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Plan of the Talk

What are spin glasses?
Different Theories: Droplet/Scaling and RSB.
Results for the one dimensional Edwards-Anderson (diluted) long
range model in field. (see P. Young’s talk)
Experiments. (see R. Orbach’s and P. Norblad’s talks)
The Janus’ dedicated supercomputers (see V. Martín-Mayor’s talk)

1 Janus results for D = 4 in a field.
2 Janus results for D = 3 in a field.

Dynamical studies (Equilibrium and out-of-equilibrium).
Thermodynamical studies.

3 Conclusions.
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What are Spin glasses

Materials with disorder and frustration.
Quenched disorder (similar to the Born-Oppenheimer in Molecular
Physics).
Canonical Spin Glass: Metallic host (Cu) with magnetic impurities
(Mn).

RKKY interaction between magnetic moments: J(r) ∼ cos(2kF r)
r3

.
Role of anisotropy: Ag:Mn at 2.5% (Heisenberg like),
CdCr1.7IN0.3S4 (also Heisenberg like) and Fe0.5Mn0.5TiO3 (Ising
like).
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Some equations

Edwards-Anderson Hamiltonian:

H = −
∑
<ij>

Jijσiσj

Jij are random quenched variables with zero mean and unit
variance, σ = ±1 are Ising spins.
The order parameter is:

qEA = 〈σi〉2

Using two real replicas:

H = −
∑
<ij>

Jij (σiσj + τiτj)

Let qi = σiτi be the normal overlap, then: qEA = 〈σiτi〉.
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Different Theories.

The Droplet/Scaling Theory.
Based on the Migdal-Kadanoff implementation (approximate) of
the Renormalization Group (exact in D = 1).
Disguised Ferromagnet: Only two pure states with order parameter
±qEA (related by spin flip).
Compact Excitations of fractal dimension df . The energy of a
excitation of linear size L grows as Lθ. The free energy barriers (in
the dynamics) grow as Lψ. θ < (D − 1)/2 < D − 1 < df < D and
ψ ≥ θ.
Any amount of magnetic field destroys the spin glass phase (even
for Heisenberg spin glasses).
Trivial probability distributions of the overlaps (both normal
overlap and link one).
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Different Theories.

Replica Symmetry Breaking (RSB) Theory.
Exact in D =∞.
Infinite number of phases (pure states) not related by any kind of
symmetry.
These (pure) states are organized in a ultrametric fashion.
The spin glass phase is stable under (small) magnetic field. Phase
transition in field: the de Almeida-Thouless line.
The excitations of the ground state are space filling: e.g. the
interface between two pure states is space filling.
Overlap equivalence: All the definitions of the overlap are
equivalent.

Note: In a pure state, α, the clustering property holds:
〈SiSj〉α − 〈Si〉α〈Sj〉α → 0 as |i− j| → ∞.

J. J. Ruiz-Lorenzo (UEx&BIFI) Spin glasses in a field Capri-2014 6 / 39



Different Theories: External Magnetic Field

RG from the paramagnetic phase:
1 The upper critical dimension in a field is still six (Bray and Moore).
2 Due to a dangerous irrelevant variable, some observables change

behavior at eight dimensions (Fisher and Sompolinsky).
3 Projecting the theory (replicon mode) no fixed points were found

(Bray and Roberts).
4 However, starting with the most general Hamiltonian of the RS

phase and relaxing the n = 0 condition a stable fixed point below
six dimensions was found (Dominicis, Temesvári, Kondor and
Pimentel)

5 Temesvári is able to build the dAT slightly below D = 6 (but Bray
and Moore, Temesvári and Parisi, Moore,...)
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Different Theories: External Magnetic Field

Renormalization group predictions (from Temesvári and Parisi):
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Different Theories: External Magnetic Field

Different behavior of P (q) in a magnetic field:

q

P(q)

qEA q

P(q)

qEA
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The negative overlap problem

P (q) in a magnetic field: SK results and numerical ones.
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The negative overlap region induces large corrections in G̃(0)!!
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The correlation length

Correlation Functions (D = 4): The replicon Propagator:

G1(r) =
1

L4

∑
x

(
〈SxSx+r〉 − 〈Sx〉〈Sx+r〉

)2
,

G2(r) =
1

L4

∑
x

(
〈SxSx+r〉2 − 〈Sx〉2〈Sx+r〉2

)
.

Correlation Length:

ξ2 =
1

2 sin(π/L)

(
Ĝ(0)

Ĝ(k1)
− 1

)1/2

,

where k1 = (2π/L, 0, 0, 0) (and three perm.)
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Numerical Analysis of the Correlation function

We will avoid the k = 0 value by fitting (k > 0):(
1

G̃(k)

)fit

= A(L, T ) +B(L, T )[sin(k/2)]2

We can analyze the L and T dependence of

A(L, T ) ≡ lim
k→0

1

G̃(k)

We fix the L-dependent critical temperature by means:

A(L, Tc(L)) = 0
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A new observable R12

R12:

R12 =
Ĝ(k1)

Ĝ(k2)
,

where k1 = (2π/L, 0, 0, 0), k2 = (2π/L, 2π/L, 0, 0) (and
permutations)
We have checked the behavior of this observable in the EA model
in D = 3 and D = 4 (h = 0).
And in the two dimensional (ordered) Ising model. We have been
able to compute its value at criticality using Conformal Field
Theory:

R12 = 1.694 024...

In a paramagnetic phase, for large L: R12 → 1.
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D = 4 (h 6= 0)

We have simulated using the JANUS computer.
L = 5, 6, 8, 10, 12 and 16.
Three (uniform) magnetic Fields: h = 0.075, 0.150 and 0.3.
Parallel Tempering in Temperature (e.g. 32 temperatures in
L = 16)
Single sample thermalization protocol.
We avoid the mode k = 0 in the analysis.
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D = 4 (h = 0.15)
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D = 4 (h 6= 0): Critical exponents
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D = 4 (h 6= 0): Corrections to scaling

 0.22

 0.26

 0.3

 0  0.02  0.04

ξ 2
(R

12
=

R
)/

L

L– ω

R=1.85
R=1.80
R=1.75

J. J. Ruiz-Lorenzo (UEx&BIFI) Spin glasses in a field Capri-2014 17 / 39



D = 4 (h 6= 0): Critical exponents

Parameter h = 0.3 h = 0.15 h = 0.075

Tc(h) 0.906(40)[3] 1.229(30)[2] 1.50(7)
ν 1.46(7)[6] —
η −0.30(4)[1] —
ω 1.43(37) —

For reference (h = 0):
T

(0)
c = 2.03(3), ν(0) = 1.025(15), η(0) = −0.275(25)
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D = 4 (h 6= 0): Summary
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Dynamics D = 3 (h 6= 0)

We have simulated using the JANUS computer.
L = 80.
Gaussian magnetic Fields (using Gauss-Hermite quadrature).
Dynamical Studies (Fast and Slow annealing procedures):

Equilibrium dynamical studies in the high temperature region.
Out-of-equilibrium studies for the lower temperatures.
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Dynamics D = 3 (h 6= 0)

Observables:

qx(t) = σ
(1)
x (t)σ

(2)
x (t)

q(t) = 1
V

∑
x qx(t)

Emag(t) =
1
V

∑
x hxσx(t)

W (t) = 1− TEmag(t)/H
2

W = 〈q〉

Droplet prediction: W = qEA and q(t)→ qEA, so

W − q → 0

RSB prediction, SG phase: W = 〈q〉 and q(t)→ qmin, so

q −W → 〈q〉 − qmin > 0
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Dynamics D = 3 (h 6= 0)

Equilibrium and out-of-equilibrium regimes:
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Dynamics D = 3 (h 6= 0)

Hot (high T region) and Cold annealing (low T region):
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Dynamics D = 3 (h 6= 0): Comparison among the
annealing protocols
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Dynamics D = 3 (h 6= 0)

The equilibrium data (obtained at high T ) follow a stretched
exponential behavior:

W − q = b

tx
exp

[
−
(
t/τ ′

)β]
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Caveat: Only for β = 1, τ ′ is a correlation time (τ).
J. J. Ruiz-Lorenzo (UEx&BIFI) Spin glasses in a field Capri-2014 25 / 39



Dynamics D = 3 (h 6= 0): A phenomenological approach
for τ (τ ′′)

W (tw)− q(tw) ' A
[
1− log tw

log τ ′′

]
, tw < τ ′′
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Dynamics D = 3 (h 6= 0)

Analysis of τ ′:
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Dynamics D = 3 (h 6= 0)

Analysis of τ ′ and τ ′′:

H = 0.1: T high
c = 1.03(7) and zν = 4.8(1.1). T high

c = 0.98(3) and
zν = 7.2(5).

H = 0.2: T high
c = 0.71(6) and zν = 7.5(1.1). T high

c = 0.670(21) and
zν = 9.2(4).

H = 0.3: T high
c = 0.66(5) and zν = 6.2(9). T high

c = 0.614(17) and
zν = 8.4(4).

Remember Tc(H = 0) = 1.109(10).
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Dynamics D = 3 (h 6= 0)

Scenarios:
RSB with a non zero magnetic field fixed point: critical dynamics
for τ ′.
RSB with a zero magnetic field fixed point: activated dynamics for
τ ′.
A dynamical transition at which “apparently” diverges τ ′ and then
a thermodynamical phase transition (RSB?) (Mode Coupling
Theory, supercooled liquids).
A T = 0 phase transition.
Our data do not follow the droplet predictions.
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Spin Glass behavior in D = 3 (h 6= 0)?
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T. Jörg et al.]
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The fauna of measurements D = 3 (h 6= 0)?

Study of the point-to-plane correlation function C(r):
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1 Average over all the data only describe the behavior of a small
fraction of the data.

2 We develop an approach to classify the measurements in terms of a
conditioning variate.
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Conditioning variates.

In the SK model, the negative overlap tail of P (q) is due to a small
number of samples [Parisi-Ricci-Tersenghi].
Instead, in order to avoid bias and gain statistics, we work with
measurements not with individual samples.
For a Gaussian h, we need only two replicas to compute the
replicon (and we have only one overlap).

1 We can classify the measurements using q (as done alredy in the
past, e.g. G(r|q)).

2 However, we are simulating constant h, and we need four replicas
and we can compute 6 different overlaps.
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Conditioning variates.

The conditional expectation value is defined as the average of O, restricted to
the measurements i (out of the Nm = NtNsamples total measurements) that
simultaneously yield Oi and q̂i in a small interval around q̂ = c,

E(O|q̂ = c) =
E [OiXq̂=c(q̂i)]

E [Xq̂=c(q̂i)]
.

Where we have used the characteristic function

Xc(q̂i) =

{
1, if |c− q̂i| < ε ∼ 1√

V

0, otherwise.

E(O) =
∫

dq̂ E(O|q̂)P (q̂) , P (q̂) = E[Xq̂] ,

where P (q̂) is the probability distribution function of the conditioning variate.
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Conditioning variates.

We have simulated Nsamples samples and taken Nt measurements
on each sample: So we have Nm = NtNsamples total measurements.
On each measurements (out of Nm) we have computed 6 different
overlaps (we are simulating 4 replicas!).
We can sort the six overlaps as:{
q(ab), q(ac), q(ad), q(bc), q(bd), q(cd)

}
−→ {q1 ≤ q2 ≤ q3 ≤ q4 ≤ q5 ≤ q6} .

We can propose the following conditioning variates:

q̂ =


qmin = q1 (the minimum)

qmax = q6 (the maximum)

qmed = 1
2(q3 + q4) (the median)

qav = 1
6(q1 + q2 + q3 + q4 + q5 + q6) (the average) .

For Gaussian h, we have only one option, the usual overlap q.
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Selection of the Conditioning variate.

var(O) = c1 + c2,

where we defined

c1 ≡
∫ 1

−1
dq̂ P (q̂)var(O|q̂) , var(O|q̂) = E([O − E(O|q̂)]2 | q̂) ,

c2 ≡
∫ 1

−1
dq̂ P (q̂)[E(O)− E(O|q̂)]2 .

Remember: c1 + c2 is fixed!
A useful conditioning variate should have c2 � c1.

1 If c1 = 0 the fluctuations of O would be explained solely by the
fluctuations of q̂: So c2 is large.

2 Otherwise, if c2 = 0, then E(O) = E(O|q̂), and q̂ is irrelevant!.
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q̂ c1 c2 c2/c1

qmin 399000± 37000 121000 ± 15000 0.30(6)

qmax 514000± 51000 6230 ± 690 0.012(3)

qmed 162000± 10000 358000± 45000 2.2(4)

qav 328000± 26000 192000 ± 28000 0.6(1)
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Quantile analysis in D = 3 (h = 0.2)
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Test: Quantile analysis in h = 0
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Conclusions

1 We have shown strong numerical evidences which support a dAT
line below the upper critical dimension:

In D = 4 for the EA model.

2 However the situation in D = 3 dimensions is not yet clear:
Equilibrium dynamics (high T ) shows a diverging time at a
finite temperature.
Out of equilibrium dynamics (low T ) can be explained with RSB.
Yet, another theoretical scenarios can explain the behavior of the
numerical data.
Quantile analysis (equilibrium) shows traces of a phase transition.
But, will this picture (quantiles) survive for larger lattice sizes?
Maybe Janus-II will be able to provide the solution!
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