

Superspin glass state in interacting magnetic nanoparticles

Eric Vincent

Service de Physique de l'Etat Condensé, CEA Saclay, France (CNRS URA 2464) and Triangle de la Physique

Workshop « Critical phenomena in random and complex systems » Anacapri, September 8-12, 2014

- 1. Superspins and superspin glass (SSG)
- 2. SG behavior of SSG
- 3. Glassy order, correlation length (SG and SSG)

- 1. Superspins and superspin glass (SSG)
- 2. SG behavior of SSG
- 3. Glassy order, correlation length (SG and SSG)

Super-Spins, Superspin Glass (SSG)

- Small enough ferromagnetic nanoparticle \rightarrow single domain
- T<<T_{Curie} : response of single nanoparticle ~ response of single spin \rightarrow a 'superspin'
- Easy axis \rightarrow anisotropy barrier ~K.V
- T<<KV \rightarrow blocking of magnetization below T_B ~ KV

• Varying concentration of nanoparticles changes interparticle interaction Case of ferrofluid (liquid suspension - frozen): dipole-dipole interaction

Interacting Co nanoparticles in Ag matrix: superspin glass state $(Co_xAg_{1-x}, metal matrix \rightarrow RKKY interactions)$

X.X. Zhang group, Phys. Rev. B75, 014415 (2007)

γ -Fe₂O₃ nanoparticles with dipole-dipole interactions various coatings \rightarrow from very diluted to close packed samples

De Toro et al, J. Phys. Chem. C 117, 10213 (2013)

Superspin glass versus spin glass

Interacting magnetic nanoparticles at random fixed positions (frozen liquids, etc.) can behave spin glass-like at low temperatures.

- Atomic Spin: $\tau_o \approx 10^{-12}$ s vs. Superspin: $\tau_o \approx 10^{-9} 10^{-3}$ s (~ e^{U/kT}) Shorter time scales in units of τ_o -> bridge the gap between numerical simulations and SG experiments
- Atomic Spin: m ~ $1\mu_B$ vs. Superspin: m ~ $10^4\mu_B$

Larger signals \rightarrow Local response measurements possible

See magnetic noise experiments Komatsu, L'Hôte et al, PRL 106, 150603 (2011)

• Controllable physical parameters: material, size, concentration, anisotropy-axis alignment (*but distribution of nanoparticle sizes*)

Create tailor made experimental conditions : interaction strength, anisotropy energy, geometrical arrangement, etc.

 \rightarrow Revisit unsolved questions in spin glass physics

- 1. Superspins and superspin glass (SSG)
- 2. SG behavior of SSG
- 3. Glassy order, correlation length (SG and SSG)

Comparing two types of SSG's: aligned and random

 γ -Fe₂O₃ (8.5 nm) ferrofluid, Φ = 15% in glycerine (melting T = 190 K) Ferrofluid details : F. Gazeau, et at., J. Magn Magn. Mat. 186, 175 (1998)

- Degrees of freedom in liquid:
- Translation

• Texturing in liquid phase before freezing the liquid

Random:

Random easy-axis distribution

Aligned: Uniform easy-axis alignment

Apply Strong H

• Microstructure of the frozen fluid

Small angle neutron scattering + magneto-optical measurements : no significant contribution from aggregates or chains.

- Aligned « frozen » ferrofluid:
 - Loss of a type of DISORDER
 - How does it differ from a randomly oriented SSG?

SSG : critical slowing down at T_g in random and aligned *(ac susceptibility)*

- Shift in χ ' peak with frequency (expected for both SPM and SG)
- Arrhenius law $\tau = 1/\omega = \tau_0 \exp(E_d/k_B T_{peak})$ gives unphysically small τ_o (10⁻²⁰ ~ 10⁻³⁰ sec or smaller)
- Critical slowing down with Zv = 7.5 (random) and 8.5 (aligned)

$$= 1/\omega = \xi^{Z} \qquad 1/\omega = \tau_{0}^{*} \left(\frac{T_{g}(\omega)}{T_{g}} - 1 \right)^{-Z\nu}$$

τ

same trend as in Heisenberg (Zv=5-7) and Ising (Zv=10.5) SG's

<u> </u>	107203 (2004)					
	Y ₀	ψ	z	ν	zν	Data
Fe _{0.5} Mn _{0.5} TiO ₃	14.5	0.03	5	2.1	10.5	16
CdCr ₁₇ In ₀₃ S ₄	1.2	1.1	5.5	1.27	7	17
Ag:Mn 2.7%	0.7	1.55	4	1.25	5	13

Nakamae et al.

J. Phys. D **43**, 474001 (2010)

From Bert et al. PRL 92.

167203 (2004)

Superspin glass: cooling effects on the ZFC relaxation

Procedure: quench from $T > T_g$ to 0.7 T_g in H=0, wait t_w , then apply H and measure the slow relaxation of he magnetization

- Narrower distribution of relaxation times (\rightarrow of correlated sizes ?)
- Stronger cooling effects (like in SG, where cooling effects more pronounced in Ising than in Heisenberg) SG case : see Bert et al, PRL 92, 167203 (2004)

11

Superspin glass : aging and memory effect (example) same γ -Fe₂O₃ nanoparticles, d~8.5nm, f_v=35%, random axes

Spin glasses: rejuvenation and memory effects

Absence of strong rejuvenation in a superspin glass

P. E. Jönsson,¹ H. Yoshino,² H. Mamiya,³ and H. Takayama¹

Concentrated Fe₃N nanoparticle system

Clear T-specific memory effect, although not so well-marked as in atomic SG's

SSG $\tau_0 \approx 10^{-9} - 10^{-3}$ s (~ e^{U/kT}) SG $\tau_0 \approx 10^{-12}$ s Longer $\tau_0 \Rightarrow$ shorter time scale explored in units t_{exp}/τ_0

→ not very much difference between the configurations established during aging at different temperatures

IG. 7. (Color online) $\Delta \chi''$ vs temperature measured on cooling ed symbols connected by dashed lines) and reheating (open bols connected by solid lines). A temporary stop is made on ing at T_s =50, 40, or 30 K for t_s =9000 s. $\omega/2\pi$ =510 mHz.

- 1. Superspins and superspin glass (SSG)
- 2. SG behavior of SSG
- 3. Glassy order, coherence length (SG and SSG)

Aging = growth of a local « glassy order »

Fisher Huse droplet model idea (1988)

PHYSICAL REVIEW B 69, 184423 (2004)

Aging dynamics of the Heisenberg spin glass

L. Berthier* Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom and Laboratoire des Verres UMR 5587, Université Montpellier II and CNRS, 34095 Montpellier, France

A. P. Young[†] Department of Physics, University of California, Santa Cruz, California 95064, USA (Received 12 December 2003; published 28 May 2004)

FIG. 5. The relative orientation of the spins in two copies of the system, Eq. (9), is encoded on a gray scale in a $60 \times 60 \times 60$ simulation box at three different waiting times $t_w=2$, 27, and 57797 (from top to bottom) at temperature T = 0.04. The growth of a local random ordering of the spins is evident.

grey scale = $\cos \theta_i(t_w) = \mathbf{S}_i^a(t_w)$. $\mathbf{S}_i^b(t_w)^{16}$

t_w=2

Growth of a correlation length during aging

Simulations of Ising spin glass (special purpose computer Janus):

PRL 101, 157201 (2008)

PHYSICAL REVIEW LETTERS

week ending 10 OCTOBER 2008

Measuring the growth of a correlation length ? (first, in a spin glass)

<u>Field amplitude</u> influence on the *dc*-magnetization relaxation (TRM or ZFC) Relaxation becomes <u>faster</u> with increasing H (inflection point $t_W \rightarrow t_W^{eff}$)

Y.G. Joh et al, PRL <u>82</u>, 438 (1999), R.Orbach's group in UCR + Saclay F. Bert et al, Phys. Rev. Lett. 92, 167203 (2004)

Superspin glass results : going from $E_z(H, t_w)$ to $N_s(t_w)$

 $E_{Z} = k_{B}T \ln\left(t_{w} / t_{w}^{eff}(H)\right) E_{Z}(H)?$

Simple ideas

Small N_s : $M(Ns) \propto \sqrt{Ns}$

 $E_{Z}(H,t_{w}) = \sqrt{N_{s}} m H$

Large N_s : $M(Ns) \propto Ns$

 $E_Z(H,t_w) = N_s \chi_{FC} H^2$

General case:

 $E_z = (N_s/3)^{1/2} mH + N_s \chi_{FC} H^2$

(discussions with S. Miyashita)

Results :

Aligned SSG : $E_z \propto H$ (like in Ising SG) Random SSG: $E_z \propto H$ then H^2 (H^2 like in Heisenberg SG)

Number of correlated spins : all results from SSG and SG together !

S. Nakamae et al, Appl. Phys. Lett. 101, 242409 (2012)

How to go : from a number of correlated spins $N_s(t_w)$ to a correlation length $\xi(t_w)$?

From numerical simulations : (Berthier Young PRB **69**, 184423 (2004))

 $N_s = \xi^{d-\alpha}$

with

 α = 0.5 for Ising spins α = 1 for Heisenberg spins

Let's try !

Correlation length : SSG and SG results

 $\xi/\xi_0 = Ns^{1/(d-\alpha)}$ (from simulations, Berthier Young PRB 69, 184423 (2004))

Conclusions

• Interacting magnetic nanoparticles can exhibit the same phenomenology as atomic spin glasses: dynamic critical behavior, slow dynamics, aging, memory effect.

→ "Superspin glass" (SSG)

• SSG dynamics take place between the *simulation* and the *experimental* time scales of spin glasses.

• The growth of a *glassy order* follows similar laws in a randomly oriented SSG and in numerical and experimental spin glasses (to be discussed in more details - oriented SSG to be further understood).

• SSG's are an interesting experimental realization of spin glass models, with tunable parameters, and dynamics in a time scale close to that of simulations. (even if not so "clean" as atomic SG's)₂₃