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Motivations

Strongly disordered systems (e.g. spin glasses, RFIM)
are in part well understood at the mean field level.
Still mcllny open questions at the MF level, e g.:

- dynamics

- state-following

- fRSB solution at the Bethe level

Non-perturbative phenomena make even more difficult
to extend results at finite dimensions

-> forced us to resort to numerical simulations
(see talks by Young, Martin-Mayor, Ruiz-Lorenzo)



Fluctuations around mean-field

At the mean-field level the Parisi solution is very likely
to be correct one, but...

the epsilon expansion (De Dominicis, Kondor, Temesvar:i)
is extremely difficult (for T<Tc no full 1-loop exp)

predictions on propagators decay do not match numerical

results, e.g.

-> Janus equilibrium data on q=0 and g>0 sectors (d=3)

-> relation between exponents at and below Tc in d=4
(see Nicolao, Parisi, FRT 2014)

Need to find a better expansion around mean-field



Mean-field approximations

naive Mean-Field assumes weakly interacting variables

TAP approximation = weakly interacting variables +
Onsager reaction term

nMF and TAP are the first terms in the weak couplings
Plefka expansion
-> they fail in the strong coupling regime

Bethe approximation (i.e. cavity method)
assumes conditional independence of neighbors,
but no weak couplings assumptions '
-> exact on trees (loopless graphs)
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Bethe approximation

e Factorization approximation

P;i(si,s;
P(s) = H,L P;(s;) Hz‘j Pi(Sq:()Pj(S?j)

 Self-consistent equations for cavity marginals F; \ ;(o;)
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Belief Propagation: iterative
solution to these equations

e From cavity marginals to full marginals {Fi(0:), Pij(0i, 05)}

> 1 Peilown)v(oi o)

Pz(o-z) X

{oktrev () kEV (9)




Random c-regular graphs

Random graphs with fixed degree c for each node

Construction:

* Nvertices, with ¢ "legs” each m A A

e Connected pairs of legs at random
(avoiding self-loops and double-links)

Bethe approximation is correct, but there are multiple
solutions depending on the boundary conditions
(i.e. initial conditions for the BP iterative algorithm)

Highly non-trivial low-temperature phases...
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Previous attempts to add loops to
the Bethe approximation

Montanari, Rizzo (2005): BP + loop corrections

Chertkov, Chernyak (2006): loop calculus = sum over
generalized loops

Parisi, Slanina (2006): effective field theory for lattice
models, whose zero-order is Bethe approximation

None is really effective nor conclusive...



Fat diagrams
Efetov (1990) Parisi (2006)
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M-layer model

In the limit M — oo we get a random graph
Bethe approximation is exact (Vontobel, 2012)
d-dimensional regular lattice -> 2d-regular random graph

Typical loops are O(M)

—
M=1 -> original model ”
1/M expansion = .
loop expansion — __— = 1
First order in 1/M = "

Bethe + single loops ”



Rest of the talk

e Computing critical properties of strongly disordered

models on random regular graphs
(5G in a field and RFIM)

e Computing the effect of adding loops to a random
regular graph

-> finite size corrections to models defined on random
regular graphs



Computing correlations in Bethe approx.

H = — Z JijSiSj — thsz
1) 1

Ising spins

(ij) on a random c-regular graph with c=z+1

SG ina field: Jq;j =41 h; =h
RFIM: Jij =1 h;~ N(O,O'Q)



Self-consistency equations as a message passing
algorithm (Belief Propagation)
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Averaging over the random graphs ensemble

Uk—i = W(B, Jik, Pk—i)

hisg = hi + Z Uk —i
keV (i)\J

{hi—;,u;—i} are random variables
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Computing correlations in Bethe approx.

($0) = tanh [5(hR +y Ui)}



Computing correlations in Bethe approx.




Computing correlations in Bethe approx.

C(¢) is a random variable depending on (u1—0,u2-1,-- )



Decay rates and physical interpretation

on a chain correlations always decay C(¢) xx ™"
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Large deviation function for the decay rate

Pi(y) =~ e ) for ¢ — o0 X(v) >0 X(v) =0
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) decaying in a much
more slower way

number of chains < z



Large deviation function for the decay rate

e We actually compute 1i(g) = — lim

from which we get Z(y) = sup[A(g) — g¥].

geR
e We use 2 methods:
1) "brute force" -> average over a huge log C(£)4
number of chains of finite length helg) = = ¢
. A(q)
extrapolate to large distances  1.(q) = A(g) + —

2) solve by population dynamics an integral equation providing
the result directly in the thermodynamic limit
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Analytic expression for the large deviation
function in the thermodynamic limit

A(q) is the largest eigenvalue of the following equation

A

a\? N
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E, f du' g’ ,q)s[u — a(B,J,u’ +r)] (
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Analytic expression for the large deviation
function in the thermodynamic limit
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Gaussian RFIM on random 3-reqular graphs
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Gaussian RFIM on random 3-reqular graphs
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Gaussian RFIM on random 3-reqular graphs
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Gaussian RFIM on random 3-reqular graphs
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Gaussian RFIM on random 3-reqular graphs
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In the zero temperature limit

e phase transition induced by an infinitesimal fraction of
highly correlated chains chains

e responses/couplings at large distances from ground
state recursion relation E;(sy,s;) = —h(oﬁ)so — hysy — Jpsosy + &

E{é+1(807 5£+1) — H;iﬂ E€(307 318) + S¢St + hegp1Se41
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Ne = £(zn)" for £>>1 cavity fields pdf
oh chains with J, # 0

o (sp5s)e ~ A (s0)(sp) ~ £ \°



Loops in a random regular graph

(c—1)f

57 loops of length ¢

e A random c-reqgular graph has

e Density of loops is O(1/N)

e Can we approximate a random graph of finite size as
a tree + O(1/N) corrections due to the loops ?

1. Compute analytically physical observables (e.g. energy,
free-energy) on a tree with few loops

2. Compute numerically the same observables on a random
reqgular graph of finite size



Finite size corrections by the replica method
(i.e. Gaussian fluctuations around the saddle point)
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Finite size corrections by the replica method
(i.e. Gaussian fluctuations around the saddle point)

3 o mean number of
F(N) = fot+ fi= ; AP lloops of length ¢

free-energy shift for addinga »>Ag, = ¢5— ¢ ¢ | y
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loop of length ¢ to an infinite tree

mean free-energy per link

mean free-energy of a loop of length ¢ on the infinite tree
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Probabilistic/cavity derivation
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Probabilistic/cavity derivation

d>1

loops are few and very far from each other
messages u arriving on loops are like on the infinite tree

Wormald (1981): numbers of "short” loops of lengths
¢ > 3 are independent Poisson variables with means
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Finite size corrections for spin glass models
with maghetic external field on Bethe lattices

e Numerical check of the O(1/N) corrections to the
energy, computed analytically through

PR R Y/
e1=f1—|-5%—‘];1 flzz(c %1) Ay
(=3

e Terms in the series are computed explicitly up fo ¢ =7
and then resumed using the asymptotic Ag¢, ~ AN

e Spin glass models (J=+/-1) in a constant field H

e Onrandom 4-reqgular graphs of sizes from 64 to 1024
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Finite size corrections for SG in a field
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Summary and outlook

e Bethe approximation for strongly disordered systems is
quite well under control (at least at the RS level)

e We know how to compute:

e Full probability distributions of critical correlations
(and higher cumulants)

 Energy and free-energy shifts due to short loops
(i.e. finite size corrections to models on random graphs)

e What to do next?
e Compute fat diagrams to study renormalized propagators

 Derive a better loop expansion -> algorithm better than BP



Some recent references

Large deviations of correlation functions in random magnets
Phys. Rev. E 89, 214202 (2014)
F. Morone, G. Parisi, and F. Ricci-Tersenghi

Finite-size corrections to disordered Ising models on random regular graphs
Phys. Rev. E 90, 012146 (2014)
C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi, and T. Rizzo

One-dimensional disordered Ising models by replica and cavity methods
Phys. Rev. E 90, 012140 (2014)
C. Lucibello, F. Morone, and T. Rizzo

Thank you !



