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• Small enough ferromagnetic nanoparticle→ single domain 

• T<<TCurie : response of single nanoparticle ~ response of single spin 

→ a ‘superspin’

Super-Spins, Superspin Glass (SSG)

Dilute nanoparticle system

Non-interacting superspins 
Superparamagnet

Concentrated nanoparticle system

Interacting superspins 
« Superspin glass »

KV

H
• Varying concentration of nanoparticles changes interparticle interaction 

Case of ferrofluid (liquid suspension - frozen): dipole-dipole interaction

• Easy axis → anisotropy barrier ~K.V

• T<<KV → blocking of magnetization
below TB ~ KV
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Interacting Co nanoparticles in Ag matrix: superspin glass state
(CoxAg1-x , metal matrix → RKKY interactions)

S1 S2 S3

x (%) 9.6 12.7 19.4

TB
30 K 44 K 84 K

T0
47 K 54 K 79 K

X.X. Zhang group, Phys. Rev. B75, 014415 (2007)
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With increasing concentration x : 
increasing interparticle interactions, 
seen as:
- increase of TB and T0, 
- flattening of FC curve
→ superspin glass state (SSG)
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γ-Fe2O3 nanoparticles with dipole-dipole interactions
various coatings → from very diluted to close packed samples

S1 S2 S3

x (%) 9.6 12.7 19.4

TB
30 K 44 K 84 K

T0
47 K 54 K 79 K

De Toro et al, J. Phys. Chem. C 117, 10213 (2013)

Magnetic volume fraction:
0.4% .. 16% .. 27% .. 53% .. 67%
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Narrow size 
distribution – but still
t ~ eU/kT with U ~ V



Superspin glass versus spin glass
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• Atomic Spin: τo ≈ 10-12 s vs. Superspin: τo≈ 10-9 – 10-3 s (~ eU/kT)

Shorter time scales in units of τo -> bridge the gap between 

numerical simulations and SG experiments

• Atomic Spin: m ~ 1µB vs. Superspin: m ~ 104µB

Larger signals → Local response measurements possibl e

See magnetic noise experiments Komatsu, L’Hôte et al, PRL 106, 150603 (2011)

• Controllable physical parameters: material, size, concentration, 

anisotropy-axis alignment (but distribution of nanoparticle sizes)

Create tailor made experimental conditions : intera ction strength, 

anisotropy energy, geometrical arrangement, etc.

→ Revisit unsolved questions in spin glass physics

Interacting magnetic nanoparticles at random fixed positions (frozen 
liquids, etc.) can behave spin glass-like at low temperatures.
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• Degrees of freedom in liquid:  

• Texturing in liquid phase before freezing the liquid

• Microstructure of the frozen fluid
Small angle neutron scattering + magneto-optical measurements : 
no significant contribution from aggregates or chains.

• Aligned « frozen » ferrofluid: 
- Loss of a type of DISORDER 
- How does it differ from a randomly oriented SSG?

Translation Rotation Superspin rotation

Apply Strong H 

Random : 
Random easy-axis distribution

Aligned : 
Uniform easy-axis alignment

H=0

Comparing two types of SSG’s: aligned and random
γ-Fe2O3 (8.5 nm) ferrofluid, Φ = 15% in glycerine (melting T = 190 K)

Ferrofluid details : F. Gazeau, et at., J. Magn Magn. Mat. 186, 175 (1998)



SSG : critical slowing down at Tg in random and aligned

(ac susceptibility)

• Shift in χ’ peak with frequency (expected for both SPM and SG)
• Arrhenius law τ = 1/ω = τ0 exp (Ea/kBTpeak)  gives unphysically small τo

(10-20 ~ 10-30 sec or smaller)

• Critical slowing down with Zν = 7.5 (random) and 8.5 (aligned) 
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From Bert et al, PRL 92, 
167203 (2004)

same trend as in Heisenberg (Zν=5-7) 
and Ising (Zν=10.5) SG’s 

Nakamae et al, 
J. Phys. D 43, 
474001 (2010)

Zξωτ == /1
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In the aligned SSG : 

• Narrower distribution of relaxation times (→ of correlated sizes ?)

• Stronger cooling effects (like in SG, where cooling effects more 
pronounced in Ising than in Heisenberg)
SG case :  see Bert et al, PRL 92, 167203 (2004)

• Aligned
o Random

H = 0.5G, T=0.7Tg, tw=3ks « Effective » tw :
random tweff ≈ tw
aligned tweff ≈ tw + tini (=1.5ks) 

Procedure: quench from T>Tg to 0.7 Tg in H=0, wait tw, then apply H and measure
the slow relaxation of he magnetization

Superspin glass: cooling effects on the ZFC relaxation



Superspin glass : aging and memory effect (example)
same γ-Fe2O3 nanoparticles, d~8.5nm, fv=35%, random axes

V. Dupuis, D. Parker et al, 
AIP Conf. Proc. 
832, 295 (2006)
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Uppsala + Saclay
Phys. Rev. Lett. 
81, 3243 (1998),
Eur. Phys. J. B
13, 99 (2000)
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Spin glasses: rejuvenationand memoryeffects



Concentrated Fe3N
nanoparticle system

Clear T-specific memory effect, 
although not so well-marked as 
in atomic SG’s 

SSG τ0 ≈ 10-9 – 10-3 s (~ eU/kT)
SG   τ0 ≈ 10-12 s
Longer τ0 ⇒ shorter time scale 
explored in units texp/τ0

→ not very much difference 
between the configurations 
established during aging at 
different temperatures 14



1. Superspins and superspin glass (SSG)
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3. Glassy order, coherence length (SG 

and SSG)

15



Aging ≡ growth of a local « glassy order » 

Fisher Huse droplet model idea (1988)

tw=2

tw=27

tw= 
57797

grey scale = cos θi(tw) = Si
a(tw). Si

b(tw)16



→ correlation length ξ(tw,T)

Power law observed up to tw /τ0 = 1011

(τ0 = 1 MCS)

Growth of a correlation length during aging
Simulations of Ising spin glass (special purpose computer Janus): 

4-point correlation function :

In experiments :

Time windows :   
SG : 1012 < tw /τ0 < 1016 (τ0 = 10 -12 s)
SSG : 104 < tw /τ0

* < 108 (τ0
* = 10 -4 s)

• no access to 4-point correlation function
• but estimate of ξ(tw,T) from the effect of the 
field on the relaxations (Orbach group + 
Saclay)



Field amplitude influence on the dc-magnetization relaxation (TRM or ZFC)

100 1000 10000

1.3x10-3

1.4x10-3

1.5x10-3

1.6x10-3

tw
tw

eff

Fe0.5Mn0.5TiO3

tw=10000s

 

 

H=900 Oe
H=5 Oe

M
Z

F
C
/H

 (
u.

a.
)

time (s)

Inflection at ~ tW = maximum relaxation rate : typical energy barrier ∆

Zeeman Energy : coupling of H with Ns(tw) spins after tw
Y.G. Joh et al, PRL 82, 438 (1999), R.Orbach’s group in UCR + Saclay
F. Bert et al, Phys. Rev. Lett. 92, 167203 (2004)

Relaxation becomes faster with increasing H (inflection point tW → tW
eff )

Measuring the growth of a correlation 
length ? (first, in a spin glass) 
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Superspin glass results : going from Ez(H, tw) to Ns(tw)
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( ))(/ln HttTkE eff
wwBZ = EZ(H) ?

Simple ideas

Small Ns: M(Ns) ∝ √Ns

EZ (H,tw) = √Ns m H   

Large Ns: M(Ns) ∝ Ns 

EZ (H,tw) = Ns χFC H2

General case:
Ez= (Ns/3)1/2 mH + NsχFCH 2

(discussions with S. Miyashita)

Aligned SSG 

Random SSG Results :

Aligned SSG : Ez∝ H (like in Ising SG)

Random SSG: Ez∝ H then H2 (H2 like 
in Heisenberg SG)



Number of correlated spins : 

all results from SSG and SG together !
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- Heisenberg SG and random
SSG: common power law
behavior
- Ising SG and aligned SSG: 
not clear (see next slide)

S. Nakamae et al, Appl. Phys. Lett. 101, 242409 (2012)
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How to go :
from a number of correlated spins Ns(tw)
to a correlation length ξ(tw) ?

From numerical simulations :
(Berthier Young PRB 69, 184423 (2004))

Ns= ξ d-α

with
α = 0.5 for Ising spins
α = 1 for Heisenberg spins

Let’s try !



Correlation length : SSG and SG results
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Heisenberg SG

Ising SG

ξ/ξo = Ns 1/(d-α)(from simulations, Berthier Young PRB 69, 184423 (2004))

S. Nakamae et al, Appl. Phys. Lett. 101, 242409 (2012)

- Heisenberg SG and random SSG:
common behavior in exp.+simulations
- Ising SG exp. + simul.: in continuity -
- Aligned SSG: not clearly different
from random SSG (not so much Ising?)



Conclusions
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• Interacting magnetic nanoparticles can exhibit the same 
phenomenology as atomic spin glasses: dynamic critical behavior, 
slow dynamics, aging, memory effect.

� “Superspin glass” (SSG)

• SSG dynamics take place between the simulation and the 
experimental time scales of spin glasses.

• The growth of a glassy order follows similar laws in a randomly 
oriented SSG and in numerical and experimental spin glasses (to 
be discussed in more details - oriented SSG to be further 
understood).

• SSG’s are an interesting experimental realization of spin glass 
models, with tunable parameters, and dynamics in a time scale 
close to that of simulations. (even if not so “clean” as atomic SG’s)


