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Long-range density correlations in glasses and glassy fluids

Spontaneously broken translational symmetry→

elasticity and long-range density correlations

D. Forster, “Hydrodynamic Fluctuations, Broken Symmetry, And Correlation
Functions”

P.W. Anderson, “Basic Notions of Condensed Matter Physics”



Long-range density correlations in glasses and glassy fluids Long-range density correlations in crystalline solids

Broken translat. symmetry⇒ long-range correlations
In crystalline solids translational symmetry is broken

n(~r) - density field n0 - spatially averaged density

n(~r) = n0 +
∑
~G

n~Gei~G·~r

~G - reciprocal lattice vectors n~G - Bragg-peak amplitudes (order parameters)

Rigid translation: an equivalent but different state

A rigid translation of a crystal by a constant vector ~a produces an equivalent
but different state of the crystal. This does not cost any energy/does not
require any force.

Under such translation the density field changes:

n(~r)→ n(~r −~a) ≡ n~G → n~Gei~G·~a for ~G 6= ~0

Rigid translations ≡ zero free energy cost excitations (Goldstone modes)

The existence of such zero-free energy excitations is the reflection of a
broken translational symmetry.
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Long-range density correlations
Density fluctuation for a wavevector close to ~G:

n(~G +~q) =
∑

i

ei(~G+~q)·~ri δn(~G +~q) = n(~G +~q)−
〈

n(~G +~q)
〉

Bogoliubov inequality
〈
|A|2
〉 〈
|B|2
〉
≥ | 〈AB〉 |2

A = V−1/2δn∗(~G +~q) & B = V−1/2~̂n · ~̇g(~q) where ~g(~q) =
∑

i

m~vie−i~q·~ri

~̂n - an arbitrary unit vector

1
V

〈
|δn(~G +~q)|2

〉
≥ 1

q2

(kBT)
2 |n~G|

2
(
~̂n · ~G

)2

lim~q→0
1
V

〈
|~̂q· ↔σ (~q) · ~̂n|2

〉
↔
σ (~k) - microscopic stress tensor

Small wavevector divergence⇒ long-range correlations in direct space.

GS & M. Ernst, PRB 48, 112 (1993); H. Wagner, Z. Phys. 195, 273 (1966)



Long-range density correlations in glasses and glassy fluids Dynamic glass transition

Dynamic glass transition: dynamics & statics

Dynamic approach

At the dynamic glass transition the relaxation time diverges and the
time-dependent density correlation function does not decay:

lim
t→∞

〈
δn(~k; t)δn(−~k)

〉
= nS(k)f (k) > 0

δn(~k; t) =
∑

i e−i~k·~ri(t) −
〈∑

i e−i~k·~ri(t)
〉

- density fluctuation

S(k) - static structure factor f (k) - non-ergodicity parameter

Static (replica) approach (Franz and Parisi, PRL 79, 2486 (1997))

N particles ~r1, ...,~rN tethered to a quenched configuration ~r 0
1, ...,~r

0
N :

attractive potential = −ε
∑

i,j

w(|~ri −~r 0
j |).

At the dynamic transition non-trivial correlations survive in the ε→ 0 limit.



Long-range density correlations in glasses and glassy fluids Dynamic glass transition

Replicas

Averaging over a distribution of quenched configurations
=⇒ s replicas of the system & s→ 0 (or m = s + 1

↑
quenched conf.

& m→ 1).

Dynamic glass transition ≡ non-trivial inter-replica correlations:

lim
ε→0

〈∑
i,j

ei~k·~riα−i~k·~rjβ

〉
= nS(k)f (k)

α, β - replica indices S(k) - static structure factor f (k) - non-ergod. parameter



Long-range density correlations in glasses and glassy fluids Long-range density correlations in glasses

Symmetry transformation hidden in replica approach

Glass can be moved as a rigid body

The system can be tethered to a rigidly shifted quenched configuration:

attractive potential = −ε
∑

i,j

w(|~ri −~r 0
j −~a|).

As before: at the dynamic transition nontrivial correlations in the ε→ 0 limit.

Physically, nothing changes: we get a glass that is shifted rigidly by ~a.

However: (some) replica off-diagonal correlation functions change.

For α > 0 : hα0(~r1,~r2)→ hα0(~r1 −~a,~r2)

All other pair correlations are unchanged (note: this breaks replica symmetry).

Rigid translations ≡ zero energy cost excitations (Goldstone modes)

The existence of such zero-free energy excitations is the reflection of a
randomly broken translational symmetry.
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Long-range density correlations
Fourier transform of the joint microscopic density in replicas α and 0:

nα0(~k;~q) =
∑

i,j

ei~k·~riα−i(~k+~q)·~rj0 (analogue of n(~G +~q) for crystals)

Bogoliubov inequality
〈
|A|2
〉 〈
|B|2
〉
≥ | 〈AB〉 |2

A = V−1/2s−1
∑
α>0

δn∗α0(~k;~q) where δnα0(~k;~q) = nα0(~k;~q)−
〈

nα0(~k;~q)
〉

B = V−1/2s−1
∑
α>0

~̂n · ~̇gα(~q) where ~gα(~q) =
∑

i

m~viαe−i~q·~riα

~̂n - an arbitrary unit vector

1
V

〈
|δn10(~k;~q)|2 − δn10(~k;~q)δn20(−~k;−~q)

〉
≥ 1

q2

(kBT)
2

(nS(k)f (k))
2
(
~̂n ·~k

)2

lim~q→0
1
V 〈Σ(~q)〉

f (k) - non-ergod. parameter Σ(~q) = |~̂q· ↔σ 1 (~q) · ~̂n|2 − (~̂q· ↔σ 1 (~q) · ~̂n)(~̂k· ↔σ 2 (−~q) · ~̂n)
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Long-range density correlations: crystals vs. glasses
Crystals

1
V

〈
|δn(~G +~q)|2

〉
≥ 1

q2

(kBT)
2 |n~G|

2
(
~̂n · ~G

)2

lim~q→0
1
V

〈
|~̂q· ↔σ (~q) · ~̂n|2

〉
Small wavevector divergence⇒ long-range correlations in direct space.

GS & M. Ernst, PRB 48, 112 (1993); H. Wagner, Z. Phys. 195, 273 (1966)

Glasses

1
V

〈
|δn10(~k;~q)|2 − δn10(~k;~q)δn20(−~k;−~q)

〉
≥ 1

q2

(kBT)
2

(nS(k)f (k))
2
(
~̂n ·~k

)2

lim~q→0
1
V 〈Σ(~q)〉

f (k) - non-ergod. parameter Σ(~q) = |~̂q· ↔σ 1 (~q) · ~̂n|2 − (~̂q· ↔σ 1 (~q) · ~̂n)(~̂k· ↔σ 2 (−~q) · ~̂n)

Small wavevector divergence⇒ long-range correlations in direct space.

GS & E. Flenner, PRL 107, 105505 (2011)



Long-range density correlations in glasses and glassy fluids Long-range density correlations in glasses

Simplified version of the divergent correlation function

1
N

〈
|δn10(~k;~q)|2 − δn10(~k;~q)δn20(−~k,−~q)

〉
≡ 1

N

〈∑
i,j

ei~k·~ri1−i(~k+~q)·~rj0
∑
l,m

e−i~k·~rl1+i(~k+~q)·~rm0 −
∑

i,j

ei~k·~ri1−i(~k+~q)·~rj0
∑
l,m

e−i~k·~rl2+i(~k+~q)·~rm0

〉

Self (diagonal) part only

1
N

〈∑
i

ei~k·~ri1−i(~k+~q)·~ri0
∑

l

e−i~k·~rl1+i(~k+~q)·~rl0

〉



Long-range density correlations in glasses and glassy fluids Long-range density correlations in glasses

Replacing replicas with t→∞ limit
Interpreting replica off-diagonal correlation function dynamically

1
N

〈∑
i

ei~k·~ri1−i(~k+~q)·~ri0
∑

l

e−i~k·~rl1+i(~k+~q)·~rl0

〉

→ lim
t→∞

1
N

〈∑
i

ei~k·~ri(t)−i(~k+~q)·~ri(0)
∑

l

e−i~k·~rl(t)+i(~k+~q)·~rl(0)

〉

Connection to the four-point structure factor

1
N

〈∑
i

ei~k·~ri(t)−i(~k+~q)·~ri(0)
∑

l

e−i~k·~rl(t)+i(~k+~q)·~rl(0)

〉
=

1
N

〈∑
i

ei~k·(~ri(t)−~ri(0))−i~q·~ri(0)
∑

l

e−i~k·(~rl(t)−~rl(0))+i~q·~rl(0)

〉
≡ SF

4(~q,~k; t)

This function is a version of a four-point structure factor used to investigate
dynamic correlations in glassy fluids!
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Four-point functions used to investigate dynamic corrs.
Four-point structure factor: correlations of slow particles

S4(q; t) =
1
N

〈∑
i

w(δ~ri(t))e−i~q·~ri(0)
∑

j

w(δ~rj(t))ei~q·~rj(0)

〉
δ~ri(t) = ~ri(t)−~ri(0), w(~rj(t)) = θ(a− |~rj(t)|)

But one could select slow particles in a different way

Scos
4 (~q,~k; t) =

1
N

〈∑
i

cos(~k · δ~ri(t))e−i~q·~ri(0)
∑

j

cos(~k · δ~rj(t))ei~q·~rj(0)

〉

or one could choose

SF
4(~q,~k; t) =

1
N

〈∑
i

ei~k·δ~ri(t)e−i~q·~ri(0)
∑

j

e−i~k·δ~rj(t)ei~q·~rj(0)

〉

BTW, the self-intermediate scattering function Fs(k; t),

Fs(k; t) = 1
N

〈∑
i ei~k·δ~ri(t)

〉
≡ 1

N

〈∑
i cos(~k · δ~ri(t))

〉
.
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Different four-point functions are sensitive to different
aspects of dynamic correlations

Scos
4 (~q,~k; t)

Scos
4 (~q,~k; t) =

1
N

〈∑
i

cos(~k · δ~ri(t))e−i~q·~ri(0)
∑

j

cos(~k · δ~rj(t))ei~q·~rj(0)

〉

Scos
4 (~q,~k; t) quantifies dynamic heterogeneity in glasses and glassy fluids.

SF
4(~q,~k; t)

SF
4(~q,~k; t) =

1
N

〈∑
i

ei~k·δ~ri(t)e−i~q·~ri(0)
∑

j

e−i~k·δ~rj(t)ei~q·~rj(0)

〉

SF
4(~q,~k; t) quantifies (visco)elastic fluctuations in glasses and glassy fluids (it is

also sensitive to dynamic heterogeneity).



Long-range density correlations in glasses and glassy fluids Computer simulation results

Simulation details

50:50 mixture of harmonic spheres

V(r) =

{
ε
2

(
1− r

σαβ

)2
if r ≤ σαβ

0 otherwise

ε = 104, σ11 = 1.0, σ12 = 1.2, σ22 = 1.4
number density n = N/V = 0.675
“volume fraction” = π

(
0.5Nσ3

11 + 0.5Nσ3
22

)
/(6V) = 0.662

Very large systems: N = 100, 000 and N = 800, 000

Small wavevectors accessible: qmin = 0.119 for the N = 100, 000 system

Temperature range: fluid: 5 ≤ T ≤ 20; Tmct = 5.2, Tonset ≈ 13
glass: T = 3



Long-range density correlations in glasses and glassy fluids Computer simulation results

Self-intermediate scattering function Fs(k; t)
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t
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F s(q

;t)

T=3
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T=8
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T=10
T=15
T=20

T = 5 - the lowest temperature at which we can equilibrate the fluid;

τα(T = 5) = 6.14× 105
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Long-range correlations in glasses
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S
4F
(q
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T=3 (glass)

q
-2

At finite t,
lim
q→0

SF
4(~q,~k; t) is

finite and can be
calculated
independently.

lim
q→0

SF
4(~q,~k; t = 30) -

showed as the thin
horizontal line.

As t→∞,
lim
q→0

SF
4(~q,~k; t)→∞

(in the glass).

SF
4(~q,~k; t)=

1
N

〈∑
i

ei~k·(~ri(t)−~ri(0))−i~q·~ri(0)
∑

l

e−i~k·(~rl(t)−~rl(0))+i~q·~rl(0)

〉
, k=6.1, ~q ⊥ ~k
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Long-range correlations in glasses
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1
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Transient viscoelastic fluctuations in glassy fluids
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Time-dependence of transient fluctuations
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T=15 (above the onset temperature)



Long-range density correlations in glasses and glassy fluids Computer simulation results

Transient viscoelastic correlations vs. dyn. heterogen.
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Transient viscoelastic density correlations (SF
4(
~k; τα))

vs. dynamic heterogeneity (Scos
4 (~k; τα))
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Very different small q limits→ very different dynamic correlation lengths.
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“Viscoelastic length” ξF
4 (τα) vs. dynamic heterogeneity

length ξcos
4 (τα)
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Dynamic fluctuations in glassy fluids vs. in glasses
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Transient “viscoelastic” correlations become long-range in glasses; dynamic
heterogeneity correlations decrease in glasses.
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Dynamic correlation lengths in glassy fluids vs. in
glasses
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Note: in the glass, as t→∞, ξF
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4 (t) is almost t-independ.

Transient “viscoelastic” correlations become long-range in glasses; dynamic
heterogeneity correlations decrease in glasses.
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Decrease of dynamic heterogeneity at the dynamic
glass transition was observed in experiments
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←Weeks et al., Science 287, 627 (2000)

Also seen in:
Ballesta et al., Nature Physics 4, 550 (2008)



Long-range displacement correlations and (visco) elasticity

Connection between long-range dynamic correlations
and viscoelastic response

Glass transition: divergence of viscosity and emergence of elasticity

Are correlations of particle dynamics related to the increase of viscosity
and the emergence of elasticity?

Correlations of particle displacements

Correlations in the glass & the signature of elasticity

Correlations in the fluid & signatures of viscoelasticity

Elijah Flenner & GS, arXiv:1405.0442



Long-range displacement correlations and (visco) elasticity Stress auto-correlation function, and all that

Stress tensor auto-correlation function
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Long-range displacement correlations and (visco) elasticity Stress auto-correlation function, and all that

Stress tensor auto-correlation function
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In the glass, 〈σxy(t)σxy(0)〉 does not decay.

shear modulus µ = lim
t→∞

1
VkBT

〈σxy(t)σxy(0)〉



Long-range displacement correlations and (visco) elasticity Stress auto-correlation function, and all that

Standard formula for the shear modulus
D. R. Squire, A. C. Holt, and W. G. Hoover, Physica 42, 388 (1969):

µ = V−1 〈Bxy〉︸ ︷︷ ︸
Born term

− (kBTV)−1
[〈

(σxy)2〉− 〈σxy〉2
]

︸ ︷︷ ︸
fluctuation term

where

Bαβ =
1
2

∑
n

∑
m6=n

(rαnm)2

r2
nm

[
(rβnm)2 d2Vnm(rnm)

dr2
nm

+ (r2
nm − (rβnm)2)

1
rnm

dVnm(rnm)

drnm

]
,

and r2
nm = (rx

nm)2 + (ry
nm)2 + (rz

nm)2 with rαnm = rαn − rαm

Can be calculated for a fluid, a glass or a crystalline solid. In a fluid, it
gives 0 (within error bars), in a solid it gives a nonzero result.

Gives a zero shear modulus unless there are long range density
correlations.

Both stress tensor auto-correlation function and the above formula are very
difficult (computationally expensive) to calculate in a simulation.



Long-range displacement correlations and (visco) elasticity Correlations of particle displacements

Correlations of particle displacements

Self part of density correlations

SF
4(~q,~k; t) =

1
N

〈∑
i

ei~k·δ~ri(t)e−i~q·~ri(0)
∑

j

e−i~k·δ~rj(t)ei~q·~rj(0)

〉
δ~ri(t) = ~ri(t)−~ri(0)

Correlations of transverse displacements

S⊥4 (q; t) =
1

2N

〈∑
i

δ~r⊥i (t)e−i~q·~ri(0) ·
∑

j

δ~r⊥j (t)ei~q·~rj(0)

〉
δ~r⊥i (t) ·~q = 0

δ~ri(t) = ~ri(t)−~ri(0)
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Correlations of transverse displacements

Finite times, small wavevector limit

lim
q→0

S⊥4 (q; t) =
kBT
m

t2 due to the momentum conservation

depends on microscopic dynamics!

Note that lim
q→0

S⊥4 (q; t) ≡ lim
q→0

1
2N

〈∑
i δ~r
⊥
i (t)e−i~q·~ri(0) ·

∑
j δ~r
⊥
j (t)ei~q·~rj(0)

〉
6= 1

2N

〈∑
i δ~r
⊥
i (t) ·

∑
j δ~r
⊥
j (t)

〉
≡ 0 in a ~Ptotal = ~0 ensemble

Finite times, large wavevector limit

lim
q→∞

S⊥4 (q; t) =
1

3N

∑
i

〈
|δ~ri(t)|2

〉
as t increases, it becomes

proportional to t in the fluid and it saturates in the glass
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Correlations of transverse displacements in a glass, in
a viscous fluid, and in a moderately viscous fluid
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T = 20 - a moderately viscous fluid (above Tonset)

T = 5 - the most most deeply supercooled fluid we could equilibrate

T = 3 - a glass (quenched from T = 5 and well aged); the slight upturn of〈
δ~r2(t)

〉
at the longest times suggests that it is still aging.
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Correlations of transverse displacements in a glass
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At small wavevectors S⊥4 (q; t) saturates, q−2 behavior becomes apparent.
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Correlations of transverse displacements in a very
viscous fluid
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At small wavevectors S⊥4 (q; t) exhibits transient q−2 behavior.
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Correlations of transverse displacements in a
moderately viscous fluid
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Correlations of transverse displacements and the
stress tensor auto-correlation function

Adapting arguments presented in the Supplementary Material to C.L. Klix, F.
Ebert, F. Weysser, M. Fuchs, G. Maret, and P. Keim, PRL 109, 178301 (2012)
one can argue that if particles’ displacements are bounded (as they are in a
glass) then:

lim
q→0

lim
t→∞

2nkBT
S⊥4 (q; t)q2

= lim
t→∞

1
VkBT

〈σxy(t)σxy(0)〉 = µ
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Correlations of transverse displacements in a glass
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Saturation of 2nkBT[S⊥4 (q; t)q2]−1 at long times allows us to get an estimate of
the shear modulus.
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Shear modulus obtained from correlations of transverse displacements
agrees well with that calculated from the stress tensor auto-correlation
function and from the standard formula.
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correlations of particle
displacements:
µ = 0.013± 0.001

long-time limit of the stress
tensor correlations:
µ = 0.012± 0.001

standard formula:
µ = 0.010± 0.004

The particle displacements route allows to use simulations two orders of
magnitude shorter than the other two routes.
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Correlations of transverse displacements in a very
viscous fluid
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For times in the mean-square-displacement plateau region 2nkBT[S⊥4 (q; t)q2]−1

is equal to the plateau value of the stress tensor auto-correlation function.



Long-range displacement correlations and (visco) elasticity Correlations of transverse displacements and the shear modulus

Correlations of transverse displacements: scaling
Rescaling S⊥4 (q; t), in the fluid and in the glass
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χ⊥4 (t) ≡ lim
q→0

S⊥4 (q; t) =
kBT
m

t2

Scaling hypothesis

S⊥4 (q; t)
χ⊥4 (t)

= f (qξ⊥4 (t)) f (x) ∼ 1
1 + x2 for x ≤ 1 and f (x) ∼ x−2+η for x� 1

η ≈ −0.23± 0.07 in the fluid and η = 0 in the glass
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Correlation length of transverse displacements
A combination of the scaling form of S⊥4 (q; t):

S⊥4 (q; t) = χ⊥4 (t)f (qξ⊥4 (t)) & f (x) ∼ x−2+η for x� 1

and the formula for the shear modulus: µ = lim
q→0

lim
t→∞

2nkBT
S⊥4 (q; t)q2

implies that in

the glass η = 0 and ξ⊥4 (t) ∼ t
√
µ/(2nm).
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Glass: ξ⊥4 (t) ∼ t
√
µ/(2nm)

Supercooled fluid:
on intermediate time scales,
ξ⊥4 (t) ∼ t

√
µ/(2nm),

where µ is the shear
modulus of the glass
at the longest times
ξ⊥4 (t) ∝ t1/2.
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Growth of correlation length in the fluid

Empirical observation: for the supercooled fluid, the transition between
ξ⊥4 (t) ∝ t and ξ⊥4 (t) ∝ t1/2 occurs when 1

VkBT 〈σxy(t)σxy(0)〉 is approximately
0.22 GP (where GP is the amplitude of the stretched exponential part).
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Correlation length of transverse displacements (2)
A combination of the last empirical observation with the dominance of the
contribution of the stress tensor auto-correlation function to the viscosity
suggests that the amplitude of t1/2 dependence is√

ηg(β)/(2nm)

where η is the fluid’s viscosity and g(β) is a known function of the stretching
exponent β.
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Glass: ξ⊥4 (t) ∼ t
√
µ/(2nm)

Supercooled fluid:
on intermediate time scales,
ξ⊥4 (t) ∼ t

√
µ/(2nm),

where µ is the shear
modulus of the glass.

Supercooled fluid:
asymptotically
ξ⊥4 (t) ∼ t1/2

√
ηg(β)/(2nm).



Summary

Summary
Dynamic glass transition implies the existence of long-range density
correlations.

Long-range density correlations can be seen in computer simulations of
glasses.

Pronounced remnants of long-range density correlations can be seen in
glassy fluids.

Shear modulus can be obtained from the small wavevector correlations
of particle displacements.

Solid and fluid: different growth of the correlation length of particle
displacements with time.

Correlations of particle displacements directly reflect (transient)
elasticity.

Note: correlations of particle displacements depend on the microscopic
dynamics (Newtonian vs. Brownian).
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