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The Almeida-Thouless line
In MFT (the exact solution of the infinite-range Sherrington-Kirkpatrick model) 
there’s a transition in a field for an Ising spin glass the de Almeida Thouless (AT) line 
from a spin glass phase (divergent relaxation times, “replica symmetry breaking”) to 
a paramagnetic phase (finite relaxation times, “replica symmetry”). 
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Does an AT line occur in real systems?

The AT line is a ergodic-non ergodic transition with no change in symmetry

AT line

←

The usual situation
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The AT line
Whether or not the AT line actually occurs in real systems is of 
interest because:

• It is a transition without symmetry breaking.

• The two main descriptions of the spin glass state (“replica 
symmetry breaking” and the “droplet picture”), see later, make 
different predictions as to whether or not an AT line occurs.

• The AT line may be related to the putative “ideal glass transition” 
in structural glasses (see next three slides). 



Spin glasses and structural glasses;
are they related?

Supercooled liquid
Viscosity: Vogel-Fulcher law

Entropy difference between supercooled liquid and crystal

where TK is the Kauzmann temperature (the Kauzmann “paradox”)

Find TK ≈T0 (but system drops out of equilibrium at higher T 
so these are extrapolations.)
Is there an “ideal glass transition” at TK?

⌘ / exp


A

T � T0

�

�S ! 0 for T ! TK
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Spin glasses and structural glasses

At mean field (MF) level:
Equations of “mode-coupling theory” of supercooled liquids 
are the same as the equations for the dynamics of a mean-
field p-spin spin glass for p > 2.
Dynamic transition at Td (which must disappear beyond MF)
Static transition at a lower temperature Tc. 
Does Tc correspond to Kauzmann temperature TK in a glass?
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Beyond mean field?
Moore and Yeo (2006) argue that the ideal glass transition 
corresponds to a spin glass transition in a magnetic field. 
Why? Argument involved, but perhaps related to the frozen 
density fluctuations below TK are (a) random (so spin-glass 
like) and (b) are not symmetric about zero (so like a spin 
model in a magnetic field).
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Spin glasses and structural glasses

Beyond mean field?
Moore and Yeo (2006) argue that the ideal glass transition 
corresponds to a spin glass transition in a magnetic field. 
Why? Argument involved, but perhaps related to the frozen 
density fluctuations below TK are (a) random (so spin-glass 
like) and (b) are not symmetric about zero (so like a spin 
model in a magnetic field).
According to Moore and Yeo
“The question, then, of whether there is a structural glass 
transition then turns to whether there is an AT line in the spin 
glass analogue.”



Nature of the Spin Glass State?

Numerics and experiments clearly indicate that there is a spin glass 
transition in three dimensions in zero magnetic field.

But what is the nature of the spin glass state below Tc ?

Two rival descriptions:
•  “Replica Symmetry Breaking” (RSB) which is based on Parisi’s 

solution of the spin glass mean field theory (MFT).
• “Droplet theory” of Fisher and Huse, Bray and Moore, McMillan.

Which, if either, is correct?
Here will focus on one aspect for which the two descriptions make 
opposite predictions and which should be checkable by 
simulations, namely whether or not there is a line of transitions in a 
magnetic field (AT line): RSB (YES), droplet theory (NO). 



What is known about AT line in finite-d?
• Field theory, Bray and Roberts. d > 6, get Gaussian fixed point. 

d < 6 no stable perturbative fixed point. Conclusions?
•Real space RG, e.g. Migdal-Kadanoff.  Drossel, Bokil & Moore 

find no transition in a field. Recently Angelini and Biroli find a 
non-perturbative FP for d greater than about 8. (But does this 
depend on the details of the method? Not systematic.) 

• Experiment.  Need to see if relaxation times diverge as T is 
lowered in a field, or if they just get very large. Careful 
measurements, Uppsala group (Nordblad et al) find no AT line 
(but some other groups have come to the opposite 
conclusion.)

• Simulations: will discuss here (also Ruiz-Lorenzo’s talk).

Lower critical dimension (Orbach’s talk) in zero field, dl ≃ 2.5. 
What is dl in a field?



How to detect the AT line
In contrast to experiments, in simulations one can compute a static 
quantity which diverges at the transition in a field. This is               where�SG(0)

�SG(

~k) =

1

N

X

hi,ji

h
( hSiSji � hSiihSji )2

i

av
exp[i~k · (~Ri � ~Rj)]

i.e. ∝ square of connected correlation function.

Using “standard” finite-size scaling (FSS), Katzgraber and APY (d=3) 
and Parisi et al (d=4) do not find an AT line by this approach, although 
evidence for a AT line in high-d (d > 6?). 
To study this question further, it is useful to get information from 

related models in one-dimension with long-range interactions

because these models correspond (closely) to SR models in a 
range of d, see next slide, so one can study a large range of 
(linear) sizes (and hence do FSS) for, effectively, a range of 
dimensions d (including high-d). 



1-d Models
We take 1-d models where
Increasing σ is like decreasing d:

Jij ⇠ 1/|ri � rj|�

0
Infinite range 

NonïMFMF

Finite T T = 0

SK

SG SG

m1/2 2/3 1

d
     ∞     6         2.5

|           |                |

For a given d there is a σ(d) for which the LR model in 1-d 
is a (rough) proxy for a SR model in d dimensions.
Advantages:
• Can study a wide range of d including high-d
• There are many values of L for FSS (and also of k)



The Model

where

H = �
X

hi,ji
JijSiSj �

X

i

HiSi

[Jij]av = 0, [J2
ij] / 1/|ri � rj|2�

[Hi]av = 0, [H2
i ] = H2



Recent Results on LR model
To represent d = 3 and d = 4 we take (Baños et. al.)
σ(3) = 0.896
σ(4) = 0.784

In standard finite-size scaling (FSS) we look for 

Intersections of the scale-invariant quantities 

locate the transition, since, for a scale-invariant quantity X, the 
finite-size-scaling (FSS) form is 

X(T, L) = fX
⇣
L1/⌫(T � Tc)

⌘

Hence data for scale-invariant quantities for different sizes intersect at Tc.

⇠L/L

�SG/L2�⌘ (2 � ⌘ = 2� � 1 here)

(correlation length, obtained from k=0 and 2π/L) 

(η known exactly for LR)



Standard FSS for σ(4) = 0.784, H=0.1

This model is a proxy for d=4. 
Data is for H = 0.1.
No sign of intersections, i.e. implies no transition in a field
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Standard FSS for σ(4) = 0.784, H=0

This model is a proxy for d=4. 
Data here is for H = 0.
Clear intersections, implying there is a transition in zero field
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Standard FSS for σ(3) = 0.896, H=0.1

This model is a proxy for d=3. 
Again no sign of intersections, i.e. implies no transition in a field
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“Non-Standard” FSS
Previous analysis used k=0 fluctuations. Leuzzi, Parisi, Ricci-Tersenghi, 
Ruiz-Lorenzo, PRL, 103, 267201 (2009) claim, one should avoid k = 0 data  
because it has large corrections to FSS.
Ornstein-Zernicke form:

��1
SG(k) = ��1

SG(0) +Aky + · · · where

⇢
y = 2 short-range,
y = 2� � 1 long-range,

Leuzzi et al, Phys. Rev. Lett. 103, 267201 (2009)

We see that

��1
SG(k ! 0) 6= ��1

SG(0)

Suggestions: 
• look at
• R12 =               (Ruiz-Lorenzo)

��1
SG(k ! 0)

�SG(k1)

�SG(k2)

http://prl.aps.org/abstract/PRL/v103/i26/e267201
http://prl.aps.org/abstract/PRL/v103/i26/e267201


“Non-Standard” FSS for σ(4) , R12

Example of (our) data for σ(4) = 0.784:
This model is a proxy for d=4. 
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For H = 0.1, don’t get intersections, especially for larger sizes. 



“Non-Standard” FSS for σ(4), T*(L)
Example of (our) data for σ(4) = 0.784:
This model is a proxy for d=4. 
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SG(k ! 0)
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“Non-Standard” FSS for σ(4), T*(L)
T*(L) for (our) data for σ(4) = 0.784:
This model is a proxy for d=4. 

T ?(L) = Tc +
A

L�

The fit is good and gives a 
non-zero Tc. This is also 
the result of Leuzzi et al.
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Summary for σ(4) = 0.784
Is there a transition in a field?

•Standard FSS for          ,            NO

•Standard FSS for                  ,    NO

•Non-standard FSS for R12 ,        NO 

•Non-standard FSS for T*(L),       YES

⇠L/L

�SG/L2��1

All methods of analysis should give the same result for N ➝∞.
Which method has the smallest corrections to FSS? 



“Non-Standard” FSS for σ(3) , R12

Example of (our) data for σ(3) = 0.896:
This model is a proxy for d=3. 

H = 0.1 H = 0
For H = 0.1, data rather ragged, but not clear evidence for a 
transition. For H = 0, seem to be quite big corrections to FSS.
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“Non-Standard” FSS for σ(3),  T*(L) 

T*(L) for (our) data for σ(3) = 0.894:
This model is a proxy for d=3. 

T ?(L) = Tc +
A

L�

Seems consistent with Tc = 
0, but the given error bars 
are nonsensically large. 
This is a non-linear model 
with parameters rather 
poorly determined. In these 
conditions the standard 
error bars are wrong, so we 
need a better analysis.
Here we use bootstrap.
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“Non-Standard” FSS for σ(3),  T*(L)

(Our) Tc data for σ(3) = 0.894, analyzed with bootstrap.
This model is a proxy for d=3. Fitted each bootstrap 

dataset.
Confidence limit taken: 
cumulative probability 
between 16% and 84%. 
GivesTc < 0.13. 
Only 30% of bootstraps 
give Tc > 0. 
Hence, compatible with 
Tc = 0 (the “standard” 
FSS result).
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with correction exponent ➝ 0.
Note too: not symmetric 
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Summary for σ(3) = 0.896
Is there a transition in a field?

•Standard FSS for          ,            NO

•Standard FSS for                  ,    NO

•Non-standard FSS for R12 ,        ? but NO convincing evidence

•Non-standard FSS for T*(L),       ? but NO convincing evidence

⇠L/L

�SG/L2��1



Conclusions 



Conclusions 
• For σ(4), (proxy for 4d) there is an apparent contradiction:

3 out of 4 analyses indicate no transition
1out of 4 analyses indicates a transition
Which is correct?
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• For σ(3) (proxy for 3d): 
“standard” FSS gives no AT line 
“nonstandard” FSS data has a large scatter but is compatible 
with no AT line.
Hence probably no AT line, and therefore probably no ideal 
glass transition. 
But Ruiz Lorenzo’s talk gave a different point of view. 
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