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Two old decision problems

Eulerian circuits (1736)

The seven bridges of Konisberg The equivalent graph

Hamiltonian cycles (1859)

The dodecahedron The equivalent graph



Computer Science: computational complexity

Classifying problems according to the computa-
tional resources required for their solution (e.q.
CPU time and memory) in the worst case.

tractable (in P) <« sub-exponential: In(N), N¢
intractable (in NP) < exponential: 2%V, N!

N is the number of variables in the problem.

Main Complexity Classes

P = polynomial
NP = non-deterministic polynomial

U

e non-determ. algorithms: goto both
e succinct certificate

P=NP?
First Millennium
Prize Problem




NP-completeness: combinatorial optimization

THEOREM: All problems in NP are polynomially
reducible to K-SAT (K > 2). (Cook, 1971)

NP-complete are the hardest NP problems.
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e counting problems (#P,#P-complete):
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Some interesting problems

SAT
Boolean variables: z; € {0,1} ¢=1,...,N
Logical operators: = = NOT, vV=0R, A =AND
Given a Boolean formula like
(1 Va7 VIZ3)A(Z11 Vo) A...AN(ZTo1 VoV T8V I30)
decide if a satisfying truth assignment exist

Random 3-SAT: 3 random literals per clause
# clauses = a N

Coloring

g-coloring on graphs: NO
2-coloring € P o e o ; é'

3-coloring € NP-c

Bicoloring on hypergraphs:
NP-complete A '&\IO

Computer Science | Physics
K-SAT | Diluted Ising Spin Glasses
Graph Coloring | Potts Models
Vertex Cover | Hard Spheres




Worst-case vs. Typical-case

Real-world NP-complete and #P-complete
problems may have many easy instances

Ensemble of random NP-complete problems hard
on average (e.g. random 3-SAT)

Random models: phase transitions, NP-hardness

=, 2000

=

<

Q — 100 var
o 75 var
g so0 [ 50 var
)

I

c

O 1000 -

S

©

=

5

o

& s00

o)

)

c

'c—c B TR N e MO \\—“"‘— ffffffff
K %0 2 4 ‘ 6 8 10
e a

number of clauses per variable o

Onset of complexity + Phase transition

SAT /UNSAT transition: E = # violated clauses
becomes greater than zero.

What makes problems hard close to a,.?



Mapping to a Statistical Mechanics problem

Zero temperature limit of a diluted mean-field spin
model. Much harder than usual fully connected!

For random 3-SAT, with s; = (—1)%,

1 N
=g (aN =D Hisi+) Tijsisj — ) Jijksisj%)
i=1 i<j i<j<k
H, = > Af,i 1 if ;€ C)
Tij = YXeDyiDy, Dpi=q —1 If z;€Cy
Jijk = YeDpilp Dy O otherwise

For 3-hyper-SAT also known as 3-XOR-SAT

F=(z2®x15®233) A\... A\ (T4 ® T21 S T9)

1
’H:E YN — Z Jijksisjsk:
{i.5,k}eG

G = {set of vN random triples}

Two versions:
e unfrustrated, ferromagnetic: J;;, =

— 1St order ferromagnetic transition
e frustrated, 3-spin glass: J;;, = *1
— SAT /UNSAT transition
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Diluted 3-spin models

Defined by the following Hamiltonian

1
HZE YN — Z Jijksisjsk
{i.5,k}eG

G is a set of YN random triples (the hypergraph).

Two kinds of hypergraphs:

e fixed connectivity C
C

every index must appear C times and v = 3
e fluctuating connectivity (Poisson distrib.)

every plaquette is chosen with prob. %
3
The model and the results can be generalized to

any connectivity distribution and to any p-spin in-
teracting terms (with p > 2).

Two versions of the model:
e unfrustrated, ferromagnetic: J;;, =

— 1St order ferromagnetic transition
e frustrated, spin glass: J;;, = £1
— SAT /UNSAT transition

Both versions have a glassy phase!



Zero-temperature phase diagram

Any p > 2 and fluctuating connectivity hypegraphs.

Analytic solution and numerics:
if £ = 0 (no frustration) — Gaussian elimination
if £ > 0 — exhaustive enumerations

FERROMAGNET

@ nn-0E-0
magnetized
cluster

RS RSB
clustering SPIN GLASS

2=0 Yo 2>0 Ye 2=0 Y

Configurational entropy: > (v) = %In(# clusters)

A common problem

e diluted p-spin glass at T'=20

e random p-XOR-SAT 8

e low density Parity Check codes

e random linear systems in finite fields (GF[2])

§ considered an open problem in theoretical computer science
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The structure of the configurational space

spin glass
E | frustrated Y> Y, E
model
Edyn__ Same
- e{ statistical }é
Egs | properties
O+ 0+

ferromagnetic
unfrustrated
model

spin glass
excited states
|

gap .
| ferromagnetic

ground state

Starting from a random configuration, both
models have the same off-equilibrium dynamics

Phase diagram

2 2.5

T is the temperature and 3« is the average connectivity



Static and dynamic limits do not coincide!

ferromagnetic minimum

e Static limit: t — o before N — oo

For any finite size and for any ergodic dynamics
the system relaxes to the ferromagnetic minimum
(in a time which is exponentially large in N).

e Dynamic limit: ¢t - oo after N — oo

For an infinite sized system the time to escape
from a metastable state is infinite and thus the sys-
tem relaxes to the (E1p)

and get trapped there forever.
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Conclusions and perspectives

New results

e p-spin (p > 2) with fluctuating connectivity

— structure of the configurational space: ~4, 7. and X (v)
— 7. IS the exact threshold for random p-XOR-SAT

— new transitions in random hypergraphs

e p-spin (p > 2) and Bicoloring with fixed connectivity

— exact 1-RSB solution: GS energy

e K-SAT and Bicoloring

— variational bounds for a. (at present the best!)

— very good benchmark for SAT solvers

Some applications

e test-bed for heuristic algorithms: GS energy

e dynamical transitions in Coding and Cryptography

e solvable models for glassy systems and granular matter

Examples of open issues
e complete 1-RSB and FRSB theories (with correlations)

e out of equilibrium dynamics
e analysis of randomized algorithms
e better analysis of the configurational space in K-SAT
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