Applying the replica approach to structural glasses: the silica case

Barbara Coluzzi

Dipartimento di Fisica and Sezione INFN, Università di Roma "La Sapienza", Piazzale Aldo Moro 2, I-00185 Rome (Italy)

- A theoretical approach to structural glass thermodynamics
- The molecular liquid
- The harmonic approximation
- Results for a LJ binary mixture
- The silica case

Critical Temperatures

- The experimental glass transition temperature T_g is defined as the temperature were the viscosity is $\eta \sim 10^{13}$ Poise.
- The Mode Coupling dynamical critical temperature T_D is evaluated by fitting data on the viscosity with a power law of the form $\eta \propto (T T_D)^{\delta}$.
- The Kauzmann temperature T_K , where the entropy of the liquid would become lower than the one of the solid.
- Fragile supercooled liquids: the viscosity is well described by the Vogel-Fulcher-Tamman law $\eta \propto \exp(A/(T-T_0))$.
- Strong supercooled liquids: the viscosity seems to follow the classical Arrhenius law $\eta \propto \exp(A/T)$.

$$T_D > T_g > T_K \simeq T_0$$

Theoretical approach

(Monasson, PRL **75**, 2847 (1995); Mézard and Parisi, PRL **82**, 747 (1998); J. Chem. Phys. **111**, 1076 (1999); Mézard, *Physica A* **265**, 352 (1999))

- Below T_D , the dynamics is dramatically slow because of the exponentially large number $\mathcal{N}(f) = e^{N \Sigma(f)}$ of free energy minima (valleys), where the system spend most of the time.
- The valleys must be thought as objects somewhat more complicated than the inherent structures, since a valley should be stable also against a finite rearrangement of a non extensive number of particles.
- One can write the partition function as a sum of contributions from different valleys:

$$Z = e^{-\beta N\phi(T)} = \int df \ e^{-\beta N f} \mathcal{N}(f).$$

• The valleys reached at equilibrium are not the lowest available but instead the ones which free energy f^* minimizes the following generalized free energy:

$$\phi(T) \sim \min_{f} [f - T\Sigma(f, T)].$$

- The scenario is very similar to the old Adam-Gibbs-Di Marzio one. One finds a second order liquid-glass thermodynamic transition corresponding to an "entropy crisis" at the Kauzmann temperature T_K where the configurational part of the entropy Σ vanishes.
- The free energy barriers between valleys have a finite height and can be overcome by means of nucleation processes, nevertheless one expects that the approximation becomes increasingly better for $T \to T_K$.
- At T_K the symmetry is broken in a discontinuous way, the system undergoing a one step replica symmetry breaking.

The replicated free energy

 \bullet One considers m copies (replicas) of the system

$$\mathcal{H}_{tot} = \sum_{a=1}^{m} \mathcal{H}[C^a]$$

• One introduces an attractive coupling term which forces them to stay in the same valley

$$\mathcal{I} \propto \epsilon \sum_{a,b} (distanza_{ab})^2$$

• One computes the partition function

$$\mathcal{Z} = \int \left(\prod_{a=1}^{m} \mathcal{D}[C^{a}] \right) \exp\left(-\beta \mathcal{H}_{tot} - \mathbf{I}\right)$$

• In the $\epsilon \to 0$ limit,

$$\frac{1}{N}\log \mathcal{Z} = \phi(m, T) = \min_{f} \left[mf(T) - T\Sigma(f, T) \right]$$

• Therefore

$$rac{\partial \phi(m,T)}{\partial m} = f \qquad rac{m^2}{T} rac{\partial (\phi(m,T)/m)}{\partial m} = \Sigma$$

- $\phi(m,T)/m$ is a convex function of m which has a maximum in $m=m^*$.
- For $T > T_K$ one has $m^* > 1$ and the physical solution is the one with m = 1.
- At $T = T_K$ one has $m^* = 1$ and $\Sigma = 0$.

- In the $T < T_K$ region
 - $-m^*$ is lesser than 1.
 - Solutions with $m > m^*$ and in particular with m = 1 would give $\Sigma < 0$ (Kauzmann paradox).
 - One get the physical solution by taking

$$\phi(m,T)/m = \phi(m^*,T)/m^* = f_{min}(T),$$

i.e. the lowest possible free energy and $\Sigma = 0$ in the whole interval $[m^*, 1]$,

$$\phi(m,T)/m = \phi(m^*,T)/m^* = f_{min}(T),$$

.

Molecular liquid

$$\mathcal{H}[\{r_i\}] = \sum_{i < j = 1}^N V(r_{ij})$$
 $\mathcal{H}_{tot} = \sum_{a = 1}^m \mathcal{H}[\{r_i^a\}]$ $+ \dots$

- At $T < T_D$, in presence of the attractive term, one find molecules of m atoms, each one belonging to a different replica.
- One can choose a permutation

$$\mathcal{I} = \frac{\epsilon}{4} \sum_{a,b=1}^{m} \sum_{i=1}^{N} (r_i{}^a - r_i{}^b)^2$$

• It is useful to take as coordinates the centers of mass of molecules and the (small) distances of single atoms from these

$$R_i = \frac{1}{m} \sum_{a=1}^{m} r_i^a \qquad r_i^a = R_i + \mathbf{u}_i^a.$$

Harmonic approximation

$$\mathcal{Z} = \frac{1}{N!} \int \mathcal{D}[R] \mathcal{D}[\mathbf{u}] \prod_{i=1}^{N} \left[m^{d} \delta \left(\sum_{a=1}^{m} \mathbf{u}^{a}_{i} \right) \right] \cdot \exp \left[-\beta \sum_{a=1}^{m} \sum_{i=1}^{N} V(R_{i} - R_{j} + \mathbf{u}_{i}^{a} - \mathbf{u}_{j}^{a}) - \frac{\epsilon}{4} \sum_{a,b=1}^{m} \sum_{i=1}^{N} \mathbf{u}_{i}^{a} - \mathbf{u}_{i}^{b} \right)^{2} \right]$$

By expanding V up to second order and by integrating on $\{u_i^a\}$, one has

$$\propto \int \mathcal{D}[R] \exp \left[-\beta m \sum_{i < j} V(R_i - R_j) - \frac{m-1}{2} Tr \log (\beta M) \right]$$

where

$$m{M}_{(i\mu)(j
u)} = \delta_{ij} \left(\sum_k V_{\mu
u} (R_i - R_k) + \epsilon \, m{m} \right) - V_{\mu
u} (R_i - R_j),$$

with $V_{\mu\nu} = \partial^2 V / \partial r_{i\mu} \partial r_{j\nu}$.

$$\int \mathcal{D}[R] \exp \left[-\beta m \sum_{i < j} V(R_i - R_j) \right] = \mathcal{Z}_{liq}(\beta m)$$

The molecular centers of mass interact at the temperature $T_{eff} = 1/(\beta m)$.

"Quenched" approximation:

$$\mathcal{Z} \sim \mathcal{Z}_{liq}(\beta m) \left\langle \exp\left(-\frac{m-1}{2} Tr \log \beta M\right) \right\rangle_{\beta m} \sim$$

$$\sim Z_{liq}(\beta m) \exp\left(-\frac{m-1}{2} \left\langle Tr \log \beta M \right\rangle_{\beta m}\right).$$

Within this approximation one has

$$\begin{split} & \Sigma(\beta) = \beta \left(m^2 \frac{\partial \phi(m,\beta)}{\partial m} \right)_{m=1} = \\ &= \beta^2 \frac{\partial \log Z_{liq}(\beta)}{\partial \beta} \, - \, \left(\frac{d}{2} (1 + \log(2\pi)) - \frac{1}{2 \, N} \, \langle Tr \log(\beta M) \rangle_{\beta \, m} \right) = \\ &= S_{liq}(\beta) - S_{sol}(\beta), \end{split}$$

The Kauzmann temperature where $\Sigma \to 0$ is the one where the liquid entropy becomes equal to the harmonic entropy of corresponding amorphous solid.

Extension to binary mixtures

(Coluzzi, Mézard, Parisi and Verrocchio, J. Chem. Phys. 111, 9039 (1999))

- Molecules can be formed only by atoms of the same kind \Rightarrow two couplings and two independent order parameters.
- We take fluctuation of the diagonal term up to second order.
- We sum up the non diagonal contribution at all orders by using a chain approximation.

An approximation for the liquid

• The HNC approximation consists in summing up "chain" diagrams in the Mayer expansion, neglecting the "bridge" ones.

- It was often used successfully for studying potentials with a Coulomb term.
- There are some thermodynamic inconsistences, which turn out in an overestimation of the liquid-gas transition temperature T_{GL} :

$$\rho \chi_1 = \beta + \rho \beta \int d^3 r h(r) \neq \rho \chi_2 = \left(\frac{dP}{d\rho}\right)^{-1}$$

• The ZH approach allows to reduce this inconsistency by interpolating between HNC and MSA.

Lennard Jones binary mixture

(Coluzzi, Parisi and Verrocchio, *J. Chem. Phys.* **112**, 2933 (2000); PRL **84**, 306 (2000); cond-mat/0007144)

$$V^{\alpha\beta}(r) = 4 \epsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right]$$

$$\epsilon_{++} = 1, \quad \epsilon_{+-} = 1.5, \quad \epsilon_{--} = 0.5,$$

$$\sigma_{++} = 1, \quad \sigma_{+-} = 0.8, \quad \sigma_{--} = 0.88,$$

- $\rho = 1.2$.
- $c_+ = 4/5$.
- $T_{MCT} \simeq 0.435$.

Results

• II order liquid-glass transition at $T_K = 0.32$.

• Specific heat which follows the Doulong and Petit law in the glassy phase.

$$m \propto T ==> \beta m \sim cost \sim \frac{1}{T_K}$$

Order parameters

Comparison between Theory and Simulations

By extrapolating one finds $T_K = 0.32 \pm 0.04$ from simulations, in agreement with the evaluation $T_K = 0.297 \pm 0.02$ obtained by Sciortino, Kob and Tartaglia (PRL 83, 3214 (1999)).

 T_K at different density values compared with the evaluations of T_0 obtained by Sastry (PRL 85, 590 (2000)).

Silica

- $T_q \sim 1446K$ [?].
- They are supposed to belong to the class of strong liquids, though deviations from the Arrhenius plot above T_g have been observed.
- They are composed by molecules of SiO2 which form an open network of tetrahedra at low temperatures.

BKS model

	A (eV)	$B (\mathring{A}^{-1})$	$C (eV \cdot Å^{-6})$	α (eV)	σ (Å)
SiSi	0.0	0.0	0.0	1219.45	0.42
OO	4.87318	2.76	175.0	0.0344	2.2
SiO	18003.7572	4.8732	133.5381	1.083	1.31

$$V^{\epsilon\epsilon'}(r) = \frac{Q_{\epsilon\epsilon'}}{r} + A_{\epsilon\epsilon'}e^{-B_{\epsilon\epsilon'}}r - \frac{C_{\epsilon\epsilon'}}{r^6} + v_{sr}^{\epsilon\epsilon'}(r),$$

- $Q_{\epsilon\epsilon'} = q_{\epsilon}q_{\epsilon'}e^2$ with $q_{Si} = 2.4$, $q_O = -1.2$ $e^2 = 1602.19/(4\pi 8.8542) \text{ eV} \cdot \text{Å}.$
- $\rho = 0.07083 \text{ Å}^{-3}$, close to the experimental density.
- $v_{sr}^{\epsilon\epsilon'} = 4\alpha_{\epsilon\epsilon'}((\sigma_{\epsilon\epsilon'}/r)^{24} (\sigma_{\epsilon\epsilon'}/r)^{6}).$
- $T_0 \simeq 2525K$.
- $T_D \simeq 3300K$.
- By taking into account only data at the lower temperatures available, the Arrhenius behaviour seems to be recovered.
- Very recent numerical results support the hypothesis of a fragile to strong transition (Saika-Voivood, Poole and Sciortino, *Nature* **412**, 514 (2001)).

Results

(Coluzzi and Verrocchio, cond-mat/0108464)

The analytical two point correlation functions as obtained within the HNC and ZH approach compared with numerical data by Horbach and Kob (*Phys. Rev. B* **60**, 3169 (1999)) at T = 4000K, 2750K respectively.

The liquid and solid entropies as obtained by extrapolating HNC results with functions $a_{liq} + b_{liq}T^{-2/5}$ and $a_{sol} + b_{sol} \log T$ respectively.

The complexity as obtained by extrapolating analytical results when using HNC for liquid quantities and the one within the ZH scheme.

Conclusions

- This approach works well for a Lennard Jones binary mixture, giving results in agreement with simulations.
- In the BKS model we find $T_K \simeq 2100 K$, a value larger than the experimental glass transition temperature $T_g \simeq 1446 K$ of silica.
- Our findings are compatible with a previously obtained numerical evaluation of $T_0 \simeq 2525 K$.
- These analytical results suggest therefore a failure of the BKS model in capturing low temperature experimental properties of SiO2.
- Nevertheless, in a very recent numerical study on the energy landscape properties of the model, the hypothesis of a fragile to strong transition is related to a change in the complexity behaviour at $T_D \simeq 3300$ K.
- At low temperatures the liquid entropy seems to be not in agreement with a behaviour $\propto T^{-2/5}$.
- The discrepance could be related to small differences between the model we studied analytically and the one which is considered numerically.
- On the other hand, the simple liquid approximations we used do not give g(r) very similar to the numerical ones in this case.
- Moreover they do not describe precisely enough high order correlation functions that could be particularly relevant for silica.
- Further both analytical and numerical studies would be required in order to clarify the behaviour of this model and its relevance for describing experimental silica.