all the spins retain the same degree that
they had in the original graph T . The partition function
of the system defined on G is then given by

ZG = A⇥ Zo
1

⇥ Zc
` . (21)

We are interested in the di↵erence of the average free
energy between the system G an T in the large graph
limit. Let us call N the number of nodes in T and G.
The free energy shift is then given by

��` = � 1

�
lim

N!1
[logZG � logZT ]av. (22)

For the average free energy �o
L of an open chain of length

L embedded in a RRG the following relation holds[20]:

�o
L = L�+ �s, (23)

where �s is a site term that does not depend on L [20].
It is therefore easy to derive the expected result:

��` = �c
` � ` �. (24)

We have proven that the free energy di↵erence ��` as
defined by Eq. (22) corresponds to the quantity �c

` � `�,
as it was defined in the last Section. Taking into account

that the average number of loops of length ` in a graph of

the RRG ensemble is z`

2` in the thermodynamic limit, we
re-obtain Eq. (14) without making any resort to replicas.
The argument we gave in this Section to compute the

first finite size correction to the free energy is strictly
limited to the RRG ensemble. In fact it relies heavily
on the homogeneity of the graphs. On di↵erent graph
ensembles more refined combinatorial arguments, as the
one given in [17] for Erdös-Rényi random graphs, have to
be used.

V. NUMERICAL EXPERIMENT: SPIN GLASS
IN A MAGNETIC FIELD

In this Section we test our analytical prediction for the
finite size correction to the free energy, Eq. (14), on the
spin glass in a uniform magnetic field. The connectivity
of the graph is c = 4. In the experiment the couplings
Jij are bimodal random variables, taking value Jij =
±1 with equal probability. We simulate the model using
a parallel tempering Monte Carlo algorithm and three
di↵erent values of the external field H = 0.3, 0.5 and
0.7. For each value of the magnetic field H we simulate
systems of three di↵erent sizes: N = 26, 28 and 210. The
numerical estimate of the coe�cient f

1

of the O(1/N)
correction is obtained as the di↵erence between the free
energies of systems of di↵erent system sizes, viz.:

2N [f(N) � f(2N)] = f
1

+ o(1) . (25)

The o(1) term in the r.h.s. of Eq.(25) accounts for sub-
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become particularly important at the critical point, but
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ing corrections have a totally di↵erent scaling (no more
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prediction does not hold anymore.
In order to compute the analytical estimate of f
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proceed in two steps: we explicitly calculate the first
terms of the sum. We computed by transfer matrix mul-
tiplication the partition function and the free energy of
closed chain of length `, for many realizations of the dis-
order and up to ` = 7. We then resummed the remaining
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Inserting the parametrization (10) into the saddle
point equation (9), and performing the limit n ! 0, we
obtain a self consistent equation for the density P (h):

P (h) = EJ,H

Z c�1Y

k=1

dhk P (hk) �

"
h�H �

c�1X

k=1

û(�, J, hk)

#
,

(11)
where û(�, x, y) = ��1 tanh�1[tanh(�x) tanh(�y)]. We
recognize Eq. (11) as the self-consistent equation for the
probability distribution P (h) of the cavity field on a RRG
of connectivity c. Solving the last equation for P (h) one
can eventually evaluate the n = 0 limit of Eq. (6) and re-

cover the thermodynamic free energy f
0

⌘ limN!1
f(N)

N ,
given by the Bethe free energy approximation [2].

III. FINITE SIZE CORRECTIONS

In this section we present the analytical expression of
the first finite size corrections to the free energy density
of disordered Ising models on the RRG ensemble. As we
anticipated in the introduction, we assume the leading
correction to the thermodynamical free energy density
to be proportional to 1/N . Therefore, we split f(N) into
the sum of the leading term plus the 1/N correction, that
is

f(N) = f
0

+
f
1

N
+ o

✓
1

N

◆
. (12)

The detailed calculation of the coe�cient f
1

, the main
result of this paper, is given in the Appendices B and
C. The derivation is based on the expansion of the con-
tributions of the Gaussian fluctuations of the replicated
action around the saddle point, given by
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as a power series containing the replicated transfer matrix
of the system [19, 20]. The final result reads

f
1

=
1X

`=3

(c� 1)`

2`
��`. (14)

The terms appearing in last equation and computed in
the replica formalism have a clear physical meaning, as
we will readily explain. We call ��` the quantity defined
by

��` = �c
` � ` �. (15)

where �c
` is the average free energy of a closed chain

(loop) of length ` embedded in the graph, that is

�c
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logZc
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⇤
av

(16)

with

Zc
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X

�1,...,�`

e�(r1�1+J1�1�2+···+r`�`+J`�`�1). (17)

The cavity fields ri are i.i.d. random variables sampled
from the distribution

R(r) = EJ,H

Z c�2Y

k=1
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"
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c�2X

k=1

û(�, J, hk)
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(18)
In other words, the cavity fields ri represent the e↵ective
fields coming from the rest of the graph on the nodes in a
loop. The quantity � is the intensive average free energy
of a closed chain with random couplings Ji, and random
fields ri, i.e. � ⌘ lim`!1

�c
`
` , and can be easily computed

through cavity method [19, 20].
The fact that the fields ri are independently dis-

tributed and that they obey Eq. 18, containing the fixed
point distribution P (h), indicates that the contribution
of each loop can be considered independently from the
others. In fact the factor (c � 1)`/2` in Eq. (14) is ex-
actly the average number of loops of length ` in a RRG of
connectivity c. Therefore, the coe�cient f

1

of the O
�

1

N

�

correction can be expressed as a sum over all the loops in
a graph, each one contributing with the amount ��` to
the free energy. We call ��` a free energy shift since it is
the free energy di↵erence observes in a infinite tree after
the addition of a single loop of size `, as we will argue in
the next Section.
It is yet to be investigated the relation between (14)

for f
1

and an analogous result that one could derive using
the loop calculus formalism [12, 13].
We notice that the loops considered here are de-

fined as non-self intersecting closed paths. In fact, self-
intersecting loops would give a contribution of order
O(1/N2) to the average free energy for simple combi-
natorial arguments.

IV. PROBABILISTIC ARGUMENT

The computation of the O(1/N) correction to the free
energy in the RRG ensemble can be easily done through
simple probabilistic arguments, as one realizes a posteri-
ori analysing the final result Eq. (14) obtained with the
replica formalism. In fact, as already discussed at the
end of the previous Section, at the O(1/N) order loops
are sparsely distributed in the graph and do not inter-
act with each other. Therefore their contributions to the
free energy can be summed up separately and each one
of them can be considered as embedded in an infinite
tree. In order to compute the free energy shift due to the
presence of a loop of length `, we consider a very large
random tree, with partition function ZT , and remove the
` + 1 edges of an open chain of length ` + 1, as showed
in Figure 1. We call �

0

, . . . ,�` + 1 the cavity spins of
the new graph, that is the ones who lost one (this is the
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where û(�, x, y) = ��1 tanh�1[tanh(�x) tanh(�y)]. We
recognize Eq. (11) as the self-consistent equation for the
probability distribution P (h) of the cavity field on a RRG
of connectivity c. Solving the last equation for P (h) one
can eventually evaluate the n = 0 limit of Eq. (6) and re-

cover the thermodynamic free energy f
0

⌘ limN!1
f(N)

N ,
given by the Bethe free energy approximation [2].

III. FINITE SIZE CORRECTIONS

In this section we present the analytical expression of
the first finite size corrections to the free energy density
of disordered Ising models on the RRG ensemble. As we
anticipated in the introduction, we assume the leading
correction to the thermodynamical free energy density
to be proportional to 1/N . Therefore, we split f(N) into
the sum of the leading term plus the 1/N correction, that
is

f(N) = f
0

+
f
1

N
+ o

✓
1

N

◆
. (12)

The detailed calculation of the coe�cient f
1

, the main
result of this paper, is given in the Appendices B and
C. The derivation is based on the expansion of the con-
tributions of the Gaussian fluctuations of the replicated
action around the saddle point, given by

� 1

2
log det

 
@2S

0

@⇢(�)@⇢(⌧)

����
⇢⇤

!
, (13)

as a power series containing the replicated transfer matrix
of the system [19, 20]. The final result reads

f
1

=
1X

`=3

(c� 1)`

2`
��`. (14)

The terms appearing in last equation and computed in
the replica formalism have a clear physical meaning, as
we will readily explain. We call ��` the quantity defined
by

��` = �c
` � ` �. (15)

where �c
` is the average free energy of a closed chain

(loop) of length ` embedded in the graph, that is

�c
` ⌘ � 1

�

⇥
logZc

`

⇤
av

(16)

with

Zc
` ⌘

X

�1,...,�`

e�(r1�1+J1�1�2+···+r`�`+J`�`�1). (17)

The cavity fields ri are i.i.d. random variables sampled
from the distribution

R(r) = EJ,H

Z c�2Y

k=1

dhk P (hk) �

"
r �H �

c�2X

k=1
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the new graph, that is the ones who lost one (this is the
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random couplings J = ±1. The various panels refer to di↵erent values of the external uniform magnetic field. The results
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the function Logp(1� x), defined as:

Logp(1� x) = �
1X

`=p

x`

`
. (29)

In our concrete case we can compute explicitly the first
L = 7 terms of the series, and so, the approximated
analytic form of f

1

is

f
1

⇠ S(7)� 3

4�
Log

8

[1� 3�] for c = 4. (30)

In a numerical simulation, measuring the energy is, ac-
tually, much simpler than the free energy (since the last
one involves an estimate of the entropy). As a conse-
quence we preferred to compare analytical and numerical
results for the finite size corrections to the energy density

e
1

. Analytically , the quantity e
1

is given by the usual
formula relating energy and free energy:

e
1

= f
1

+ �
@f

1

@�
. (31)

In Figure 3 we show the comparison between the exper-
iments and our theoretical result. The agreement is good
at high temperatures, while it deteriorates close to the
critical point. At the critical point in fact every order of
the O(1/N) expansion of the free energy diverges, there-
fore near the critical point subleading finite size correc-
tions become increasingly important and extrapolation
of e

1

obtained from numerical simulations to its large N
limit, that can be derived by our analytical expression
(14), is di�cult to achieve.
Below the critical point, the nature of the finite size

corrections changes dramatically, because the replica
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di↵erent type of scaling of the finite size corrections at the critical point and, indeed, in all the critical domain.

show that, in a spin glass, the dominant contribution to
f
1

comes from the replicon eigenvalue. Therefore, we use
only the knowledge of this eigenvalue to analytically re-
sum the remaining terms of the series (from ` = 8 to 1).
The large ` behaviour of the shift ��` is given by the
expression

��` ⇠ A�` for ` � 1, (26)

where � is the replicon eigenvalue, the largest eigenvalue
satisfying the following integral equation:

�g�(u) = EJ,r

Z
du0 g�(u

0)�[u� û(�J, r + u0)]

✓
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@u
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2

.

(27)

Here r is distributed as R(r) defined in Eq. (18). The
maximum eigenvalue of the integral operator in last equa-
tion can be obtained numerically by population dynam-
ics techniques. The coe�cient A instead can be com-
puted analytically, as shown in Ref.[20], and takes value
A = 3/(2�). We can split the quantity f

1

in two pieces:

f
1

⇠ S(L)� 3

4�
LogL+1

[1� (c� 1)�] , (28)

where S(L) is the partial sum over the loops up to ` = L,
and the second term is the resummation of the remaining
series from ` = L+1 to ` = 1, which we represented via

` = 7
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show that, in a spin glass, the dominant contribution to
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comes from the replicon eigenvalue. Therefore, we use
only the knowledge of this eigenvalue to analytically re-
sum the remaining terms of the series (from ` = 8 to 1).
The large ` behaviour of the shift ��` is given by the
expression

��` ⇠ A�` for ` � 1, (26)

where � is the replicon eigenvalue, the largest eigenvalue
satisfying the following integral equation:
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Here r is distributed as R(r) defined in Eq. (18). The
maximum eigenvalue of the integral operator in last equa-
tion can be obtained numerically by population dynam-
ics techniques. The coe�cient A instead can be com-
puted analytically, as shown in Ref.[20], and takes value
A = 3/(2�). We can split the quantity f
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in two pieces:
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⇠ S(L)� 3
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LogL+1

[1� (c� 1)�] , (28)

where S(L) is the partial sum over the loops up to ` = L,
and the second term is the resummation of the remaining
series from ` = L+1 to ` = 1, which we represented via
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FIG. 3. Finite size corrections to the energy density of a spin glass model on a RRG with connectivity c = 4 and bimodal
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dashed lines mark the positions of the critical temperatures.

the function Logp(1� x), defined as:

Logp(1� x) = �
1X

`=p

x`

`
. (29)

In our concrete case we can compute explicitly the first
L = 7 terms of the series, and so, the approximated
analytic form of f

1

is

f
1

⇠ S(7)� 3

4�
Log

8

[1� 3�] for c = 4. (30)

In a numerical simulation, measuring the energy is, ac-
tually, much simpler than the free energy (since the last
one involves an estimate of the entropy). As a conse-
quence we preferred to compare analytical and numerical
results for the finite size corrections to the energy density

e
1

. Analytically , the quantity e
1

is given by the usual
formula relating energy and free energy:

e
1

= f
1

+ �
@f

1

@�
. (31)

In Figure 3 we show the comparison between the exper-
iments and our theoretical result. The agreement is good
at high temperatures, while it deteriorates close to the
critical point. At the critical point in fact every order of
the O(1/N) expansion of the free energy diverges, there-
fore near the critical point subleading finite size correc-
tions become increasingly important and extrapolation
of e

1

obtained from numerical simulations to its large N
limit, that can be derived by our analytical expression
(14), is di�cult to achieve.
Below the critical point, the nature of the finite size

corrections changes dramatically, because the replica
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In our concrete case we can compute explicitly the first
L = 7 terms of the series, and so, the approximated
analytic form of f
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In a numerical simulation, measuring the energy is, ac-
tually, much simpler than the free energy (since the last
one involves an estimate of the entropy). As a conse-
quence we preferred to compare analytical and numerical
results for the finite size corrections to the energy density
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is given by the usual
formula relating energy and free energy:
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In Figure 3 we show the comparison between the exper-
iments and our theoretical result. The agreement is good
at high temperatures, while it deteriorates close to the
critical point. At the critical point in fact every order of
the O(1/N) expansion of the free energy diverges, there-
fore near the critical point subleading finite size correc-
tions become increasingly important and extrapolation
of e

1

obtained from numerical simulations to its large N
limit, that can be derived by our analytical expression
(14), is di�cult to achieve.
Below the critical point, the nature of the finite size

corrections changes dramatically, because the replica



Summary and outlook

• Bethe approximation for strongly disordered systems is 
quite well under control (at least at the RS level)

• We know how to compute:

• Full probability distributions of critical correlations
(and higher cumulants)

• Energy and free-energy shifts due to short loops
(i.e. finite size corrections to models on random graphs)

• What to do next?

• Compute fat diagrams to study renormalized propagators

• Derive a better loop expansion -> algorithm better than BP
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