MEASURING THE FLUCTUATION-DISSIPATION RATIO WITH NO PERTURBING FIELD

Federico RICCI TERSENGHI

Dip. Fisica and INFM (UdR and SMC center)

Univ. "La Sapienza", Roma

Preprint: cond-mat/0307565

The Fluctuation-Dissipation Ratio (FDR)

At equilibrium Fluctuation-Dissipation Theorem

$$R(t,s) = \beta \, \partial_s C(t,s)$$

• Off-equilibrium generalization

$$R(t,s) = \beta X(t,s) \partial_s C(t,s)$$

(Cugliandolo, Kurchan)

The Fluctuation-Dissipation Ratio (FDR) X(t,s) is relevant for

- * a complete description of the out of equilibrium dynamics
- * the connection with thermodynamics properties

Dynamics to Statics Connection

Off-equilibrium dynamics — threshold states

If the system is stochastically stable (Franz, Mézard, Parisi, Peliti)

$$X(q) = x(q) \equiv \int_0^q P(q') dq'$$

Defining (note the added T factor)

$$\chi(t,t_w) \equiv T \int_{t_w}^t R(t,s) \, ds$$

$$\chi(C) = \int_C^1 X(q) dq \quad \Leftrightarrow \quad X(C) = -\partial_C \chi(C)$$

Aim: measure $\chi(C)$ as the limit for $t_w \to \infty$ of $\chi(t,t_w)$ versus $C(t,t_w)$

Objectives of this work

- to check a new method for measuring the FDR with no perturbing field
 (Chatelain, cond-mat/0303545, to appear in a Special Issue of J. Phys. A)
- to derive a formula easy to use in numerical simulations, avoiding problems related to the measure of the punctual response and X(t,s)
- to compare the new method with the old one (finite perturbing field)
- to measure FDR for the 3D Edwards-Anderson model (an old problem!)

System of N Ising spins and Hamiltonian \mathcal{H}_0 (for any given sample)

$$\mathcal{H} = \mathcal{H}_0 - \sum_{i=1}^N h_i \sigma_i$$

where $h_i = h \, \varepsilon_i$ with $\overline{\varepsilon_i} = 0$ and $\overline{\varepsilon_i \, \varepsilon_j} = \delta_{i,j}$.

For the observable $A(t) = \sum_{i} \varepsilon_{i} \sigma_{i}(t)$

$$NC(t,s) = \overline{\langle A(t)A(s)\rangle} = \sum_{i} \langle \sigma_{i}(t)\sigma_{i}(s)\rangle ,$$

$$NR(t,s) = \frac{\overline{\partial \langle A(t)\rangle}}{\partial h(s)} = \sum_{i} \varepsilon_{i} \sum_{j} \frac{\overline{\partial \langle \sigma_{i}(t)\rangle}}{\partial h_{j}(s)} \frac{\partial h_{j}}{\partial h} =$$

$$= \sum_{i,j} \overline{\varepsilon_{i}\varepsilon_{j}} \frac{\overline{\partial \langle \sigma_{i}(t)\rangle}}{\partial h_{j}(s)} = \sum_{i} \frac{\overline{\partial \langle \sigma_{i}(t)\rangle}}{\partial h_{i}(s)} ,$$

Both correlation and response functions factorize over the sites thanks to the choice of A(t).

Discrete-time dynamics (as in a simulation)

Time t counts the number of single spin flips

Heat-bath probabilities

$$\operatorname{prob}(\sigma_i = \sigma) = \frac{\exp[\beta \sigma(h_i^{\mathsf{W}} + h_i)]}{2 \cosh[\beta(h_i^{\mathsf{W}} + h_i)]} \quad ,$$

Weiss field $h_i^{\mathsf{W}} = \sum_{j \neq i} J_{ij} \sigma_j$ for 2-spin interactions

$$\langle \sigma_j(t) \rangle = \operatorname{Tr}_{\vec{\sigma}(t')} \left[\sigma_j(t) \prod_{t'=1}^t W_{I(t')} \left(\vec{\sigma}(t') | \vec{\sigma}(t'-1) \right) \right]$$

I(t): index of the spin updated at time t

FDR with no perturbing field: Analytics

Transition probability

$$W_i(\vec{\sigma}|\vec{\tau}) = \frac{\exp[\beta\sigma_i(h_i^{\mathsf{W}} + h_i)]}{2\cosh[\beta(h_i^{\mathsf{W}} + h_i)]} \prod_{j \neq i} \delta_{\sigma_j, \tau_j} .$$

Note: $h_i^{\mathsf{W}}(\vec{\sigma}) = h_i^{\mathsf{W}}(\vec{\tau})$ (does not depend on σ_i)

$$\left. \frac{\partial W_i(\vec{\sigma}|\vec{\tau})}{\partial h_j} \right|_{h=0} = \delta_{i,j} W_i(\vec{\sigma}|\vec{\tau}) \beta \left(\sigma_i - \sigma_i^{\mathsf{W}} \right) ,$$

$$\sigma_i^{\mathsf{W}} \equiv \mathsf{tanh}(\beta h_i^{\mathsf{W}})$$

Infinitesimal probing field is switch on at time t_w on site k

$$h_k(t) = h \, \theta(t - t_w)$$

Transition probabilities W_k are modified for $t>t_w$

$$\begin{split} \chi_{jk}(t,t_w) &= T \left. \frac{\partial \langle \sigma_j(t) \rangle}{\partial h} \right|_{h=0} = \\ &= \operatorname{Tr}_{\vec{\sigma}(t')} \left[\sigma_j(t) \prod_{t'=1}^t W_{I(t')} \Big(\vec{\sigma}(t') | \vec{\sigma}(t'-1) \Big) \right. \\ &\left. \sum_{s=t_w+1}^t \delta_{I(s),k} \left(\sigma_k(s) - \sigma_k^{\mathsf{W}}(s) \right) \right] = \\ &\left. = \langle \sigma_j(t) \Delta \sigma_k(t,t_w) \rangle \right. \end{split}$$

with

$$\Delta \sigma_k(t, t_w) = \sum_{s=t_w+1}^t \delta_{I(s),k} \left[\sigma_k(s) - \sigma_k^{\mathsf{W}}(s) \right]$$

Advantages

Always in the linear response regime (by definition)

One has to measure only correlations!!

$$C_{i}(t, t_{w}) = \langle \sigma_{i}(t) \sigma_{i}(t_{w}) \rangle$$

$$\chi_{i}(t, t_{w}) = \langle \sigma_{i}(t) \Delta \sigma_{i}(t, t_{w}) \rangle$$

$$\Delta \sigma_{i}(t, t_{w}) = \sum_{s=t_{w}+1}^{t} \delta_{i,I(s)} \left[\sigma_{i}(s) - \sigma_{i}^{\mathsf{W}}(s) \right]$$

$$C = \sum_{i} C_{i}/N \quad \chi = \sum_{i} \chi_{i}/N$$

In a single run, measures can be taken for any t_w

Drawback

 $\Delta \sigma_i(t,t_w)$ is a random variable such that

$$\langle \sigma_i \rangle = \sigma_i^{\mathsf{W}} \Rightarrow \langle \Delta \sigma_i \rangle = 0 \qquad \langle \Delta \sigma_k^2 \rangle \propto \frac{t - t_w}{N}$$

The average over thermal histories $\langle . \rangle$ needs a **huge** number of samples for large times: $\mathcal{N}_S \propto \frac{t-t_w}{N}$ Computational complexity $\propto (t_w/N)^2$

Physical interpretation

When one tries to update spin i

$$\Delta \sigma_i \leftarrow \Delta \sigma_i + (\sigma_i - \sigma_i^{\mathsf{W}})$$

In the T=0 limit

$$\sigma_i - \sigma_i^{\mathsf{W}} = \left\{ egin{array}{ll} 0 & ext{if } h_i^{\mathsf{W}}
eq 0 & ext{(frozen spin)} \\ \sigma_i & ext{if } h_i^{\mathsf{W}} = 0 & ext{(free spin)} \end{array}
ight.$$

Only free spins $(h_i^{W} = 0)$ may respond to an infinitesimal field and give contribution to χ

$$\chi_i(t, t_w) = \sum_{s=t_w+1}^t \langle \sigma_i(t) \sigma_i(s) \rangle \delta_{h_i^{\mathsf{W}}, 0}$$

The linear response is a restricted sum of correlation functions

Problems with the punctual response function

$$R_i(t,s) \simeq \langle \sigma_i(t) \left[\sigma_i(s) - \sigma_i^{\mathsf{W}}(s) \right] \rangle \ \delta_{i,I(s)}$$

$$R(t,s) = \frac{1}{N} \sum_{i} R_i(t,s)$$
 does not have a straightforward limit for $N \to \infty$

The integrated linear response

$$\chi \propto \int R(t,s)\,ds$$

is a smooth function for $N \to \infty$

NB: the continuous time limit $(t \leftarrow t/N, N \rightarrow \infty)$ is not the usual one!

FDR with no perturbing field: Numerics

The models

Ferro 1D → check vs. analytic solution

Ferro 2D \rightarrow coarsening dynamics, RS X(q) = 0 for $q < q_{EA}$

3-spin → long-range interactions, fixed conn. 4, aging dynamics, 1RSB (tiny FRSB effects?)

EA 3D → the old problem: FRSB vs. RS

FDR with no perturbing field: Numerics

Rescaling

$$C_{\text{res}}(t, t_w) = \lambda \frac{C(t, t_w)}{q_{\text{EA}}(t_w)}$$

$$\chi_{\text{res}}(t, t_w) = 1 - \lambda \frac{1 - \chi(t, t_w)}{q_{\text{EA}}(t_w)}$$

with an arbitrary λ

- $\lambda = q_{\text{EA}}(10^4)$ is used
- $\lim_{t_w \to \infty} q_{\mathsf{EA}}(t_w) = q_{\mathsf{EA}} > 0$ is assumed

Conclusions

Physical side

Stronger evidences for a non-trivial X(C) in the 3D Edwards-Anderson model

Computational side

A priori no better method for measuring $\chi(C)$

- small times → new method
- very large times → old method

More awareness!