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Low T scaling behavior of 2D disordered and frustrated models

Compute (many) exact partition functions of

(large) 2D Ising SG, J = ±1 with PBC. Apply

the same method to understand fully frustrated

2D finite size scaling and what happens when

adding small amount of random quenched

unfrustrated plaquettes.

Regge and Zecchina and Galluccio, Löbl and

Vondrák: Pfaffians, modular arithmetics,

Chinese remainder theorem.

Results:

• Believe you solve dispute, but reopen the

issue right ahead in different terms.

Physical scaling as β −→ ∞ cV does not

behave as e−Aβ with A = 4 as from naive

scaling. Find A < 4.

• hyperscaling works.
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• Ground state properties (θE = θDW = 0

etc...).

• Number of excitations (possible mechanism

for anomalous scaling).

• MKA anomalous scaling.

• To understand better go through fully

frustrated Villain model finite size scaling.

• A small amount of quenched random

unfrustrated plaquettes completely changes

the scaling behavior.

• Go back to 2D spin glasses with binary

couplings, on larger lattices, by using

dilution and joining forces of Monte Carlo

and partition function computation: get

new point of view.
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Summary

• Spin glasses, 2D Ising spin glasses. The

quenched physics.

• T = 0 and low T physics. Choice of

couplings and “universality”.

• Monte Carlo versus ground states

computations. Computations of Zβ.

• The dispute: Swendsen and Wang with

(optimized) Monte Carlo versus

Kardar-Saul with exact transfer matrix.

• The Galluccio-Löbl-Vondrák algorithm.

• Our findings. The anomalous scenario.
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SG: frustration + disorder (complexity)

Quenched averages

H = −
∑

nn i,j

Jijσiσj

couplings Jij are random quenched.

Huge interest:

1. Parisi solution of mean field SK theory.

2. paradigmatic role (boring as materials, as

such).

Open debate on behavior in finite D.

“For sure”: DL
c ≥ 2, no transition in 2D for T > 0.

As T −→ 0: scaling theory. Coarse graining and

scaling Ansatz.

J̃(l) ∼ l
θ

effective coupling among (block) spins at large

distance.

2D: θ < 0 (and/or zero, see later). Coupling

becomes weaker at large scale, and the ordered

state is unstable and breaks down.
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Typical choices for the probability distribution of

quenched couplings: P (J) ∼ exp(−J2/2) or J = ±1

with uniform probabilities, or many other possibilities

(but equivalent, see later).

In 2D this can play (and does play) a role in deciding

the “critical behavior” as T −→ 0 (see C. Amoruso, EM,

O. Martin and A. Pagnani, PRL 91 (2003) 087201).

Starting point is

δE ≡ E
(P )
GS − E

(AP )
GS

and as L −→ ∞

(

δE − δE
)2

∼ L2θ

While for Gaussian J one has θ = −0.28 for binary

couplings one finds clearly (Hartmann and Young) θ = 0.

We find that all P (J) which can only produce

quantized energies give θ = 0, while all distribution that

can generate continuous energies without a gap give

θ ' −0.28 (even if for example are built on only two

coupling values, but with an irrational ratio).

1. D ≤ DL
c =⇒ small δE values are relevant for the

large distance behavior of the system =⇒ gap in

coupling distribution can play a role.

2. θ(D) = 0 does only mean D ≤ DL
c , not D = DL

C .
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Monte Carlo versus Ground State

computations.

1. MC for Spin Glasses is very difficult.

“Naive” MC is basically of no use. High

free energy barriers make impossible

exploring the full phase space.

Optimized Monte Carlo (multicanonical,

replica MC, parallel tempering) helps.

Still: it is difficult to go at low T. You are

never sure you thermalized...

2. Computing GS you study directly T=0

physics. No problems with thermalization.

Main problem: what do you learn, say,

about finite T physics? (it seems it

works...).

3. A third approach: compute directly the full

partition function. “Best of both worlds”

(but: depending on the algorithm only

reach some observables) (but: can only do

it in some models, see later...).
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The dispute

Saul and Swendsen (PRL 38 (1988) 4840) after a very

accurate optimized MC simulation claimed to detect an

anomalous scaling behavior.

2D Ising Spin Glass, J = ±1, Periodic Boundary

Conditions. V=1282

cV ∼ β
2
e
−Aβ

, A = 2 .

Would expect A = 4, since minimal excitation costs 4J.

Periodic Boundary Conditions 1D Ising model analogy.

Minimal excitation is 4J, since ⇓ ⇑ ⇓

kink − antikink

Still, an easy computation gives cV ∼ β2e−2β .

Now. With fixed boundary conditions minimal excitation

only costs 2J.

kink

But infinite volume limit does not depend on boundary

conditions... Answer: kink-antikink excitation is no

elementary. Notice that there are too many of them,

O(V 2).

T −→ 0, V fixed: eventually find e−4β . But scaling limit,

small T and large V : e−2β .
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Kardar and Saul, NP B 432 (1994) 641. They reanalyzed

the problem by computing exactly the full partition

function. 2D Ising Spin Glass with PBC, J = ±1.

They follow Kac and Ward:

1. From high T expansion, in terms of closed graphs

on the square lattice (including graphs wrapping

around the lattice).

Z = 2V (cosh (βJ))2V
∑

c:B

AB tanh (βJ)B

where the sum is on closed graphs with B bonds.

2. Kac-Ward −→ the problem is rephrased in a local

random walk with non-trivial weights. 4V × 4V

hopping matrix.

PBC: need four matrices (see later Regge-Zecchina and

Galluccio-Löbl theorem for graphs of bounded genus).

In this case one finds (Potts-Ward, 1955):

Z =
1

2
(−Z1 + Z2 + Z3 + Z4)

Zλ = 2V (cosh (βJ))V
√

det (1 − Uλ tanh (βJ))

Uλ: 4 different hopping matrices, of size 4V × 4V .

So: {Jij}−→ four matrices Uλ−→ traces of UW
λ for

W ≤ V −→ polynomial in e−β , density of states −→

Z =
∑

E
N(E)e−βE .
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Lot of precautions to deal with large numbers

(Kardar and Saul also compute zeroes of Z).

Polynomial time estimated roughly as ∼ V 3.2.

They have basically:

L S

4-8 8000

10-14 2000

16-18 800

and few samples for larger lattices.

This turns out to be too small...

So, they disagree with Swendsen-Wang, and claim

cV ∼ β
3
e
−4β

(note the anomalous power, see fully frustrated

Ising model in 2D).

Number of excitations looks smaller than in 1D

Ising. Claim is here that

log V < S1 − S0 < log V
2

But, again, the authors notice (as a sign of severe

warning) that they cannot clearly detect the

asymptotic behavior.

January 2006 Cambridge Page 10



Low T scaling behavior of 2D disordered and frustrated models

Our approach(Galluccio, Löbl and Vondrák PRL 84

(2000) 5924)

Similar to Kardar-Saul, but many further:

1. theoretical results

2. technical improvements

Summary:

ZISG2D
β −→ generating function of cuts

Galluccio-Löbl: it is possible to solve the Max Cut problem

in polynomial time for any graph of genus bounded by a

constant. The method provides directly the generating

function of cuts.

−→ Eulerian subgraphs

−→ perfect matching

−→ (on graphs of bounded genus) Pfaffian

computation (square root of the determinant of an

antisymmetric matrix). Need 4g Pfaffians.

−→ compute Pfaffian by using modular arithmetics

(no need for infinite precision).

−→ use the Chinese Remainder Theorem to

reconstruct the exact partition function.
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Cut of a graph G = (V, E) (vertices, edges) is a

partition of its vertices into two disjoint subsets

V1, V2 ⊂ V and the implied set of edges between

the two parts (each edge can carry a weight we,

and the total weight of the cut is w(C)).

Max Cut (min Cut): divide vertices in two

parts so that total weight of edges between the

two parts is max (min).

Generating function of cuts: polynomial

∑

over all cuts

xw(C) .

Eulerian subgraph: set of edges U such that

each vertex of V is incident with an even

number of edges from U .

Perfect matching: set of edges P such that

each vertex of V is incident with exactly one

edge from P .
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From Ising to Cuts

Assign spins to +1 or −1. V+ = {i ∈ V |σi = +1}

V− = {i ∈ V |σi = −1}. Let C(V+, V−) be the cut of

spins +1 and −1. W ≡
∑

{i,j}∈E
Jij is the sum of all

edge weights in G.

H =

∑

{i,j}∈C

Jij −

∑

{i,j}∈(E−C)

Jij = 2w(C) − W

Let the generating function of cuts be

C(G, x) =

∑

cuts in G

ckx
w(C)

,

where ck is the number of cuts with weight k.

Z(β) =

∑

{σ}

e
−βH

'

∑

cuts

e
−2βw(C)+βV

' e
βV

C(G, e
−2β

)

From cuts to Eulerian subgraphs

C(G, e
−2β

) ∼ x
V
2

∏

{i,j}∈E

(

x
wij
2 + x

−
wij
2

2

)

E

(

G,
x

wij
2 − x

−
wij
2

x
wij
2 + x

−
wij
2

)

E: generating function of Eulerian subgraphs.

By the Fischer construction Eulerian subgraphs can be

rewritten as a perfect matching problem.
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• Planar graphs

and graphs of bounded genus

Perfect matching can be translated to a Pfaffian

computation (of 4g Pfaffian).

• Modular arithmetics. Work modulo some given

prime number.

Theorem: Let P (x) be a polynomial of degree n

with integer coefficients, Φ(p) a finite field of size

p > n, and x0, x1, . . . xn distinct elements of Φ(p).

Then there exists a unique polynomial of degree n

over Φ(p) such that

Q(xi) = P (xi) mod p, i = 0, . . . , n .

The coefficients of Q(x) are equal to the

coefficients of P (x) mod p.

• The Chinese Remainder Theorem.

If we work in a number large enough of fields, i.e.

p1, p2, . . ., pk such that

k
∏

i=1

pi > 2n

we can reconstruct the exact polynomial, i.e. the

exact partition function. Great!
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Summary of the Algorithm

1. Find prime numbers pi such that

k
∏

i=1

pi > 2V .

For each of them repeat steps 2, 3, 4 performing all

operations in Φ(pi).

2. Select (m + 1) distinct elements xj of Φ(pi). For

each of them repeat step 3.

3. Write the 4g matrices encoding the relevant

orientations of the modified graph. This gives Zβ

(in the point eβ = xj).

4. From these values of Zβ( mod pi) in given points

interpolate in Φ(pi) and get the coefficients of the

polynomial.

5. Apply the Chinese Remainder Theorem: compose

the results from each Φ(pi) to get the full Zβ .

Complexity: O(V ) finite fields, O(V ) evaluations in

each field (for edge weights bounded by a constant),

O(V
3
2 ) operations for a single evaluation of a

polynomial =⇒ Total O(V
7
2 ).
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Technically this approach and implementation

by Galluccio, Löbl, Rinaldi and Vondrák looks

full of very brilliant ideas.

Main features:

• parallel;

• no problems with precision;

• basically only bound by CPU time, not by

memory or word length;

• scaling V
7
2 .
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Our work. J. Lukic, A. Galluccio, EM, O. Martin, G.

Rinaldi.

2D Ising Spin Glass, PBC, J = ±1.

For example:

L S

6 400000

10 100000

30 10000

40 1000

50 300

(and similar values for different L values).

FJ(β) = −
1

β
log ZJ(β) , UJ(β) = 〈HJ〉 ,

cV = L−2 dUJ

dT
,

and average over samples. We mainly look at

cV (irrelevant constants are already

subtracted).
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cV ∼ β
2
e
−Aβ

(we have checked that p = 2 is the best available choice for

power corrections).

log
cV

β2
∼ −Aβ

y ≡

(

log
cV

β2
+ 4β

)

= (4 − A) β

So if we have naive scaling y ∼ constant in the scaling

regime. If not: slope is (4 − A).

0

2

4

6
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2 3 4 5 6 7 8

ln
 (

T
2  c

v)
 +

 4
/T

1/T

L=10
L=12
L=14
L=20
L=30
L=40
L=50

Small T : saturation at constant value.

Intermediate T : A ∼ 2.

Straight line: best fit β ∈ [2.5, 5.5] gives A = 2.02 ± 0.03.

Clearly not 4, obviously decreasing, but asymptotic

behavior not emerging.
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−T log
(

T 2cV

)

∼ A

So look at limit T −→ 0.

Very interesting scaling pattern.
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- 
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 (

T
 2

 c
v)

T

L=6
L=8
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L=18
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L=40
L=50

Three regions:

• high T “no scaling”;

• low T A = 4 naive behavior;

• intermediate T , large lattices: A ∼ 2,

decreasing.
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T = 0 properties.

Lines in the plot are best fits.

e0(L) = e
∗

0 + aL
−2+θe

e∗0 = −1.4017(3), θe = −0.08(7). We see that as

good evidence that θe = θDW = 0 (Hartmann-Young).
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S
L-

 s
0*  

L2

L

s0(L) = s
∗

0 + aL
−2+θs

s∗0 = 0.0714(2) (most precise estimate available),

θs = 0.42(2). Could be that θs = 0.5.
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Anomalous density of excitations.

S1 − S0 = S(E0 + 4J) − S(E0)

Straight lines: log V , 2 log V .

On large lattices: 2 log V (Kardar-Saul could

only see the transient behavior on smaller

lattices).
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S
1-

S
0

ln V

In 1D Ising model equivalent of 4J excitations

are “not elementary”: here similar but more

complex basic excitations?
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Finite Size Scaling.

Difficult to fit from the numerical data the

exact scaling law. We use two approaches.

1. For each L value we determine T ∗(L) as

the temperature where “something

happens” (where the data separate from

the envelope).

Scaling of such ξ(T ) obtained by inverting

T ∗(L) prefers

ξ ∼ eβ

far over ξ ∼ e2β , but again, not asymptotic.

Behavior in the transient region is

reminiscent of hyperscaling.

2. We can use a simple scaling argument

based on the finding S1 − S0 ∼ 2 log V to

find the same behavior.
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MKA approximation.

Very similar scaling pattern!

But lower A, maybe going to zero...? Here: MKA,

b = 3 branches, s = 3 segments.

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6

-T
 lo

g(
T

2  c
V
)

T

number of generations g=2
g=3
g=4
g=5
g=6
g=7
g=8
g=9

104 samples for 3 generations. 200 samples for 9

generations.

Here we know that θ = 0 (Amoruso et al.).

Gaussian couplings: cV ∼ T α as T −→ 0.

J = ±1: figure here. Very similar to 2D EA spin

glass.
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Analyze Villain fully frustrated 2D model.

For example all coupling equal to 1 but for even

lines of vertical bonds equal to −1.

You have the analytic solution to look at. Here

there is already a small mystery, i.e.

cV ∼ β
3
e
−4β

.

Exact solution:

−βf∞(β) = ln(2 cosh(βJ)) +
1

16π2

∫ 2π

0

dh

∫ 2π

0

dk ln[(1 + z2)2 − 2z2(cos 2h + cos 2k)] .

Expand and find:

βf − βe0 − s0 ' c1βe
−4β

What happens in finite volume? Strip geometry

computation (Mathematica, high precision).

Define ξ by

fL − f∞ ∼ e
−L/ξ

.
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Figure: perfect best fits.

fL − f∞ = A(T ) exp

(

−
L

ξ(T )

)

L−C(T )

A(T ) smooth; C = 1.5, constant;

ξ ∼ e2β (see Inset).
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Scaling function (see y-axis):
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Count number of low energy states:

g1

g0
= AL2 + BL2 log (L)

that also implies this scaling law.
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Quenched unfrustrated random plaquettes

(here with density 1/8).
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−T log(T 2cV ) versus T in the PD model. In

the inset, on the left: log( g1

g0L2 ) versus L for the

PD model. In the inset on the right: g1

g0L2

versus L for the FFM.

A=0 and algebraic scaling?
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Now improve SG computation and go on larger

lattices: beware of systematic errors and of

underestimated error. (T. Jörg, J. Lukic, EM and O.

Martin, in preparation)
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A decreases... algebraic scaling?
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Also use diluted SG:

 1
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 2
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MC and exact Z fit very well.
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