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Critical Temperatures

e The experimental glass transition temperature 7, is defined as
the temperature were the viscosity is n ~ 10! Poise.

e The Mode Coupling dynamical critical temperature T is eval-
uated by fitting data on the viscosity with a power law of the
form 1) oc (T°—Tp)".

e The Kauzmann temperature T, where the entropy of the liquid
would become lower than the one of the solid.

e Fragile supercooled liquids: the viscosity is well described by the
Vogel-Fulcher-Tamman law 7 o< exp(A/(T — Tp)).

e Strong supercooled liquids: the viscosity seems to follow the
classical Arrhenius law 7 oc exp(A/T).

Tp>T,> Tk ~ T,



Theoretical approach

(Monasson, PRL 75, 2847 (1995); Mézard and Parisi, PRL 82, 747 (1998);

J.

Chem. Phys. 111, 1076 (1999); Mézard, Physica A 265, 352 (1999))

Below 7', the dynamics is dramatically slow because of the ex-
ponentially large number NV'(f) = " *() of free energy minima
(valleys), where the system spend most of the time.

The valleys must be thought as objects somewhat more compli-
cated than the inherent structures, since a valley should be stable
also against a rearrangement of a number of
particles.

One can write the partition function as a sum of contributions
from different valleys:

7 =e P <T>=/dfe—ﬂ TN(f).

The valleys reached at equilibrium are not the lowest available
but instead the ones which free energy /" minimizes the following
generalized free energy:

(T) ~ minlf = TS(/, 7).

The scenario is very similar to the old Adam-Gibbs-Di Marzio
one. One finds a second order liquid-glass thermodynamic tran-
sition corresponding to an “entropy crisis” at the Kauzmann
temperature T where the configurational part of the entropy
vanishes.

The free energy barriers between valleys have a finite height and
can be overcome by means of nucleation processes, nevertheless

one expects that the approximation becomes increasingly better
for T — Tk.

At Tk the symmetry is broken in a discontinuous way, the system
undergoing a one step replica symmetry breaking.



The replicated free energy

e One considers m copies (replicas) of the system

Hiyor = f: HIC")

a=1

e One introduces an attractive coupling term which forces them
to stay in the same valley

7 x e Z(alz’stcmzaab)2
a,b

e One computes the partition function
Z = / (H D[C‘ﬂ) exp (—Hior — 1)
a=1

e In the ¢ — 0 limit,

%logZ = o(m,T) = mjin (mf(T) = T%(f,T)]

e Therefore
m?d(o(m,T)/m)
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e (m,T)/m is a convex function of m which has a maximum in
m = m*,

e For T' > T'x one has m* > 1 and the physical solution is the
one with m = 1.

o At T'="Ty one has m* =1 and > = 0.

- == o =

e In the T' < T region

— m™* 18 lesser than 1.

— Solutions with m > m™* and in particular with m = 1 would
give ¥ < 0 (Kauzmann paradox).

— One get the physical solution by taking
(m7 T)/m — (m*a T)/m* = fnzz'n(T)a

i.e. the lowest possible free energy and > = 0 in the whole
interval [m*, 1],

<m7 T)/m - (m*7 T)/m* — fmm<T)7



Molecular liquid

H{r} = D> V()  Hiw=Y H[{r}

"0’ o ©00g

() [

"Q o + + O‘ + + ...
o ©Opo ]

“‘ ® o

&
(3

€ =

)
o o=
P

&) @
@ @
)

e AtT < T, in presence of the attractive term, one find molecules
of m atoms, each one belonging to a different replica.

)

e One can choose a permutation
€ m
- _ a .. b2
7= I zbjl Z(r )
a,b=

e [t is useful to take as coordinates the centers of mass of molecules
and the (small) distances of single atoms from these

m
Zr“ r" =R +u".

a=1

R =



Harmonic approximation

Z - %/D[R]D[u] T [md5 <Z o )] .
- exp |:QZZV(R R +u®—u a)izxuaub)zl

a,b=1

By expanding V' up to second order and by integrating on {u,*}, one
has

m

oc/D[R]eXp —ﬂmZV(R —R)) —

2

_ 1T7“log (ﬂM)]
where
M(M)( V) :(5 <ZVMV(R — R )+em> —V/W(R — R ),

with V,, = 82V/dr,,0r .

/D[R] exp |—Bm Y V(R —R))| = Zi,(Bm)

The molecular centers of mass interact at the temperature T, ¢; =

/(6 m).

“(Quenched” approximation:

Z ~ Zy(Bm) <eXp <—

m—1

TrlogﬁM>>ﬁm ~

m—1

~ Ziiq(B m)exp ( (Trlog BM) ﬂm) :



Within this approximation one has

5(9) = 5 ()~

m=1
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The Kauzmann temperature where > — 0 is the one where the liquid
entropy becomes equal to the harmonic entropy of corresponding
amorphous solid.

Extension to binary mixtures
(Coluzzi, Mézard, Parisi and Verrocchio, J. Chem. Phys. 111, 9039 (1999))

e Molecules can be formed only by atoms of the same kind = two
couplings and two independent order parameters.

e We take fluctuation of the diagonal term up to second order.

e We sum up the non diagonal contribution at all orders by using
a chain approximation.



An approximation for the liquid

e The HNC approximation consists in summing up “chain” dia-

grams in the Mayer expansion, neglecting the ones.
_ ﬁ . : O+
— g-]_:h =
No

e [t was often used successfully for studying potentials with a
Coulomb term.

e There are some thermodynamic inconsistences, which turn out in
an overestimation of the

1
=6+ [ @) £ = ()

e The 7ZH approach allows to reduce this inconsistency by inter-
polating between HNC and MSA.



Lennard Jones binary mixture

(Coluzzi, Parisi and Verrocchio, J. Chem. Phys. 112, 2933 (2000); PRL 84,
306 (2000); cond-mat/0007144)

o, =4/5b.
° ~ (0.435.
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e Specific heat which follows the Doulong and Petit law in the

glassy phase.
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Comparison between Theory and Simulations
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By extrapolating one finds Tx = 0.32 + 0.04 from simulations,

in agreement with the evaluation 7% = 0.297 4 0.02 obtained by

Sciortino, Kob and Tartaglia (PRL 83, 3214 (1999)).

Tw(p)
1.4 + T, from Diffusivity 4 ]
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Ty at different density values compared with the evaluations of 7
obtained by Sastry (PRL 85, 590 (2000)).



Silica

o T, ~ 1446 K [?].

e They are supposed to belong to the class of strong liquids, though
deviations from the Arrhenius plot above 7, have been observed.

e They are composed by molecules of SiO2 which form an open
network of tetrahedra at low temperatures.

BKS model
A (eV) AH]C (V- A% a(eV) |0 (A)
SiSi | 0.0 0.0 0.0 1219.45 | 0.42
OO0 | 4.87318 2.76 175.0 0.0344 |2.2
510 | 18003.7572 | 4.8732 | 133.5381 1.083 | 1.31

Qee’ — T Cee’ e
= + Aege” T — —= + v (1),

VGGI
(r) = = .

o Qee’ - QGQE’GQ with qsi = 2.4, g0 = —1.2
e? = 1602.19/(478.8542) eV - A.

e p = 0.07083 A=3, close to the experimental density.
i Ugff - 404661(( 66’/T)24 - ( 66’/T)6)-
o Ty~ 2525K.

e By taking into account only data at the lower temperatures avail-
able, the Arrhenius behaviour seems to be recovered.

e Very recent numerical results support the hypothesis of a fragile
to strong transition (Saika-Voivood, Poole and Sciortino, Nature
412, 514 (2001)).



(Coluzzi and Verrocchio, cond-mat/0108464)
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The analytical two point correlation functions as obtained within the
HNC and 7H approach compared with numerical data by Horbach
and Kob (Phys. Rev. B 60, 3169 (1999)) at T = 4000K, 2750 K

respectively.
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Conclusions

e This approach works well for a Lennard Jones binary mixture,
giving results in agreement with simulations.

e In the we find T ~ 2100/, a value larger than the
experimental glass transition temperature 7, ~ 1446 K of silica.

e Our findings are compatible with a previously obtained numeri-
cal evaluation of 7j ~ 2525K .

e These analytical results suggest therefore a failure of the

in capturing low temperature experimental properties of
S102.

e Nevertheless, in a very recent numerical study on the energy
landscape properties of the model, the hypothesis of a
to strong transition is related to a change in the complexity
behaviour at

e At low temperatures the liquid entropy seems to be not in agree-

ment with a behaviour oc 7-2/°.

e The discrepance could be related to small differences between the
model we studied analytically and the one which is considered
numerically.

e On the other hand, the simple liquid approximations we used do
not give very similar to the numerical ones in this case.

e Moreover they do not describe precisely enough COor-
relation functions that could be particularly relevant for silica.

e Further both analytical and numerical studies would be required
in order to the behaviour of this model and its relevance
for describing experimental silica.



