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Hiding Solutions in Random Satisfiability Problems: A Statistical Mechanics Approach
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A major problem in evaluating stochastic local search algorithms for NP-complete problems is the
need for a systematic generation of hard test instances having previously known properties of the optimal
solutions. On the basis of statistical mechanics results, we propose random generators of hard and
satisfiable instances for the 3-satisfiability problem. The design of the hardest problem instances is based
on the existence of a first order ferromagnetic phase transition and the glassy nature of excited states. The
analytical predictions are corroborated by numerical results obtained from complete as well as stochastic
local algorithms.
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In natural sciences and in artificial systems, there ex-
ist many problems whose solutions require computational
resources growing exponentially with the number of vari-
ables N needed for their encoding. Concrete examples are
optimization and cryptographic problems in computer sci-
ence, glassy systems and random structures in physics and
chemistry, random graphs in mathematics, and scheduling
problems in real-world applications.

Having fast and powerful algorithms for the resolution
of these problems is of primary relevance for their theoreti-
cal study as well as for applications. The evaluation of such
algorithms is based on the availability of hard benchmarks
having the following properties: They provide problem
instances, with a given known solution, in a fast way (e.g.,
linear in N), but the resolution of an instance takes a time
exponential in N for any known algorithm. So the best
algorithms can be easily selected. In this Letter we pro-
pose a new generator of hard and solvable test instances,
having all the properties listed above. It is based on a NP
(nondeterministic polynomial time)-complete problem [1],
namely, 3-satisfiability (3-SAT).

The main idea for the construction of such hard and
solvable problems is very simple: to hide a known so-
lution within a multitude of coexisting random metastable
configurations which constitute dynamical barriers. In the
physical approach based on a mapping from 3-SAT to a
spin-glass model [2], such random configurations corre-
spond to glassy states [3]. It is to be noted, however, that
many previous attempts to implement this idea were un-
successful, because the random structure was usually easy
to remove, or knowledge that a solution has been forced
can be exploited to find it. In the instances we propose,
instead, the presence of a known solution does not alter
the structure of the glassy state, which confuses the solver
and makes the problem hard.

As an important application of these ideas to cryptog-
raphy [4], random one-way functions are provided: A
given message, e.g., a password, can be coded in a 3-SAT
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formula and thus verified efficiently, but decoding it is ex-
tremely time consuming.

We use the framework of the typical-case computational
complexity [5,6]. There, the study of random 3-SAT prob-
lems has played a major role. A random 3-SAT formula
F consists of M logical clauses �Cm�m�1,...,M over a set of
N Boolean variables �xi � 0, 1�i�1,...,N , with 0 � FALSE
and 1 � TRUE. Every clause consists of three randomly
chosen Boolean variables which are connected by logical
OR operations (_) and appear negated with probability
1�2, e.g., Cm � �xi _ xj _ xk�. In F the clauses are con-
nected by logical AND operations (^), F �

VM
m�1 Cm, so

that all clauses have to be satisfied simultaneously in order
to satisfy the formula.

A satisfying logical assignment of the xi is also called
a solution of F. The random 3-SAT model was found to
undergo a SAT/UNSAT phase transition [7] at a critical
ratio ac � M�N � 4.25 (N ¿ 1): Below ac, almost all
formulas are satisfiable, while beyond, almost all formu-
las do not show any solution. At this threshold, a strong
exponential peak in the typical (median) cost for finding
solutions by the best known algorithms appears. Problem
instances generated close to it form a natural test bed for
the optimization of heuristic search algorithms. However,
satisfiable and unsatisfiable instances coexist in this region.
Many algorithms of practical interest [8] are based on in-
complete stochastic local search procedures, such as, e.g.,
simulated annealing [9] and the walk-SAT algorithm [10].
These algorithms stop once they have found a solution,
but they have no way to disentangle, in polynomial time
in N , if a formula is unsatisfiable or just hard to solve. It
is thus very important to generate benchmarks which are
satisfiable and for which the algorithmic proof of this sat-
isfiability takes an exponential time in N .

In this Letter, we propose simple and fast generators of
such benchmark problems. The main ideas are inspired by
physical requirements, and exploit the presumed hardness
of random 3-SAT itself. One obvious possibility [8] is to
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filter the problems at the phase boundary by complete algo-
rithms, and to keep only the satisfiable ones. This method
is limited by the small values of N and M which can be
handled by the filtering algorithms, thus making the gen-
eration itself exponentially long. In addition, the hardest
instances are the unsatisfiable ones. Other approaches use
mappings from various hard problems to 3-SAT, includ-
ing, e.g., factorization [11], graph coloring [12], and Latin
square completion [13].

We choose an arbitrary assignment of our logical vari-
ables and accept, with some prescribed probability, only
clauses which are satisfied by this assignment. Without
loss of generality, we restrict ourselves to generating for-
mulas which are satisfied by x

�0�
i � 1, ;i � 1, . . . ,N [14].

So, only clauses containing three negated variables are ex-
cluded; all other clauses are satisfied by �x�0�. The gener-
ation of random 3-SAT formulas is done as follows: For
each of the M � aN clauses, we draw randomly and in-
dependently three indices i, j, k [ �1, . . . ,N�. Then, we
choose one of the seven allowed clauses with the follow-
ing probabilities: clause �xi _ xj _ xk�, type “0,” with
probability p0; each of the clauses �xi _ xj _ xk�, �xi _

xj _ xk�, and �xi _ xj _ xk�, type “1,” with probabil-
ity p1; finally, each of �xi _ xj _ xk�, �xi _ xj _ xk�,
and �xi _ xj _ xk�, type “2,” with probability p2, where
p0 1 3p1 1 3p2 � 1. As we will show, typically hard
instances can be generated if the parameters are chosen as
follows:

a . 4.25, 0.077 , p0 , 0.25 ,

p1 � �1 2 4p0��6, p2 � �1 1 2p0��6 .
(1)

To understand this model, and to find values for p0, p1,
and p2 such that the instances are as hard as possible, we
have followed a statistical mechanics approach corrobo-
rated by numerical simulations based on both complete and
randomized algorithms. The analysis is based on the stan-
dard representation of 3-SAT as a diluted spin-glass model
[2]: The Boolean variables xi � 0, 1 are mapped to Ising
spins Si � �21�xi , and the Hamiltonian counts the number
of unsatisfied clauses,

H �
a

8
N 2

NX

i�1

HiSi 2
X

i,j

TijSiSj

2
X

i,j,k

JijkSiSjSk (2)

with Hi � 1
8

P
m cm,i, Tij � 2

1
8

P
m cm,icm,j, and Jijk �

1
8

P
m cm,icm,jcm,k , where cm,i equals 11 if xi appears di-

rectly in Cm, 21 if it appears negated, and 0 otherwise.
The interactions in (2) fluctuate from sample to sample,
with disorder averages Hi �

3a

8 �p0 1 p1 2 p2�, Tij �
3a

4N �2p0 1 p1 1 p2�, and Jijk �
3a

4N2 �p0 2 3p1 1 3p2�.
We are interested in the ground states of this Hamil-

tonian. For a satisfiable formula we know that the cor-
responding ground state energy vanishes. In order to
analytically characterize the ground state properties, we
first calculate the free energy at formal temperature T , us-
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ing the functional replica trick in the replica-symmetric
framework [2]. Then we send T ! 0, and we study the
zero-temperature phase diagram of the model using a and
p0,1,2 as control parameters.

The replica-symmetric order parameter determining the
different phases of the system is the distribution of local
magnetizations P�m� � 1�N

P
i d�m 2 mi�, where mi �

�Si�T�0 is the average value of Si over all ground states.
There are mainly two different cases: (i) P�m� has a
nonzero average and/or is broad, but all jmij are less than 1.
It can be determined using a simple population dynamics
algorithm [15] or variationally [16]. Both results coincide.
(ii) P�m� can be calculated exactly and it turns out to have
a finite weight in m � 1, i.e., an extensive number of
variables is fixed to xi � 1 in all satisfying assignments
(the so-called backbone [17]).

Going back to the class of generators proposed above,
one could naively use p0 � p1 � p2 � 1�7 (model 1�7),
choosing any of the allowed clauses with the same proba-
bility. This generator, including some extensions [18–20],
is known to be effectively solvable by local search proce-
dures [13]. In our walk-SAT implementation, the maximal
resolution time [21] grows like t ~ N1.58, and large sys-
tems of sizes up to N � 104 can be easily handled.

The statistical mechanics approach clarifies this result:
The proposed generator behaves like a paramagnet in an
exterior random field, and no ferromagnetic phase transi-
tion appears. Local search algorithms may exploit the av-
erage local field Hi � 3a�56, pointing into the direction
of the forced solution �x�0�, and rapidly find a solution.

To avoid this, we can fix the average local field to zero
by choosing p0 1 p1 2 p2 � 0. The probabilities are
thus restricted by 0 # p0 # 1�4, p1 � �1 2 4p0��6, and
p2 � �1 1 2p0��6.

Let us start the discussion of these possibilities with
the case p0 � 0, p1 � p2 � 1�6 (model 1�6). In this
(and only this) case, there is a second guaranteed solution:
xi � 0, ;i. The average Jijk also vanishes. The model is
paramagnetic at low a, and undergoes a second order fer-
romagnetic transition at a � 3.74 (see solid line in Fig. 1).
But also in the ferromagnetic phase the backbone is still
zero as long as a & 4.91: At this point it appears continu-
ously from strongly magnetized spins.

In walk-SAT experiments, we find that the generated
instances are still solvable in polynomial time, with peak
resolution times growing as N2.3 (see Fig. 2). However,
the complexity peak is not at the phase transition, but
quite close to the critical point of random 3-SAT. This
is due to the fact that walk-SAT does not sample solutions
according to the thermodynamic equilibrium distribution:
Most probably it hits solutions with small magnetization,
i.e., closer to the starting point (see Fig. 1). For N ! `,
this magnetization stays zero even after the ferromagnetic
transition. Indeed, if we restrict the statistical mechan-
ics analysis to zero magnetization, we find an exponential
number of solutions also beyond a � 3.74. More interest-
ingly, this number coincides with the one of random 3-SAT,
188701-2



VOLUME 88, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 2002
0

0.2

0.4

0.6

0.8

1

3 3.5 4 4.5 5 5.5 6

| m
 |

α

N = 3000
N = 1000
N =   300
stat mech

FIG. 1. Magnetization of the first walk-SAT solution in model
1�6. Because of the (average) spin-flip symmetry, we plot the
average of jmj. For large N , the magnetization stays zero up
to a � 4.1. The solid line shows the thermodynamic average,
which stays well above the asymptotic walk-SAT result.

which jumps to 0 at a � 4.25 [2]. So, approaching this
point, walk-SAT is no longer able to find unmagnetized
solutions for model 1�6, and it has to go to magnetized
assignments, giving rise to the resolution-time peak.

Once we use p0 . 0, the situation changes: The fer-
romagnetic transition becomes first order, as can be seen
best by the existence of metastable solutions for P�m�. The
transition point moves towards the random 3-SAT thresh-
old ac, and the computational complexity increases with
p0. Still, for p0 & 0.077, the ferromagnetic phase arises
without backbone, and solutions can be easily found.

In the region 0.077 & p0 , 1�4, the first order transi-
tion is more pronounced. The system jumps at a � 4.25
from a paramagnetic phase to a ferromagnetic phase, with a
discontinuous appearance of a backbone: For p0 � 0.077,
the backbone size at the threshold is about 0.72N , and goes
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FIG. 2. Typical walk-SAT complexity for model 1�6. We
show the average value of log�t�N�. We find a clear data col-
lapse for small a in the linear regime, t ~ N . The complexity
peak at a � 4.1 grows polynomially as shown in the inset. The
slope of the line in the inset is 1.3.
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up to 0.94N for p0 � 1�4 (see Fig. 3). We conjecture the
ferromagnetic critical point in these models to coincide
with the SAT/UNSAT threshold in random 3-SAT, since
the topological structures giving rise to ferromagnetism in
the former induce frustration and thus unsatisfiability in the
latter.

The case p0 � 1�4, and thus p1 � 0, p2 � 1�4 (model
1�4), is very peculiar because it can always be solved in
polynomial time using a global algorithm. Indeed, one
can unambiguously add three clauses to every existing one,
namely, the other clauses allowed in model 1�4, without
losing the satisfiability of the enlarged formula [22]. The
completed formula becomes a sample of random satisfiable
3-XOR-SAT (also known as hyper-SAT [23]), which can
be mapped to a system of linear equations modulo 2, and
solved in time O �N3� [24].

This algorithm immediately breaks down if we choose
p0 fi 1�4. Indeed, whenever one tries to map the general
formula into a completed one, the presence of all three
types of clauses forces it into a frustrated 3-XOR-SAT
formula, which undergoes a SAT/UNSAT transition at
a � 0.918 [23], well below the region of our interest. So
the mapping is of no use for p0 fi 1�4. In this case, any
3-SAT instance with solution �x�0� (and thus any solvable
one [14]) can be generated with nonzero probability. The
worst case is thus included in the presented generator, and
there cannot be any polynomial solver if P fi NP.

In the following table we summarize the main results for
the investigated combinations of p0, p1, and p2. Where
only p0 is reported, p1,2 are given by Eqs. (1). We show
the location ac and order of the ferromagnetic phase transi-
tion, together with the point aws and the system-size scal-
ing (P/EXP) of the maximal walk-SAT complexity. For
comparison, we have added the corresponding data for ran-
dom 3-SAT.
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FIG. 3. Average magnetization of solutions of model 1�4, ob-
tained with a complete algorithm. There, the magnetization
equals the backbone size. The finite-size curves cross at a �
4.25, and tend to the analytical prediction. The dotted continua-
tion of the analytical line gives the globally unstable ferromag-
netic solution, starting at the spinodal point.
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Model ac (order, type) aws

p0,1,2 � 1�7 NO 5.10 P
p0 � 0 3.74 (2nd, ferro) 4.10 P
p0 [ 	0.077, 1�4� 4.25 (1st, ferro) 4.25 EXP
p0 � 1�4 4.25 (1st, ferro) 4.25 P

Random 3-SAT 4.25 (SAT/UNSAT) 4.25 EXP

Please note that the polynomial time complexity of
model 1�4 is accidental and is due to the existence of
a global algorithm, whereas the walk-SAT peak grows
exponentially with N . To corroborate this picture, we also
performed simulated annealing experiments. We easily
find solutions in model 1�6, but get stuck in the vicinity
of model 1�4.

In conclusion, we conjecture the hardest instances to be
generated with p0 values close to 1�4. The computational
times for their solution are similar to those in Fig. 4, which
have been obtained for p0 � 1�4 without exploiting the
global algorithm. Resolution times are clearly exponential
in all the ferromagnetic phases (a . 4.25). Moreover we
checked that resolution times in the paramagnetic phases
(a , 4.25) coincide, up to finite-size effects, with those
of random 3-SAT.

The physical interpretation of the hardness in this class
of models is based on the presence of glassy metastable
states of zero magnetization [3] for a . 4.25. These states
are dynamically favored and trap the system for very long
times during a stochastic local search. We believe that the
statistical mechanics approach can have a general valence
in the formulation of hard and solvable problems, allow-
ing for a systematic way of producing random one-way
functions, and can help in the study of the dynamics of
randomized search algorithms.
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FIG. 4. Typical walk-SAT complexity for model 1�4. The
complexity peak is much more pronounced than in Fig. 2; cf.,
e.g., the reachable system sizes. The inset shows the exponential
resolution-time scaling near the peak (a � 4.6) and deep inside
the ferromagnetic phase (a � 7.0). The slopes of the lines are
0.075 and 0.04.
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