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• The glass problem: the dramatic increase upon cooling of the relaxation time
of super-cooled liquids

• Mode-Coupling-Theory, (’80) captures many important features of the prob-
lem, in particular the two-step nature of the relaxation but predicts a glass
transition at too high temperatures

• Structural-Glass/Spin-Glass analogy: (Kirkpatrick-Thirumalay-Wolynes, 87-
89): p-spin-glass models with (p > 2) obey the same dynamical equations.

• Structural-Glass/Spin-Glass analogy: (Kirkpatrick-Thirumalay-Wolynes) :
at TMCT the phase space is split into an exponential number of states, dis-
appearance of the transition through nucleation arguments.

• In Spin-glass models the transition occurring at TMCT has the features of a
second order phase transition (diverging correlation length and fluctuations)
and these features can be also obtained directly in the MCT framework

• Recently (2010-) it has been discovered that the critical properties of the
theory are related to those of the Random field Ising model: unexeptected
but solid connections.



• The problem: Why and how the dynamical singularity of Mode-Coupling-
theory (MCT) becomes a crossover?

• The dynamical singularity at TMCT is assumed to be a genuine second order
phase transition and dynamical field theoretical methods are applied to it.

• The procedure leads instead to a rather intuitive dynamical model (Stochastic
Beta Relaxation) that predicts that the transition is changed into a dynamical
crossover.

T. Rizzo, arXiv:1307.4303, EPL 2014



Solution of Stochastic-Beta-Relaxation equations in 3D

• Above TMCT : power-law increase of dynamical fluctuations and dynamical
correlation length, scale invariance.

• Near TMCT : (i) Dynamical arrest is avoided (ii) relaxation time grows much
faster, from power-law to eponential.

• The structure of fluctuations also displays a qualitative change below TMCT :
rare faster regions dominates the relaxation: Dynamical Heterogenities. Dy-
namics slows down because these regions are rare not because they are larger.

• Dynamical correlation length decreases and decorrelates from the relaxation
time. Decoupling between di↵erent observables: Deviations from the Stokes-
Einstein relationship.

T. Rizzo & T. Voigtmann, ’14



Critical Slow Dynamics in MCT
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Stochastic Beta Relaxation

• Stochastic �-relaxation (SBR) equation: Extension of the MCT equation for
the critical correlator with random fluctuations of the separation parameter.
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The replicated Field Theory

L =
1

2

Z
dx

0

@�⌧
X

ab
�ab +

1

2

X

ab
(r�ab)

2 +m2
X

abc
�ab�ac +m3

X

abcd
�ab�cd+

�1

6
w1

X

abc
�ab�bc�ca �

1

6
w2

X

ab
�3
ab

1

A

• It is possible to resum the loop expansion unveiling a mapping to a quadratic
equation in a random field

• This allows to identify non-perturbative e↵ects that show that the glassy
phase is not stable: the singularity at Tc is avoided.

• Non-trivial features: (i) typically loop expansions are limited to few orders,
here we have control at all orders, similar to the RFIM (ii) but the mapping
seems natural in the RFIM model while there is no quenched random field in
this case

S. Franz, G. Parisi, F. Ricci-Tersenghi, and T. Rizzo, Eur. Phys. J. E, 34, 102, (2011).



From Replicas to MCT Dynamics

• One can formulate the dynamics in such a way that the dynamical field theory
is precisely the same of the Replicated theory (essentially di↵erent replicas
are equivalent to di↵erent times).
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G. Parisi and T. Rizzo, Phys. Rev. E 87, 012101 (2013). F. Caltagirone, U. Ferrari, L.

Leuzzi, G. Parisi, F. Ricci-Tersenghi, T. Rizzo, Phys. Rev. Lett. 108, 085702 (2012)



The B-Profile

• At any value of �, the solution g(x, t) goes at large times as �B(x)tb, i.e.
all regions of space are liquid.

• SBR equations induce a mapping between the realisation of the random tem-
peratures s(x) and a positive function B(x), such a mapping is not possible
in the static treatment.

• the B-profile allows a compact description of dynamical quantities like the
↵-relaxation time, the di↵usion coe�cient and the correlation length.
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Figure 1: Top: Pictorial representation of the solution of SBR equations in finite dimension for a given
realisation of the random �(x). (generated from actual solution of a 1D system). At large times the solution
converges to the form �B(x)tb, thus inducing a mapping between the realisation of the random �(x) and a
positive function B(x), the B-profile. Bottom: Plot of g(x, t)/tb vs. x for increasing times t: increasing the
time the curves converge to the B-profile.



Viscosity and Di↵usivity
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Figure 2: Simplified SBR: plot of the ↵ relaxation time ⌧↵ vs. the separation parameter � for �� = .1 and
� = .75. The dashed lines correspond to the leading asymptotic behavior. Symbols are dielectric-spectroscopy
data for propylene carbonate from Lunkenheimer et al (2000). Inset: plot of the Di↵usion constant vs. the
separation parameter � for �� = .1 and � = .75. The dashed line corresponds to the ideal MCT result
D / 1/��.



Some Comments

• Dynamical arrest is avoided and replaced by a crossover from power-law to
exponential

• there is no ad hoc assumption on nucleation or activated processes in the
derivation, actually the initial assumption is that TMCT marks a genuine
phase transition

• could work in an extended range of temperature, even close to Tg

• used as a fit function but the actual computation of the coupling constants
is feasible for many systems
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Figure 3: simplified SBR: plot of the squared thermal susceptibility vs. ⌧↵ for �� = .1 and � = .75. The
dashed lines correspond to the asymptotic behaviors. Symbols are experimental data shifted by arbitrary
factors along the vertical C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J.-P.
Bouchaud, F. Ladieu, D. L’Hote, and G. Tarjus, Phys. Rev. E 76, 041510 (2007). (circles: Lennard Jones
mixture; squares: hard spheres; BKS silica: diamonds; triangles: propylene carbonate; inverted triangles:
glycerol; open circles: OTP; open squares: salol). The thin solid line is the expression proposed in the same
paper.



Non-Monotonous Correlation Length

�(r) =
1

V

Z
B(x)B(x + r) dx
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• �n(r) has a bell-shaped form with rapidly decaying tails both below and
above � = 0

• non-monotonous behavior with �, appears to be related to recent observations
in numerical simulations (Berthier, Kob 2010-)
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Figure 4: Plot of the normalized autocorrelation of the B profile in 3D for � = �0.006, 0, 0.006, 0.012
(dashed, dotted, thick, solid).
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Figure 5: Top: ⌧↵ vs. � from SBR in 3D. Inset: D vs. � in 3D. Bottom: The correlation length ⇠d (defined
as half-width at half-maximum of �(r)) as a function of �.
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Figure 6: Normalized B-profile B(x)/B on a plane sliced from a cubic box for di↵erent values of �.
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Figure 7: Log-plot of the Normalized B-profile B(x)/B on the line x = 20 cut from the planes of figures 6
(increasing values of � correspond to increasing line thickness).
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Figure 8: simplified SBR: plot of the Di↵usion constant vs. the viscosity for �� = .1 and � = .75. The
straight lines correspond to D / ⌘�1 (the Stokes-Einstein relation) and to a fractional SER D / ⌘�.65. The

actual asymptotic behavior is D / ⌘�b(ln ⌘)
b��1

2 , the logarithmic prefactor induces a huge correction and as a
consequence a fit with a pure fractional SER gives an exponent 0.65 considerably higher than b = .558. The
point where the SER breaks down (intersection of the straight lines) corresponds to a temperature higher
than Tc (dot). Smaller symbols are experimental data for o-terphenyl by Lohfink and Sillescu (1992)(circles:
tracer di↵usion at T > Tc, di↵usion of ACR dye, diamonds: di↵usion of TTI dye).



Future Directions and Open Problems

• Quantitative tests with actual coupling constants, (length, shift of TMCT ,
Lennard-Jones vs. HARM crossover sharpness)

• di↵erent dimensions and finite-size e↵ects

• better understanding of the ↵ regime

• cannot sustain too large fluctuations and must be abandoned at some point.
Conjecture: non-standard activation characterized by elementary events that
have intrinsic time and length scales of an unusual large (but not increasing)
size (mesoscopic vs. microscopic).

• Connection with configurational complexity phenomenology



Conclusions

• Dynamical Field Theoretical loop corrections to MCT lead to SBR.

• displays a rich phenomenology common to most super cooled liquids.

• displays simultaneously an increase of several orders of magnitude of the
relaxation time and a decrease of the dynamical correlation length.

• below TMCT there are strong dynamical heterogeneities, crossover from scale-
invariance to activated-like, SER deviations.

• None of these qualitative and quantitative features was put ad hoc into the
model. In particular one should not confuse the fluctuations of the order
parameter (the standard starting point of the computation) of the original
theory with the fluctuations of the temperature in SBR (the result of the
computation).

Thanks!
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Figure 9: Existence of the continuum limit of the B(x) profile.


