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Try and qualify slow dynamics in lattice gas models: is

it interesting?

Get information about the spatial structure.

Is the (far away) equilibrium landscape relevant?

A: Probably partially.
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Summary:

• Slow dynamics.

• Lattice gas models.

• Story of the Kob Andersen model.

• The issue of the phase transition, and its

solution.

• Length scales in KA. (crucial for qualifying

slow dynamics).

• Persistence times.

• Relaxation of correlation functions.

• Spatio-temporal correlation functions.

• Connected clusters of frozen particles.

• The scaling behavior.

• A first analysis of the Biroli-Mézard model.
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Slow, glassy dynamics:

• very general relevance;

• dramatic features.

But:

• which are the really relevant features?

• what is really happening?

Two principal paradigms:

• (static) landscape is far away but it is

important;

• dynamical heterogeneities lead, landscape

is not important.

Viscosity increases: what is happening?

Use: lattice gasses.
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The Kob Andersen (KA) Model.

(Here 3d).

Purely dynamical.

Lattice gas of N classical particles.

~Ri = (xi, yi, zi)

on a simple cubic lattice with periodic

boundary conditions and size L3.

Each particle occupies one site;

one site can contain at most one particle.

ni = (0, 1) occupation number of site i.

Simple hard core repulsion (plus dynamical

rule, see later: jamming is forced by a

dynamical rule).

• =⇒ all configurations have the same

probability;

• =⇒ a random configuration is a typical

equilibrium configuration.
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KA is somehow the mother of all interesting

dynamical models.

• no need for equilibration;

• no aging.

We define the dynamics of the model.

1. Select a particle at random.

2. Pick a random nearest neighbor site, and

advance the clock of 1/N .

3. if) the nearest neighbor site is empty AND

the particle has m or less neighboring

particles AND the nearest neighbor site

has m + 1 or less occupied neighboring

sites then swap particles.

else) do nothing.

4. goto 1.

Small m is blocked, large m is a free gas. We

have m = 3. Relaxation is a diffusive process

with additional steric constraints.
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Before discussing some (putative and/or

correct) features of the KA model, we introduce

a similar but very different interesting model.

Biroli-Mezard model.

This is a lattice glass, more similar indeed to

hard spheres than KA. The model is defined

thermodynamically: configurations that violate

a density constraint are forbidden.

Here we have the same lattice structure than

for the KA model, but a particle cannot have

more than m among its 2d = 6 nearest

neighbor sites occupied.

It is a ”coarse-grained” version of an off-lattice

hard sphere system.

Bethe-lattice mean field can be analyzed with

the cavity method.
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We will not discuss here about general

Facilitated Spin Models (Fredickson Andersen

1984).

n1 = 1, mobile, low density region.

n1 = 0, less mobile, high density region.

(not particles, but coarse-grained densities!)

Low densities regions in the neighborhood

facilitate rearrangements (i.e. spin flips).

A special role is played by versions of the

model with directed or asymmetric constraints.

For example EAST model, 1991.

Here only nearest neighbor spins in some given

lattice direction can act as facilitators.

d = 1: flip only if left nearest neighbor is up.
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What one finds, at first glance, about the KA

model? (Kob Andersen 1993) d = 3. Diffusion

coefficient D.

D ∼ (0.881 − ρ)
+3.2

i.e. there appear to be a critical density

ρc ' 0.881 where the system gets blocked. (D

is computed from the mean square

displacement measured at different densities).

SEE FIGURE IN NEXT SLIDE.

A second part of the original study was based

on analyzing the density-density correlation

function G(r, t), F (k, t).

G(r, t) =
1

3N

∑

α

N
∑

i=1

〈δ (rα
i (t) − rα

i (0) − r)〉−
1

L

and F Fourier transform. That gives a time

scale τ . τ scaling is compatible with the same

value of ρc.

i.e.: dynamical transition from ergodic to

non-ergodic behavior? (Answer will be no!)
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Sorry for the low level image.

On many decades...

It would seem a very clean signal.
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Glassy Dynamics in Lattice Gas Models

Franz, Mulet and Parisi, PRE 2002.

KA model: a non-standard mechanism for the

glassy transition.

Look at blocked configurations (believe in

ρc = 0.881 in d = 3).

(see also Barrat, Kurchan, Loreto and Sellitto,

PRL 2000)

q(t) ≡
1

Nρ (1 − ρ)

∑

i

(

ni(t)ni(0) − ρ2
)

χ4(t) ≡ N
(

〈

q2(t)
〉

− 〈q(t)〉
2
)

At t = t∗ χ4(t) is maximum.

SEE FIGURE IN NEXT SLIDE.

First sign of spatial heterogeneities + relation

with p-spin spin glass models and mean field

models (Franz Parisi 2000, Donati, Franz,

Glotzer and Parisi 1999)
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C. Toninelli, Phd Thesis, Roma La Sapienza, unpublished;

C. Toninelli, M. Biroli, D. Fisher, cond-mat/0306746, PRL;

L. Bertini and C. Toninelli, cond-mat/0304694;

C. Toninelli and G. Biroli, cond-mat/0402314.

Mathematical proof that ρKA,3D
c = 1, no

transition can be present. The original hint was

not correct. (Here 3d, m = 3).

On the contrary it is proven that there is a

dynamical transition on Bethe lattices.

In 3d the diffusion coefficient D −→ 0 faster

than any power than the vacancy density

(1 − ρ).

In 3d ghost of Bethe lattice is probably

connected to the sharp crossover at

”ρc” ∼ 0.881.

ξ ∼ ee
c

1−ρ

and Finite Size Effects will be of order log log.
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Our analysis of the KA model.

Can we determine length scales that grow

clearly when approaching ρ = 1, i.e. criticality?

We will have to start by studying the regime of

the ”arrest” for ρ −→ ρ∗
c ∼ 0.881 and we will

have to enquire about the presence of slow

stretched exponential relaxations.

Again, we know from Toninelli, Biroli and

Fisher that

ρc(L) ∼ 1 −
c

log log L

Ξ(ρ) ∼ ee
c

1−ρ

spacing between mobile particles.

We will describe now spatio-temporal

correlations and heterogeneities that

characterize the dynamics of the KA model.
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Persistence times of particles

• Their distribution (a first stretched

exponential...).

• Their spatial correlations (our first length

scale...).

Start at time t = 0 (from a random

configuration, that is, also an equilibrium

configuration...).

τi: time after which particle i moves for the

first time to a nearest neighboring site.

P(ρ) (τi = τ)

and we average over all particles and over

many initial configurations of the system.

Densities range from 0.5 to 0.8 (see next

figure).
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Our best fits are for a stretched exponential

behavior for the integrated probability

distribution

∫ ∞

τ

P (t) dt = exp

{

−

(

τ

τtrap

)β
}

We get a very good best fit.

We need β < 1 even at low densities.

β for best fit decreases as ρ increases. For

example β(ρ = 0.5) = 0.80 and

β(ρ = 0.8) = 0.45.

Analogous behavior is present in Lennard-Jones

and in different Kinetic Constrained Models.

Similar (but not identical...) values for β: this

fact suggests an universal behavior.
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The site dependent trapping times are not

homogeneous in space.

One very relevant question is whether the KA

dynamics induces a spatial correlation length

among them.

We have computed the spatial correlation

Cρ(r) ≡
1

N

∑

~a

(〈τ~aτ~a+~r〉 − 〈τ~a〉〈τ~a+~r〉)

〈· · ·〉 is for an average over initial

configurations.

lc(ρ) is a dynamical coherence length such that

for distances larger than lc(ρ) the trapping

times are uncorrelated. An exponential fit,

where Cρ(r) ∼ e−r/lc(ρ), works well.

In the density range 0.7-0.8 lc(ρ) is small and

of the order of one or two lattice spacings.

The growth of lc(ρ) for increasing ρ is well

fitted by the correct essential singularity for

ρ → 1, lc(ρ) ' 0.17 exp(exp(0.16/(1 − ρ))).
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Relaxation of correlation functions

We have already defined:

q(t) ≡
1

Nρ (1 − ρ)

∑

i

(

ni(t)ni(0) − ρ2
)

with ni = 0, 1. We compute 〈q(t)〉 as an

average over initial configurations.

In the asymptotic regime for a free lattice gas

〈q(t)〉 should decay as a power law (since

dynamics is conserved). We do not see that

(but even for a free lattice gas, at high

densities the power law decay is far from clear).

Asymptotic regime could be at astronomical

times (typical in disordered systems) or KA

could be different from a free lattice gas

(possible but not very probable).

We observe again a very clear stretched

exponential behavior, 〈q(t)〉 ∼ e
−
(

t
trelax

)γ

with

for example γ(ρ = 0.5) ∼ 0.8 and

γ(ρ = 0.8) ∼ 0.35 (not so different from β).
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A simple Griffiths argument would give an

incorrect prediction.

Consider a region of size L and the appropriate

relaxation time τ(L). The probability of

finding a region of size L at density ρ is

Pρ(L) = ρLd

= e−aLd

Since asymptotically we have a diffusive motion

at all length scales (Toninelli, Biroli and

Fisher) we have τ(L) ∼ τ0L
2. So we find

〈q(t)〉 ∼

∫

dL P (l)e−
t

τ(L) ∼ e−tγ

,

with γ = d
d+2 , i.e γd=3 = 0.6 independent from

ρ. This is not so.

Again. We detect a stretched exp behavior and not a

power (that is probably only valid at later times: this

effect is common in disordered systems). Strictly

speaking the theorem implying power decay for 〈q(t)〉 is

not necessarily valid for KA at finite N , but probably

the relevant mechanism is not connected to this fact.
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Spatio-temporal correlation functions

Franz-Mulet-Parisi used the dynamic

susceptibility

χ4(t) ≡ N
(

〈

q2(t)
〉

− 〈q(t)〉
2
)

as the main ingredient towards claiming that

KA model has non-trivial spatial structures. It

has a maximum at t∗, where the sensitivity of

the system is maximal.

We have repeated (more precisely, in a range of

densities and for different lattice sizes) the

measurements of FMP. We find a compatible

qualitative behavior (our data also have the

correct limit χ4(t −→ ∞) −→ 1 established by

Ritort and Sollich)

SEE FIGURE IN NEXT SLIDE.

finite size effects are under control

SEE FIGURE IN SECOND NEXT SLIDE.

Both χmax and t∗ as a function of ρ are very

well fitted by ee
c

1−ρ
scaling. At t = t∗

heterogeneity of the system is maximal.
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No Finite Size Effects.
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This heterogeneity can be analyzed in better

detail by studying

the space dependent susceptibility g4(~r, t)

which generalizes χ4(t).

g4(r, t) ≡ (Nρ2(1 − ρ)2)−1
∑

|~ri−~rj |=r

(〈ni(t)ni(0)nj(t)nj(0)〉

− 〈ni(t)ni(0)〉〈nj(t)nj(0)〉) .

SEE FIGURE IN NEXT SLIDE.

The position of the maximum is of the same

order of magnitude than t∗.

It shifts to larger times for increasing r values.

The value of the max decreases for increasing r.
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Larger max for smaller r.

Smaller t∗ for smaller r.
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The decrease of gmax
4 (r) determines a

cooperativity length.

Indeed gmax
4 (r) shows a good exponential

decay.

SEE FIGURE IN NEXT SLIDE.

gmax
4 (r) ∼

c(ρ)

rα(ρ)
e−

r
ξ(ρ)

Best fit is good. For densities in the range

ρ ∈ (0.70 − 0.86)

we find

α ∈ (0.22 − 0.64)

and

ξ ∈ (0.70 − 2.75)

.

When considering ξ as a function of ρ we find

again a good fit to a (double) essential

singularity as ρ → 1.
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Connected clusters of frozen particles

An important test of the structure of

heterogeneities. Reconstruct connected clusters

of particles that never moved at time t.

For example measure the probability of a

cluster of size n

P (n, t)

We define and study different types of clusters:

1. particles that never moved;

2. particles that at time t are in the original

position even if they moved before.

In these two cases we find very similar results.

The first interesting thing to analyze is the

number of blocked clusters. This number is

maximal close to tcluster.

SEE LEFT FIGURE IN NEXT SLIDE.

This defines a new time scale, again compatible

with correct scaling.
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Let us discuss about P (n, t).

At small times there are two different

populations:

• few large blocked clusters (they dominate

the rate of relaxation)

• small blocked clusters

As time goes particles move: the large clusters

break and decrease in size. At intermediate

time the two populations merge.

SEE RIGHT FIGURE IN PREVIOUS SLIDE.

Some hint for a power law, but not compelling,

probably not very relevant. At the end all

particles fly and all clusters disappear. At

t ∼ tcluster cooperativity is maximal.

We have also analyzed in detail

λ ≡ 〈n
1
3 〉tcluster

and the related fluctuations. Again, λ scales as

expected.

June 2004 ENS, Paris Page 29



Glassy Dynamics in Lattice Gas Models

So, we can summarize about lengths.

We have determined with different approaches

correlation lengths:

ξτ,τ , ξcg4 , ξcc

They all scale like

ξ ∼ ee
0.15
1−ρ

SEE FIGURE IN NEXT SLIDE.

These lengths are increasing but not very large.

We get blocked already from small spatial

regions.

The increasing correlation length is interesting:

we detect a typical feature of a glassy dynamics

even in absence of a landscape.

But: in the model as it is, without

perturbation and with fixed number of

particles, you cannot have aging.
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Some preliminary results about the

Biroli-Mezard model.

Here:

1. simple model;

2. we have a landscape, i.e. you can have

aging.

We study this model with the same approach

used for KA.

Mixture: 0.7 m = 3, 0.3 m = 1, to avoid too

fast crystallization.

Here preparation is difficult (the particle

configuration has to obey all constraints).

Annealing.

Results about aging, χ4(t) peak, local

structure.
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Aging. ρ = 0.535, 0.540 and 0.542.
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χ4 peak. ρ = 0.535, 0.540 and 0.542.
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