UNFRUSTRATED MODELS WITH A GLASS TRANSITION

Federico RICCI TERSENGHI Univ. "La Sapienza", Roma

In collaboration with

Silvio Franz (ICTP)
Michele Leone (SISSA/ICTP)
Marc Mézard (Orsay)
Martin Weigt (Göttingen)
Riccardo Zecchina (ICTP)

Results partially appeared in

Europhys. Lett. **55** (2001) 465

Phys. Rev. Lett. 87 (2001) 127209

Two motivations for this work

- 1) To find a spin model with many of the properties of a structural glass:
 - no disorder, no frustration;
 - at least 3 states: liquid, crystal and glass.

Hopefully, a non-disordered model of spins is much more easy to be treated (and solved!) analytically.

2) To give a more formal answer to the question:

Why the use of models with quenched disorder and frustration usually gives very good results in the study of models which are neither disordered nor frustrated?

Definition of the model

Ising spins $\rightarrow S_i = \pm 1$

Multi-spins interactions $\rightarrow S_{i_1}S_{i_2}\dots S_{i_p}$ (p=3)

Ferromagnetic couplings $\rightarrow J = 1$

Fixed connectivity \rightarrow every spin participate to exactly c interactions.

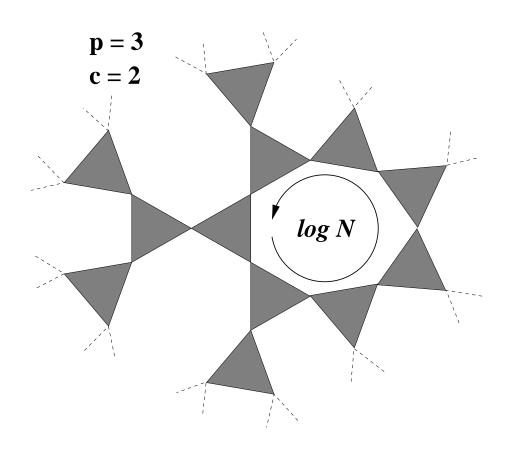
$$\mathcal{H} = -\sum_{(i,j,k)\in\mathcal{G}} S_i S_j S_k$$

 \mathcal{G} is a set of $\frac{cN}{3}$ triples, with the topology of a Bethe lattice.

Bethe lattice

All sites are equivalent.

No disorder on all length scales $\ell < \log(N)$.



Neighbours are chosen at random \Rightarrow \Rightarrow long-range interactions.

Physical relevance of multi-spins interactions

1) Geometrical constraints. E.g. $\theta(\sum_{i} n_{i} - \ell)$

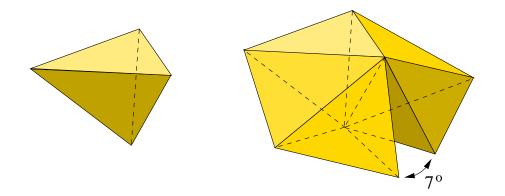
E.g.
$$\theta(\sum_{j} n_j - \ell)$$

$$\theta(x-2)$$

$$0 \xrightarrow{1 - \frac{1}{2}} x = \sum_{j} n_{j}$$

$$x(x-1)(x-2)... \Rightarrow n_{j_1}n_{j_2}n_{j_3} + ...$$

2) Local order incompatible with global order.



Global order \leftrightarrow ground state, $S_i = 1 \ \forall i$

$$S_i \, S_j \, S_k = \left\{ \begin{array}{c} + \ + \ + \ - \ - \ - \ + \ - \end{array} \right\} \ \, \begin{array}{c} \text{incompatible with} \\ \text{global order} \end{array}$$

Comparison with different topologies

• Finite-dimensional lattices

More realistic, but limited to numerical studies.

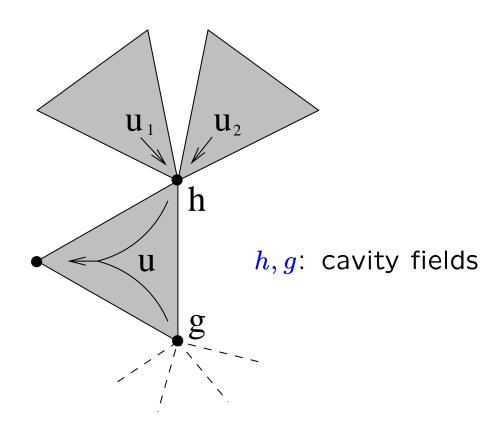
Symmetries ⇒ Large ground state degeneracy

• Mean-field fully connected $(c = N - 1 \rightarrow \infty)$

Each spin feels the rest of the system.

Lack of frustration \Rightarrow Trivial dynamics towards the lowest energy configuration

Recursion relations



$$P(h) = \int \prod_{i=1}^{c-1} du_i \ Q(u_i) \ \delta \left[h - \sum_{i=0}^{c-1} u_i \right]$$

$$Q(u) = \int dh \ dg \ P(h) \ P(g) \ \delta[u - u(h, g)]$$

 $tanh[\beta u(h,g)] = tanh(\beta) tanh(\beta h) tanh(\beta g)$

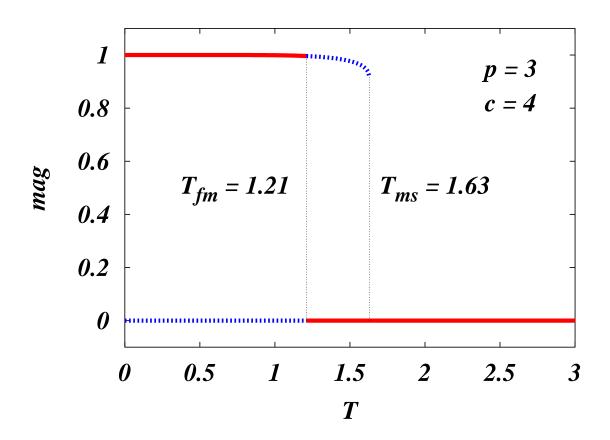
$$m = \langle \tanh(\beta cu) \rangle_Q \qquad q = \langle \tanh(\beta cu)^2 \rangle_Q$$

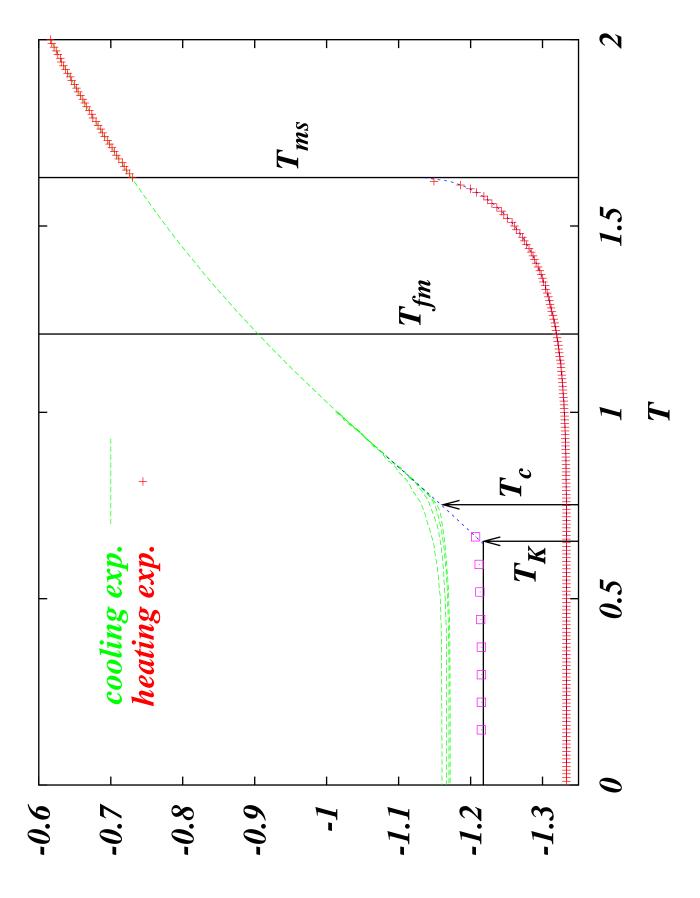
Thermodynamic solution

Sites equivalence Replica Symmetry
$$\Rightarrow \begin{array}{l} Q(u) = \delta(u-u_0) \\ P(h) = \delta[h-(c-1)u_0] \end{array}$$

- Paramagnetic solution: $u_0 = 0$
- Ferromagnetic solution:

$$\tanh(\beta u_0) = \tanh(\beta) \tanh(\beta k u_0)$$
 exist for $T \leq T_{ms}$, stable for $T \leq T_{fm}$





уігиәр удуы

Following the out-of-equilibrium dynamics

m = 0 sector always locally stable because of finite connectivity

 $m = 0 \Rightarrow P(h)$ symmetric under $h \leftrightarrow -h$

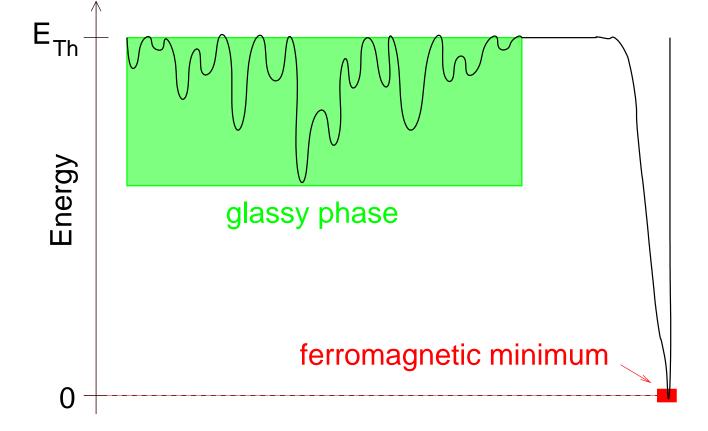
Equivalent local arrangements

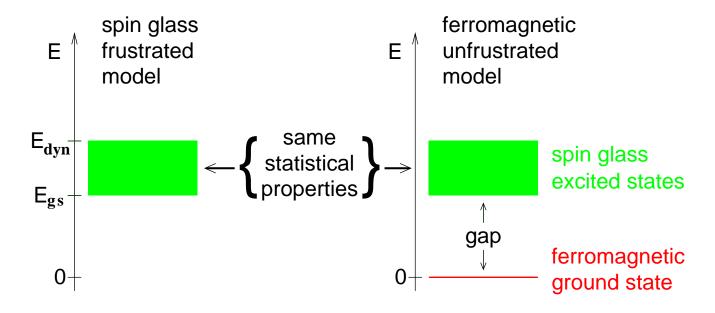
wrong choices

heterogeneous frustrated configuration

P(h) broad, i.e. glassy solutions $q \neq 0$

Self-induced heterogeneities and frustration!



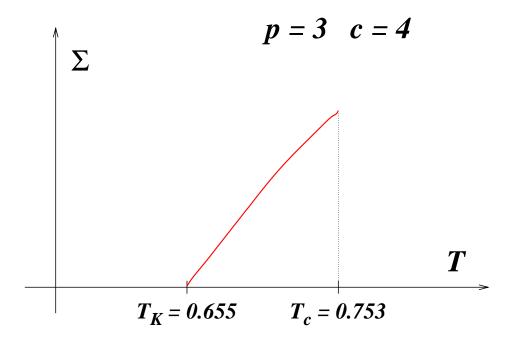


Replica Symmetry Breaking solutions

Dynamical RSB!

1-step 'factorized' Ansatz $\Rightarrow q_0 = 0$

$$\frac{P(h)}{\cosh(\beta h)^m} = \frac{1}{\mathcal{N}} \int \prod_{i=1}^{c-1} \frac{du_i \ Q(u_i)}{\cosh(\beta u_i)^m} \ \delta \left[h - \sum_{i=0}^{c-1} u_i \right]$$



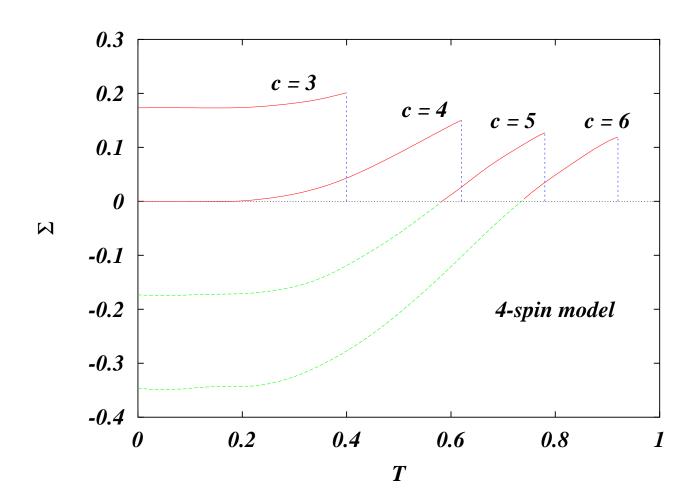
Spin Glass version $(J = \pm 1)$

 $tanh[\beta u(h,g)] = tanh(\beta J) tanh(\beta h) tanh(\beta g)$

$$\uparrow$$
 ± 1

 $Q(u) \rightarrow \overline{Q(u)}$ symmetric

Spin Glass = Ferromagnet with m = 0



 T_K may disappear, T_c always exist for c,p>2

Summary

- Simple unfrustrated spin model with the phases of a structural glass: liquid, crystal and glass.
- Frustration is self-induced during relaxation →
 'dynamical' RSB.
- Exact solutions for the thermodynamics (RS) and for the asymptotic dynamical state (RSB).
- Asymptotic dynamical state \longleftrightarrow Constrained thermodynamics (m = 0).
- A formal justification for the use of disordered and frustrated models in the study of models with neither disorder nor frustration.

A couple of references

- S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt and R. Zecchina, Europhys. Lett. **55**, 465 (2001).
- S. Franz, M. Leone, F. Ricci-Tersenghi and R. Zecchina, Phys. Rev. Lett. **87**, 127209 (2001).