OPTIMIZATION AND STATISTICAL MECHANICS

Federico RICCI TERSENGHI (Univ. "La Sapienza", Roma)

In collaboration with

Silvio Franz (ICTP)
Michele Leone (SISSA/ICTP)
Marc Mézard (Orsay)
Andrea Montanari (ENS, Paris)
Martin Weigt (Göttingen)
Riccardo Zecchina (ICTP)

Two old decision problems

Eulerian circuits (1736)

The seven bridges of Könisberg

The equivalent graph

Hamiltonian cycles (1859)

The dodecahedron

The equivalent graph

Computer Science: computational complexity

Classifying problems according to the computational resources required for their solution (e.g. CPU time and memory) in the worst case.

tractable (in P) \leftrightarrow sub-exponential: $\ln(N)$, N^{α} intractable (in NP) \leftrightarrow exponential: 2^N , N! N is the number of variables in the problem.

Main Complexity Classes

P = polynomial

NP = non-deterministic polynomial

- non-determ. algorithms: goto both
- succinct certificate

THEOREM: All problems in NP are polynomially reducible to K-SAT (K > 2). (Cook, 1971)

NP-complete are the hardest NP problems.

Beyond NP

- decision evaluation optimizationproblems (NP-hardness)
- counting problems (#P,#P-complete):
 e.g. #SAT counts the entropy of SAT.

Some interesting problems

SAT

Boolean variables: $x_i \in \{0, 1\}$ i = 1, ..., N

Logical operators: $\overline{\cdot} = NOT$, $\vee = OR$, $\wedge = AND$

Given a Boolean formula like

 $(x_1 \lor x_{27} \lor \bar{x}_3) \land (\bar{x}_{11} \lor x_2) \land \ldots \land (\bar{x}_{21} \lor x_9 \lor \bar{x}_8 \lor \bar{x}_{30})$

decide if a satisfying truth assignment exist

Random 3-SAT: 3 random literals per clause # clauses = αN

Coloring

q-coloring on graphs:

2-coloring ∈ P

3-coloring ∈ NP-c

Bicoloring on hypergraphs:

NP-complete

Computer Science	Physics
K-SAT	Diluted Ising Spin Glasses
Graph Coloring	Potts Models
Vertex Cover	Hard Spheres
	•••

Worst-case vs. Typical-case

Real-world NP-complete and #P-complete problems may have many easy instances

Ensemble of random NP-complete problems hard on average (e.g. random 3-SAT)

Random models: phase transitions, NP-hardness

Onset of complexity \leftrightarrow Phase transition

SAT/UNSAT transition: E=# violated clauses becomes greater than zero.

What makes problems hard close to α_c ?

Zero temperature limit of a diluted mean-field spin model. Much harder than usual fully connected!

For random 3-SAT, with $s_i = (-1)^{x_i}$,

$$\mathcal{H} = \frac{1}{8} \left(\alpha N - \sum_{i=1}^{N} H_i s_i + \sum_{i < j} T_{ij} s_i s_j - \sum_{i < j < k} J_{ijk} s_i s_j s_k \right)$$

$$\begin{array}{lll} H_i &=& \sum_{\ell} \Delta_{\ell,i} \\ T_{ij} &=& \sum_{\ell} \Delta_{\ell,i} \Delta_{\ell,j} \\ J_{ijk} &=& \sum_{\ell} \Delta_{\ell,i} \Delta_{\ell,j} \Delta_{\ell,k} \end{array} \Delta_{\ell,i} = \left\{ \begin{array}{ll} 1 & \text{if } \bar{x}_i \in C_\ell \\ -1 & \text{if } x_i \in C_\ell \\ 0 & \text{otherwise} \end{array} \right.$$

For 3-hyper-SAT also known as 3-XOR-SAT

$$F = (x_2 \oplus x_{15} \oplus x_{33}) \wedge \ldots \wedge (\bar{x}_4 \oplus \bar{x}_{21} \oplus \bar{x}_9)$$

$$\mathcal{H} = \frac{1}{2} \left(\gamma N - \sum_{\{i,j,k\} \in G} J_{ijk} \, s_i \, s_j \, s_k \right)$$

 $G = \{ \text{set of } \gamma N \text{ random triples} \}$

Two versions:

- unfrustrated, ferromagnetic: $J_{ijk} = 1$ \rightarrow 1St order ferromagnetic transition
- frustrated, 3-spin glass: $J_{ijk} = \pm 1$ \rightarrow SAT/UNSAT transition

Defined by the following Hamiltonian

$$\mathcal{H} = \frac{1}{2} \left(\gamma N - \sum_{\{i,j,k\} \in G} J_{ijk} \, s_i \, s_j \, s_k \right)$$

G is a set of γN random triples (the hypergraph).

Two kinds of hypergraphs:

- fixed connectivity C every index must appear C times and $\gamma = \frac{C}{3}$
- fluctuating connectivity (Poisson distrib.) every plaquette is chosen with prob. $\frac{\gamma N}{\binom{N}{3}}$

The model and the results can be generalized to any connectivity distribution and to any p-spin interacting terms (with p > 2).

Two versions of the model:

- unfrustrated, ferromagnetic: $J_{ijk} = 1$ \rightarrow 1St order ferromagnetic transition
- frustrated, spin glass: $J_{ijk} = \pm 1$ \rightarrow SAT/UNSAT transition

Both versions have a glassy phase!

Zero-temperature phase diagram

Any p > 2 and fluctuating connectivity hypegraphs.

Analytic solution and numerics:

if E=0 (no frustration) \rightarrow Gaussian elimination if E>0 \rightarrow exhaustive enumerations

Configurational entropy: $\Sigma(\gamma) = \frac{1}{N} \ln(\# \text{ clusters})$

A common problem

- diluted p-spin glass at T = 0
- random p-XOR-SAT §
- low density Parity Check codes
- random linear systems in finite fields (GF[2])
- \S considered an open problem in theoretical computer science

The structure of the configurational space

Starting from a random configuration, both models have the same off-equilibrium dynamics

T is the temperature and 3γ is the average connectivity

• Static limit: $t \to \infty$ before $N \to \infty$

For any finite size and for any ergodic dynamics the system relaxes to the ferromagnetic minimum (in a time which is exponentially large in N).

• Dynamic limit: $t \to \infty$ after $N \to \infty$

For an infinite sized system the time to escape from a metastable state is infinite and thus the system relaxes to the higher energy (E_{Th}) metastable state and get trapped there forever.

Conclusions and perspectives

New results

- p-spin (p > 2) with fluctuating connectivity
- \rightarrow structure of the configurational space: γ_d , γ_c and $\Sigma(\gamma)$
- $ightarrow \gamma_c$ is the exact threshold for random p-XOR-SAT
- → new transitions in random hypergraphs
- \bullet p-spin (p > 2) and Bicoloring with fixed connectivity
- → exact 1-RSB solution: GS energy
- K-SAT and Bicoloring
- \rightarrow variational bounds for α_c (at present the best!)
- → very good benchmark for SAT solvers

Some applications

- test-bed for heuristic algorithms: GS energy
- dynamical transitions in Coding and Cryptography
- solvable models for glassy systems and granular matter

Examples of open issues

- complete 1-RSB and FRSB theories (with correlations)
- out of equilibrium dynamics
- analysis of randomized algorithms
- ullet better analysis of the configurational space in $K ext{-SAT}$

Some references

- Simplest introduction to Computational Complexity: S. Mertens, "Computational Complexity for Physicists", cond-mat/0012185.
- NP-completeness and Computational Complexity:
 M.R. Garey and D.S. Johnson, "Computers and Intractability. A guide to the theory of NP-completeness" (Freeman, San Francisco, 1979).
 C.H. Papadimitriou, "Computational Complexity" (Addison-Wesley, Reading, MA, 1994).
- Phase transition in K-SAT:
 S. Kirkpatrick and B. Selman, Science 264, 1297 (1994).
- Statistical Mechanics of K-SAT:
 R. Monasson and R. Zecchina, Phys. Rev. Lett. 76, 3881 (1996); Phys. Rev. E 56, 1357 (1997).
- Typical-case complexity:
 R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky, Nature 400, 133 (1999).
- Hyper-SAT:
 F. Ricci-Tersenghi, M. Weigt and R. Zecchina, Phys. Rev. E 63, 026702 (2001).
- 3-spin at finite temperatures:
 S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt and R. Zecchina, Europhys. Lett. 55, 465 (2001).
- Exact solution for 3-spin at T = 0:
 S. Franz, M. Leone, F. Ricci-Tersenghi and R. Zecchina, Phys. Rev. Lett. 87, 127209 (2001).