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Shear modulus: a paradox and a lesson
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「水は方円の器にしたがう」水髄方円　筍子
Water conforms to the shape of its container.



Intra-state and inter-state responses under shear (1RSB)
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“state following” : 
computation of the Franz-Parisi potential under shear

See the Poster by Corrado Raione
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Basic idea of cloned liquid

m-replicas obeying the same Hamiltonian
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Repulsive contact systems

Repulsive colloids, emulsions, granular matter,..

U =
�

�ij�

v(rij) rij = |ri � rj |Model potential energy

Essentially “hard-spheres” at low temperatures.
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温度効果のあるジャミング転移 �
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水と油など， 混ざり合わない液体が �
ミセルを形成して �

 一方が液滴となって他方に分散している系�

エマルションの圧力と剛性率の測定（室温）�
(大きい○=圧力, 黒シンボル=剛性率) �

(s: 表面張力, R:�粒径) �
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液滴(粒子)間の相互作用の大きさで �
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Soft Jammed Materials – Eric R. Weeks   23 

 
 
3. Other soft materials 
 
Now that I’ve introduced colloids, let’s discuss other soft systems which resemble colloids to 
varying degrees. 
 
3.1 Emulsions 
 
Emulsions are similar to colloids, but rather than solid particles in a liquid, they consist of liquid 
droplets of one liquid, mixed into a second immiscible liquid; for example, oil droplets mixed in 
water.  Surfactant molecules are necessary to stabilize the droplets against coalescence which is 
when two droplets come together and form a single droplet.  A cross-section of an emulsion is 
shown in Fig. 3.1, and a sketch showing a droplet with the surfactants is shown in Fig. 3.2.  
Mayonnaise is a common example of an emulsion, made with oil droplets in water, stabilized by 
egg yolks as the surfactant, with extra ingredients added for taste. 
 

 

 
 
 
Fig. 3.1.  Confocal microscope image of an 
emulsion.  The droplets (dark) are dodecane, 
a transparent oil.  The space between the 
droplets is filled with a mixture of water and 
glycerol, designed to match the index of 
refraction of the dodecane droplets.  The 
droplets are outlined with a fluorescent 
surfactant.  The hazy green patches are free 
surfactant in solution, or else the tops or 
bottoms of other droplets.  (Picture taken by 
ER Weeks and C Hollinger.) 

 

 

 
 
 
 
 
Fig. 3.2.  Sketch of an emulsion droplet.  Not 
to scale:  typically the surfactants are tiny 
molecules, whereas the droplet is micron-
sized.  (Sketch by C Hollinger.) 
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身近では.) マヨネーズ，�木工用ボンド，�など�

ドデカン液滴�
(in 水+グルコース) �

E. R. Weeks and �
C. Holinger(2007) �

unjam� jam�

�	�

圧力と剛性率の振る舞いがほぼ同じ�
→ 温度効果のない数値計算�

では出てこない �
cf. C. S. O’Hern et al. (2003) 等�

 E. R. Weeks, 
in "Statistical Physics of Complex Fluids", 
 Eds. S Maruyama & M Tokuyama 
(Tohoku University Press, Sendai, Japan, 2007).
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Mean-field phase diagram 
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µ � p

Experiment:  rigidity of emulsions
T. G. Mason, Martin-D Lacasse, Gary Grest, Dov Levine, J Bibette, D Weitz, Physical Review E 56, 3150 (1997)
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“mechanical”

“entropic”

fined. However, they are well defined at larger w, and we plot
Gp8(w) for different radii in Fig. 6. The plateau modulus for
each emulsion rises many orders of magnitude around
w'0.60. Emulsions comprised of smaller droplets have dis-
tinctly smaller w at which the onset of the rise occurs. At
high w, where the droplets are strongly compressed, Gp8 is
larger for smaller droplets. By contrast with P, the plateau
modulus does not diverge as w approaches unity.
To investigate the role of the interfacial deformation of

the droplets on the emulsion elasticity, we scale Gp8(w) by
(s/R), and plot the results in Fig. 7. At high w, this scaling
collapses the data for different droplet sizes. However, at low
w there are large systematic deviations from this scaling. To
reconcile these apparently different onset volume fractions,
we must account for the electrostatic repulsion between the
interfaces of droplets stabilized by ionic surfactants; this al-
ters the w dependences of G and P. By using weff @cf. Eq.
~1!# instead of w, we account for the thin water films stabi-
lizing the charges between the droplets. These thin films will
make the apparent packing size of each droplet larger. How-
ever, the thickness of the film will be determined by a bal-
ance between the screened electrostatic forces between drop-
lets and the deformation of their interfaces. Thus the actual
film thickness will be only weakly dependent on droplet size,
but will make a relatively larger contribution for the packing
of small droplets than for large droplets.
The film thickness itself depends on w, but in some un-

known fashion. Thus we linearly interpolate between a maxi-
mum film thickness, hmax , at low w, below rcp, where the
droplets are not deformed, and a minimum film thickness
hmin , between the facets of the nearly polyhedral droplets at
wmax near w'1. Stable Newton black films of water at a
similar electrolyte concentration have been observed with
hmin'50 Å @48#. This is comparable to the calculated Debye
length lD'30 Å, for 10-mM SDS solution. Thus we as-
sume that hmin550 Å; this makes a larger correction for the
smaller droplets. To determine the maximum film thickness,
we vary hmax until the scaled Gp8(weff) for all droplet sizes
collapse onto one universal curve. We find that the film
thickness for weak compression which gives the best col-
lapse is hmax5175 Å, and is the same for all droplet sizes, as
shown in Fig. 8. This film thickness agrees with the mea-

sured separation between the surfaces of monodisperse fer-
rofluid emulsion droplets at the same SDS concentration
@49#, lending credence to its value. Near rcp, the film in-
creases the volume fraction more for smaller droplets, about
5% for R50.25 mm, and only 1% for R50.74 mm.
The onset of a large elastic modulus now occurs near rcp,

at weff'wc
rcp , as expected. We note that this value is not a

FIG. 7. The volume fraction dependence of the plateau storage
modulus Gp8(w), scaled by (s/R), for four monodisperse emul-
sions having radii R50.25 mm ~d!, 0.37 mm ~n!, 0.53 mm ~j!,
and 0.74 mm ~L!.

FIG. 8. The scaled plateau storage modulus Gp8/(s/R) ~small
solid symbols!, and the scaled minimum of the loss modulus
Gm8 /(s/R) ~small open symbols!, as a function of weff for monodis-
perse emulsions having radii R50.25 mm ~s!, 0.37 mm ~n!, 0.53
mm ~h!, and 0.74 mm ~L!. The ~s! symbols are the measured
values of the scaled osmotic pressure P/(s/R). The maximum film
thickness has been adjusted to hmax5175 Å to give the best col-
lapse of Gp8/(s/R).

FIG. 9. The frequency dependence of ~a! the storage modulus,
G8(v), and ~b! the loss modulus, G9(v), for a series of effective
volume fractions below the critical packing volume fraction wc for
R'0.53 mm. The lines merely guide the eye.
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kBT/� � 10�5

Interaction between emulsions:  

I. J. Jorjadze, L-L. Pontani and J. Brujic,  PRL 111, 048302(2013).

� = 2
v(r)/� = (1 � r/�)�

By using well-controlled emulsions consisting of droplets of
a single size @6,7#, our approach offers several advantages
over previous rheological experiments @8,9,19# which were
made using emulsions having a broad distribution of droplet
sizes. Indeed, polydisperse emulsions are difficult to study
because they contain droplets with many different Laplace
pressures so that, at a fixed osmotic pressure, the large drop-
lets may deform significantly while the small droplets remain
essentially undeformed. Moreover, the droplet packing and
deformation cannot be easily connected to w because small
droplets can fit into the interstices of larger packed droplets.
By contrast, using monodisperse emulsions eliminates these
inherent difficulties: all the droplets have the same Laplace
pressure. Moreover, the volume fraction can be simply re-
lated to the packing of identical spheres, thus allowing for
meaningful comparisons with theoretical predictions which
have usually assumed that the emulsion is monodisperse and
ordered.
The earliest calculations of P~w! and G(w) for emulsions

and foams @11–17# are based on perfectly ordered crystals of
droplets. In such systems at a given volume fraction and
applied shear strain, all droplets are compressed equally and
deform affinely under the shear; thus all droplets have ex-
actly the same shape. Describing the dependence of P and
G on w then reduces to the ‘‘simpler’’ problem of solving for
the interfacial shape of a single droplet within a unit cell.
Nevertheless, calculating the exact shape and area of such a
single droplet at all w.wc is a very difficult free-boundary
problem that can only be solved analytically for simple cases
@16#, or numerically @16,17#. Real emulsions, however, ex-
hibit a disordered droplet structure, and a comparison of ex-
perimental results to these theoretical predictions is inappro-
priate. In particular, the comparison of the w dependence of
the low-frequency plateau value of the storage modulus of
disordered, monodisperse emulsions to the static shear
modulus predicted by these studies has demonstrated the ex-
istence of significant discrepancies @18#.
The origin of the elasticity of an emulsion arises from the

packing of the droplets; forces act upon each droplet due to
its neighboring droplets pushing on it to withstand the os-
motic pressure. However, all these forces must balance to
maintain mechanical equilibrium. Calculations of the elastic
properties of such disordered packings are complicated by
the many different droplet shapes and the necessity of main-
taining mechanical equilibrium as the droplets press against
one another in differing amounts. While a general theory of
the elasticity of disordered packings may ultimately lead to a
precise analytical description of emulsion elasticity, com-
puter simulations including adequate interdroplet interactions
and accounting for the complexity associated with disorder
can provide insight into the origins of the w-dependent shear
modulus. In order to understand the effects introduced by
disorder, we developed a model for compressed emulsions
which includes a disordered structure as well as realistic
droplet deformations @10#. In this model, we formulate an
anharmonic potential for the repulsion between the packed
droplets, based on numerical results obtained for individual
droplets when confined within regular cells @16#. Numerical
results for the osmotic pressure P and the static shear modu-
lus G obtained from this model are in excellent agreement
with our experimental values of P and the elasticity, as can

be shown from Fig. 1. We measure the frequency dependent
storage modulus G8(w ,w), and take the low-frequency pla-
teau values Gp8(w) as the static shear modulus G(w). Our
model of emulsions as disordered packings of repulsive ele-
ments is very general, and may also be applicable to other
materials which become elastic under an applied osmotic
compression, provided the potential between the elements is
appropriately modified.
The structure of this paper is as follows. In Sec. II, we

review the theoretical predictions for the osmotic pressure
and shear rheology of emulsions. In Sec. III, the experimen-
tal aspects of this study are described; Sec. III A describes
the emulsion preparation and the rheological measurement
techniques; Sec. III B presents the results of our measure-
ments; and Sec. III C compares our experimental observa-
tions to existing predictions and previous measurements. In
order to understand the difference found between our results
and the predictions existing for ordered arrays of droplets, in
Sec. IV we present the results of numerical studies based on
a model that can account for disorder. In Sec. IV A, we de-
scribe the details and the motivation of the model, while, in
Sect. IV B we present and discuss the simulation results. A
brief conclusion closes the paper.

II. THEORY

In order to understand the properties of packings of de-
formable spheres, it is useful first to review the packing of
static, solid spheres. Their packing determines the critical
volume fraction wc at which the onset of droplet deformation
occurs and the coordination number zc of nearest neighbors
touching a given droplet. The highest volume fraction of
monodisperse hard spheres is attained for ordered crystalline
structures, including face-centered-cubic ~fcc! and hexagonal
close packing ~hcp!. These have wc

cp5p&/6'0.74 and
zc
cp512. By randomly varying the stacking order of the
planes, a random hexagonally close-packed ~rhcp! structure
can be made, but this does not alter either wc or zc . Other
ordered packings are less dense. For example, the body-
centered-cubic ~bcc! packing has wc

bcc5p)/8'0.68 and
zc
bcc58, while the simple cubic ~sc! packing has

FIG. 1. The scaled shear modulus and osmotic pressure as a
function of w. The computed scaled static shear modulus
G/(s/R) ~1! and osmotic pressure P/(s/R) ~line!, as obtained
from the model presented in Sec. IV B 2, are compared with the
experimental values of Gp8(weff) ~j! and P(weff) ~s!.
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AT instability - Gardner’s transition

ergodicity breaking entropy crisis 
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J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, J. Phys. Chem. B 117, 12979 (2013).
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 Replicated liquid theory of hard spheres

x = {x1 · · ·xm} xa = ((xa)1, (xa)2, . . . , (xa)m)

Replicated Mayer function 
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Nature Communications 5, 3725 (2014).

Contact potential



1+continuous Replica Symmetry Breaking
previous random first order transition(RFOT)：1 step RSBParisi’s matrix (m x m) 
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Response in hierarchical energy landscape
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Response of “cloned system” in hierarchical energy landscape　
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More generally... with k-RSB



 Twist on the replicated liquid

��F (�̂, {�a})/N = 1� log � + d log m + d
2 (m� 1) log(2�eD2/d2) + d

2 log det(�̂m,m)

� d
2 ��

�
d��
2�
F

�
�ab + �2

2 (�a � �b)2
�

Replicated Mayer function (under shear)

(Compression: C(�)µ� = �µ� + ���,1�µ,1)
f{�a}(x, y) = �1 +

m�

a=1

e��v(|S(�a)(xa�ya)|) S(�)µ� = �µ� + ���,1�µ,2

��F ({�a}) =
�

dx�(x)[1� log �(x)] +
1
2

�
dxdy�(x)�(y)f{�a}(x, y)

ua

�1 �2
...



Small strain expansion

F ({�a})/N = F ({0})/N +
m�

a=1

�a�a +
1
2

1,m�

a,b

µab�a�b + · · ·

yields shear-modulus matrix

�µab =
d

2
��

�

��ab

�

c( �=c)

�F
��ac

� (1 � �ab)
�F

��ab

�

�
�

b

µab = 0  “sum rule”

�µ̂(y) =
1

m�(y)
�(y) =

�(y)
y
�

� 1/m

y

dz

z2
�(z) for y = x/m

∆̂2

∆̂2

∆̂2

∆̂2

∆̂1

∆̂1

0
0

0
0

Hierarchical RSB Hierarchical rigidity

1RSB case : HY and M. Mezard (2010), HY (2012)
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µ2

µ2

µ1

µ1

µ1

µ1

µ0

µ0

1

m

m < x < 1



1 step RSB

��EA � ��d � C(��� ��d)1/2

��µab = ��µEA

�
�ab �

1
m

�

�µ̂EA = ���1
EA

1/��d
1/��

µ̂EA

in agreement with MCT

G. Szamel and E. Flenner, PRL 107, 105505 (2011).

H. Yoshino, The Journal of Chemical Physics 136, 214108 (2012).

H. Yoshino and M. M ́ezard, PRL 105, 015504 (2010).

W. Gotze, Complex dynamics of glass-forming liquids: A mode-coupling theory, vol. 143 (Oxford University Press, USA,2009).

0

��d < �� < ��Gardner



1+continuous RSB ��Gardner < �� < ��GCP

βµEA = 1/∆EA ∝ m−κ ∝ pκ

βµ̂(1) =
1

mγ(1)
∝ p

p ∝ 1/m → ∞

* the plateau modulus

* the "lowest" plateau modulus

κ = 1.41575..

ϕ̂ → ϕ̂−
GCP

γ(y) ∼ γ∞y−(κ−1)

E DeGiuli; E Lerner; C Brito; M Wyart, arXiv:14023834
Effective medium approach + numerical simulation
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Reference

Slave

��FFP(�) = log
�

r1···rm,rm+1···rm+s

e��
Pm

a=1 H[{ra}]��
Pm+s

b=m+1 H[{rb},�]

= log
�

r1···rm

e��
Pm

a=1 H[ra](Ze(�))s

��FFP(�) = log Zm + sNVFP(�) + O(s2).

S. Franz and G. Parisi, J. Phys. I France 5 (1995) 1401.
F. Krzakala and L. Zdeborova, Eur. Phys. Lett. , 90 (2010) 66002.

H[{ri}] =
�

i<j

v(ri � rj)

NVFP(�) = �log Ze(�)�m � 1
Zm

�

r1,...,rm
e��

Pm
a=1 H[xa]log Ze(�)

Ze(�) = log
�

rm+1
e��H[{rm+1

i };�]

ua

�
A

cloned liquid (m-replica)

slave : “m+1”th replica

Franz-Parisi potential

lim
�A�0+

lim
N��

“Following glassy states” under perturbation



“state following under (de)compression/shear”  via Franz-Parisi potential 

C. Raione, P. Urbani, H. Yoshino and F. Zamponi, submitted

Nonlinear response - yielding

See the Poster by Corrado Raione



MD simulation

�
shear strain

t
0 tw

� �(t) = ⇤(t� tw)⇥�

Aging

C�(t, tw) = ��(t)�(tw)�µ(t, tw) =
���(t; tw)�

��

autocorrelation functionresponse function

quench t = 0

T/� = 10�3
Initial configuration

Equilibrium state (liquid)

shear strain

c.f. McKenna, Narita and Lequeux,  J. Rheol. 53, 489 (2009).

# of samples : 4096

N = 800, 1600
� = 0.65� 0.67volume 

fraction

# of particles

# of sample (initial condition/ Langevin noise)

Langevin simulation

 Lee-Edwards boundary condition� = 2.5� 10�3shear-strain

temperature kBT/� = 10�5

O(t/t0) = 105time scale



Outline

 Introduction:

 Shear on the cloned liquid in the large-d limit (theory)

 Aging around the jamming point (simulation)

 Discussions



���(� + tw)�(tw)�

�τ

σ(τ ; tw)/γ

Pressure

µhamonic
tw

tw = 3� 102, 103, 3� 103, 5� 103, 104, 3� 104, 105

t� = 2�/�� = (� = 0.67)

� = 0.67 kBT/� = 10�5



σ(τ ; tw)/γ

β⟨σ(τ + tw)σ(tw)⟩

FDT

µharmonic

Pressure

tw

slope

slope 1

x ≃ 0.007

tw = 3� 102, 103, 3� 103, 5� 103, 104, 3� 104, 105

t� = 2�/�� = (� = 0.67)

� = 0.67 kBT/� = 10�5

N = 1600

τ

σ(τ ; tw)/γ

Pressure

µhamonic
tw

N = 800



inherent 
structures meta-basins 

(1RSB)

Discussion : fluctuation within meta-basin

Thermally activated, 
localized “floppy modes” ?

# NOTE strong relaxation of shear-stress is possible

�xz =
1
V

�

i<j

rijf(rij)
xij

rij

zij

rij
“angular variables 

E. Lerner, G. During and M. Wyart arXiv.1302.3990

�rij = |�Ri � �Rj | = 0
Floppy mode: 

(start) opening contact

(end) closing contact

liso � �z�1 � 1/
�

�� �J

M. Wyart, PRL 109, 125502 (2012).

M. Wyart, Annales de Phys, 30 (3),1  (2005).



Response to shear of a hard-sphere 
glass in large-dimensional limit

Summary

2.   Analysis of shear-modulus
                 
      

3.  State following under shear - observation of the yield process

1.   Exact free-energy functional under shear

✴1+continuous RSB - (1) hierarchy of rigidities
                               (2) anomalous scaling as ��� ��J

✴ 1RSB -     jump + square-root singularity at Td

Replica can be useful for real life!


