Superspin glass state
in interacting magnetic nanoparticles

Eric Vincent

Service de Physique de l’Etat Condensé, CEA Saclay, France
(CNRS URA 2464)
and Triangle de la Physique

Workshop « Critical phenomena in random and complex systems »
Anacapri, September 8-12, 2014
1. Superspins and superspin glass (SSG)

2. SG behavior of SSG

3. Glassy order, correlation length (SG and SSG)
1. Superspins and superspin glass (SSG)

2. SG behavior of SSG

3. Glassy order, correlation length (SG and SSG)
Super-Spins, Superspin Glass (SSG)

- Small enough ferromagnetic nanoparticle → single domain
- \(T << T_{\text{Curie}} \): response of single nanoparticle ~ response of single spin
 → a ‘superspin’

- Easy axis → anisotropy barrier ~K.V
- \(T << KV \) → blocking of magnetization below \(T_B \sim KV \)

- Varying concentration of nanoparticles changes interparticle interaction
 Case of ferrofluid (liquid suspension - frozen): dipole-dipole interaction

Dilute nanoparticle system

Non-interacting superspins
Superparamagnet

Concentrated nanoparticle system

Interacting superspins
« Superspin glass »
Interacting Co nanoparticles in Ag matrix: superspin glass state
($\text{Co}_x\text{Ag}_{1-x}$, metal matrix \rightarrow RKKY interactions)

With increasing concentration x:
- increasing interparticle interactions, seen as:
 - increase of T_B and T_0,
 - flattening of FC curve
\rightarrow superspin glass state (SSG)
γ-Fe$_2$O$_3$ nanoparticles with dipole-dipole interactions
various coatings → from very diluted to close packed samples

Magnetic volume fraction:
0.4% .. 16% .. 27% .. 53% .. 67%

Narrow size distribution – but still $t \sim e^{U/kT}$ with $U \sim V$
Superspin glass *versus* spin glass

Interacting magnetic nanoparticles at random fixed positions (frozen liquids, etc.) can behave spin glass-like at low temperatures.

- Atomic Spin: $\tau_0 \approx 10^{-12}$ s vs. Superspin: $\tau_0 \approx 10^{-9} - 10^{-3}$ s ($\sim e^{U/kT}$)

 Shorter time scales in units of τ_0 -> *bridge the gap between numerical simulations and SG experiments*

- Atomic Spin: $m \sim 1\mu_B$ vs. Superspin: $m \sim 10^4\mu_B$

 Larger signals \rightarrow *Local response measurements possible*

 See magnetic noise experiments Komatsu, L'Hôte et al, PRL 106, 150603 (2011)

- Controllable physical parameters: material, size, concentration, anisotropy-axis alignment (*but distribution of nanoparticle sizes*)

 Create tailor made experimental conditions: interaction strength, anisotropy energy, geometrical arrangement, etc.

\rightarrow *Revisit unsolved questions in spin glass physics*
1. Superspins and superspin glass (SSG)

2. SG behavior of SSG

3. Glassy order, correlation length (SG and SSG)
Comparing two types of SSG’s: **aligned** and **random**

\(\gamma-Fe_2O_3\) (8.5 nm) ferrofluid, \(\Phi = 15\%\) in glycerine (melting \(T = 190\ K\))

- Degrees of freedom in liquid:
- Texturing *in liquid phase* before freezing the liquid

Random:
- Random easy-axis distribution

Aligned:
- Uniform easy-axis alignment

- **Microstructure of the frozen fluid**
 - Small angle neutron scattering + magneto-optical measurements: no significant contribution from aggregates or chains.

- **Aligned « frozen » ferrofluid:**
 - Loss of a type of DISORDER
 - How does it differ from a randomly oriented SSG?
SSG : critical slowing down at \(T_g \) in random and aligned (ac susceptibility)

- Shift in \(\chi' \) peak with frequency (expected for both SPM and SG)
- Arrhenius law \(\tau = 1/\omega = \tau_0 \exp (E_d/k_B T_{peak}) \) gives unphysically small \(\tau_0 \)
 \((10^{-20} \sim 10^{-30} \text{ sec or smaller})\)
- Critical slowing down with \(Z \nu = 7.5 \) (random) and 8.5 (aligned)

\[
\tau = 1/\omega = \frac{Z}{\nu}
\]

\[
1/\omega = \tau_0^* \left(\frac{T_g(\omega)}{T_g} - 1 \right)^{-Z \nu}
\]

same trend as in Heisenberg (\(Z \nu = 5-7 \))
and Ising (\(Z \nu = 10.5 \)) SG’s

From Bert et al, PRL 92, 167203 (2004)
Superspin glass: cooling effects on the ZFC relaxation

Procedure: quench from $T>T_g$ to $0.7 \; T_g$ in $H=0$, wait t_w, then apply H and measure the slow relaxation of the magnetization.

In the aligned SSG:
- Narrower distribution of relaxation times (→ of correlated sizes ?)
- Stronger cooling effects (like in SG, where cooling effects more pronounced in Ising than in Heisenberg)

$H = 0.5G$, $T=0.7 \; T_g$, $t_w=3\text{ks}$

\begin{align*}
\text{\textit{\textquoteleft\textquoteleft Effective\textquoteright\textquoteright\textit{\textquoteleft\textquoteleft}}} \; t_w: \\
\text{random } t_w^{\text{eff}} &\approx t_w \\
\text{aligned } t_w^{\text{eff}} &\approx t_w + t_{\text{ini}} (=1.5\text{ks})
\end{align*}

SG case: see Bert et al, PRL 92, 167203 (2004)
Superspin glass: aging and memory effect (example)

same γ-Fe$_2$O$_3$ nanoparticles, $d$$\sim$8.5nm, f_v=35%, random axes

Spin glasses: rejuvenation and memory effects

- **CdCr$_{1.7}$In$_{0.3}$S$_4**
 - Aging stops
 - Aging at $T_2 = 9$ K
 - Aging at $T_1 = 12$ K
 - Cooling with aging stops
 - Continuous cooling + re-heating

Parameters
- Continuous cooling: 0.06 K/min
 - (500s / 0.5K step)
- 7h at 12K
- 40h at 9K

References
- Uppsala + Saclay
Concentrated Fe$_3$N nanoparticle system

Clear T-specific memory effect, although not so well-marked as in atomic SG’s

SSG $\tau_0 \approx 10^{-9} - 10^{-3} \text{ s} \ (\sim \ e^{U/kT})$

SG $\tau_0 \approx 10^{-12} \text{ s}$

Longer $\tau_0 \Rightarrow$ shorter time scale explored in units t_{exp}/τ_0

\rightarrow not very much difference between the configurations established during aging at different temperatures
1. Superspins and superspin glass (SSG)

2. SG behavior of SSG

3. Glassy order, coherence length (SG and SSG)
Aging \equiv growth of a local « glassy order »

Fisher Huse droplet model idea (1988)

PHYSICAL REVIEW B 69, 184423 (2004)

Aging dynamics of the Heisenberg spin glass

L. Berthier

Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom and Laboratoire des Verres UMR 5587, Université Montpellier II and CNRS, 34095 Montpellier, France

A. P. Young

Department of Physics, University of California, Santa Cruz, California 95064, USA

(Received 12 December 2003; published 28 May 2004)

FIG. 5. The relative orientation of the spins in two copies of the system, Eq. (9), is encoded on a gray scale in a $60\times60\times60$ simulation box at three different waiting times $t_w=2$, 27, and 57797 (from top to bottom) at temperature $T=0.04$. The growth of a local random ordering of the spins is evident.

grey scale = $\cos \theta(t_w) = S^a_i(t_w) \cdot S^b_i(t_w)^{16}$
Growth of a correlation length during aging

Simulations of Ising spin glass (special purpose computer Janus):

Nonequilibrium Spin-Glass Dynamics from Picoseconds to a Tenth of a Second

4-point correlation function:

\[C_4(r,t_w) = \frac{1}{N} \sum_{i=1}^{N} \langle s_i^a(t_w)s_{i+r}^a(t_w)s_i^b(t_w)s_{i+r}^b(t_w) \rangle \]

\[\xi(t_w, T) \]

Power law observed up to \(t_w / \tau_0 = 10^{11} \)
(\(\tau_0 = 1 \) MCS)

In experiments

• no access to 4-point correlation function
• but estimate of \(\xi(t_w, T) \) from the effect of the field on the relaxations (Orbach group + Saclay)

Time windows:

SG: \(10^{12} < t_w / \tau_0 < 10^{16} \) (\(\tau_0 = 10^{-12} \) s)

SSG: \(10^4 < t_w / \tau_0^* < 10^8 \) (\(\tau_0^* = 10^{-4} \) s)
Measuring the growth of a correlation length? *(first, in a spin glass)*

Field amplitude influence on the *dc*-magnetization relaxation (TRM or ZFC)

Relaxation becomes **faster** with increasing H (inflection point $t_w \to t_{w}^{\text{eff}}$)

Inflection at $\sim t_w$ = maximum relaxation rate: typical energy barrier Δ

$$t_w = \exp\left(\frac{\Delta}{k_B T}\right) \to \Delta = k_B T \ln\left(\frac{t_w}{\tau_0}\right)$$

$$E_Z = k_B T \ln\left(\frac{t_w}{t_{w}^{\text{eff}}}\right)$$

Zeeman Energy: coupling of H with $N_s(t_w)$ spins after t_w

Y.G. Joh et al, PRL 82, 438 (1999), R.Orbach’s group in UCR + Saclay
Superspin glass results: going from $E_z(H, t_w)$ to $N_s(t_w)$

\[E_z = k_B T \ln\left(\frac{t_w}{t_w^{\text{eff}}(H)} \right) \]

Simple ideas

Small N_s: $M(N_s) \propto \sqrt{N_s}$

\[E_z(H, t_w) = \sqrt{N_s} m H \]

Large N_s: $M(N_s) \propto N_s$

\[E_z(H, t_w) = N_s \chi_{\text{FC}} H^2 \]

General case:

\[E_z = (N_s/3)^{1/2} mH + N_s \chi_{\text{FC}} H^2 \]

(discussions with S. Miyashita)

Results:

Aligned SSG: $E_z \propto H$ (like in Ising SG)

Random SSG: $E_z \propto H$ then H^2 (like in Heisenberg SG)
Number of correlated spins:
all results from SSG and SG together!

- Heisenberg SG and random SSG: common power law behavior
- Ising SG and aligned SSG: not clear (see next slide)

How to go:
from a number of correlated spins $N_s(t_w)$
to a correlation length $\xi(t_w)$?

From numerical simulations:
(Berthier Young PRB 69, 184423 (2004))

\[N_s = \xi^{d-\alpha} \]

with
\[\alpha = 0.5 \text{ for Ising spins} \]
\[\alpha = 1 \text{ for Heisenberg spins} \]

Let’s try!
Correlation length : SSG and SG results

\[\frac{\xi}{\xi_0} = N_s^{1/(d-\alpha)} \]

(from simulations, Berthier Young PRB 69, 184423 (2004))

- Heisenberg SG and random SSG: common behavior in exp.+simulations
- Ising SG exp. + simul.: in continuity -
- Aligned SSG: not clearly different from random SSG (not so much Ising?)

Conclusions

• Interacting magnetic nanoparticles can exhibit the same phenomenology as atomic spin glasses: dynamic critical behavior, slow dynamics, aging, memory effect.

 ➔ “Superspin glass” (SSG)

• SSG dynamics take place between the simulation and the experimental time scales of spin glasses.

• The growth of a glassy order follows similar laws in a randomly oriented SSG and in numerical and experimental spin glasses *(to be discussed in more details - oriented SSG to be further understood)*.

• SSG’s are an interesting experimental realization of spin glass models, with tunable parameters, and dynamics in a time scale close to that of simulations. *(even if not so “clean” as atomic SG’s)*