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Stochastic (probabilistic) Processes

Example: Flux of neutrons in a nuclear reactor

Reactor is simulated by tracking a neutron with random initial
conditions (position, momentum) through the system. There are
different probabilities for absorbtion, scattering, triggering nuclear
reactions to produce more neutrons, etc., for the different materials
in the reactor. A statistical ensemble of such neutrons gives the
required flux.
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Statistical Physics

Some physical processes, especially quantum processes such as
nuclear reactions, are inherently probabilistic, and can only be
described statistically.

Many large classical systems (e.g. a volume of gas) have so many
variables, or degrees of freedom (positions and velocities of every
molecule), that an exact treatment is completely intractable, and
in any case, not really useful. A statistical approach works very
well, since the number of degrees of freedom is extremely large.

Statistical mechanics can be used to model both these types of
systems.
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Applications of Statistical Mechanics

Statistical Mechanics is applicable to:

e Radioactive processes, nuclear reactions
e Quantum processes in semiconductors, superconductors, etc.
e High energy physics, reactions in particle accelerator collisions

e Thermal properties of matter (solids, liquids, gases), phase
transitions, heat conduction

e Magnetic and electronic properties of matter
e Metallic alloys

e Diffusion and percolation

Paul Coddington, NPAC, paulc@npac.syr.edu Jan 96, CPS-MC-5

CPS 713 Monte Carlo Simulation Statistical Mechanics

Systems with Many Degrees of Freedom

Example: Thermodynamic properties of gases

It is totally impractical and not useful to know the exact microstate
(positions and momenta of all molecules) of a large volume of gas.

The useful properties are statistical: average energy of particles
(temperature), average momentum change from collisions with
walls of container (pressure), etc.

The law of large numbers implies the error in the averages
decreases as the number of particles increases. Macroscopic volume
(state) of gas has O(10%%) molecules. Thus a statistical approach
works very well!

A given state or configuration of the system occurs with a
particular probability, subject to a probability distribution.
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Calculations in Statistical Mechanics

Analytic methods: almost always approximations. Very few
exact solutions. Good for understanding basic physics, but often
break down in regions of interest such as phase transitions. Little
knowledge or control of errors, not easily systematically improvable.

Monte Carlo methods: calculations usually involve sums or
integrals over very large number of dimensions or configurations.
Monte Carlo is the obvious choice. Can compute quantities for any
parameter values (including where analytic methods don’t work).
Errors can be estimated, and are systematically improvable by
using more sample configurations and larger systems (i.e. more
computer power!).
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Applications of Statistical Mechanics (cont.)

Statistical mechanics techniques are also applicable to:

e Quantum field theories of electromagnetism (electrons, photons)
and strong nuclear force (quarks, gluons)

e String theories and quantum gravity

e Quantum chemistry (structure and interactions of molecules)
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Example: Spin Models of Magnetism

This example will be used as the basis for most of the discussion of
simulation in statistic physics, for a number of reasons:
e Simple models of real physical systems

e Relevant to a variety of other systems linked by the theory of
critical phenomena and phase transitions, e.g. thermodynamics
and quantum field theory

e Analytic solutions exist for some simple models, which is useful
for checking numerical techniques

e Classic example of the use of Monte Carlo methods
e Different algorithms exist

e Interesting application for parallel computation — a lot of work
has been done on parallel computers (and has helped drive their
development)

Paul Coddington, NPAC, paulc@npac.syr.edu Jan 96, CPS-MC-9

SPIN MODELS




Simple Model of Magnetism

Unpaired electron spins couple and align. The sum of their
magnetic fields gives macroscopic magnetism.

low temperature =

1

high temperature
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order
alignment
large magnetization

disorder (thermal fluctuations)
random alignment

spins and fields cancel

no magnetization
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Spin Models

Magnetic Phase Transitions

Many magnetic crystals have a phase transition from a magnetized
(ordered) state to a demagnetized (disordered) state. This is not
just a simple change in magnetization — it is characterized by a
divergence of certain quantities (for an infinite system) at the

Curie Temperature T..
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Ising Ferromagnet

For this model, statistical mechanics tells us

low temperature (I’ — 0) — low E
— spins aligned
— large magnetization

large thermal energy
spins randomly aligned
no magnetization

high temperature (k7T > J)

L

Here magnetization M =3 5;.

So low 1" and high T behavior for the Ising model is the same as a
real ferromagnet.
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The Ising Model

Spins have only two states, +1 (1) or —1(|). Energy is given by
E=-J > SZSJ
(i.5)
S; = spin at site ¢ of crystalline lattice
(i,j) = nearest neighbors in the lattice
J = interaction strength

17,1l  spins aligned = E=-J
71,17 spins not aligned = E =+J

If J > 0, the state of lowest energy is when all spins are aligned.
This is called a ferromagnet.

J < 0 is an antiferromagnet, which also occurs in real systems (will
come back to this later).
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Statistical Mechanics of Spin Models

How does one go about solving the Ising model?

Want to work out thermodynamic averages of physically
measurable quantities such as the magnetization M and the energy
E as a function of the temperature 7. The thermal average of M is

(M) =3 p(C) M(C)

where M (C') is the magnetization of the configuration C, p(C) is
the probability distribution for the configuration as a function of 7',
and the sum is over all configurations.

A fundamental result in statistical mechanics, which we will not
derive here, but accept as a physical law, is that p is the Boltzmann
distribution.
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Solution of the Ising Model

This model was proposed by Lenz in 1923 as a problem for his
graduate student, Ising, who showed that the 1-d model had no
phase transition, i.e. the magnetization varied continuously and
slowly from 7' = 0 to T' = oo, with the susceptibility x staying
finite.

Onsager solved the 2-d problem exactly in 1944, showing that it
had a phase transition of the type seen in real ferromagnets. This
led to great advances in the theory of phase transitions and critical
phenomena.

The 3-d problem also has a phase transition, but is not exactly
soluble. Results come from analytic approximations and Monte
Carlo simulation, which is the usual case for more complicated spin
models.
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MONTE CARLO METHODS
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The Boltzmann Distribution

The Boltzmann probability distribution is defined by

1
p(C') — Ze_E(C)/kT
7 — Ze—E(C)/kT

C

Here E is the energy (or, more generally, the Hamiltonian) of the
configuration, 7' is the temperature, and k is Boltzmann’s constant.
For convenience we often choose units so that £ = 1, in which case
T is measured in energy units.

Z is called the partition function, and is the fundamental quantity
in statistical mechanics. All quantities of interest can be extracted
from Z, so an analytic formula for Z implies an exact solution of
the model. The sum will actually be an integral if the space of
possible configurations is continuous rather than discrete.
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Monte Carlo Simulation

To calculate sums (or integrals, if the spins are continuous-valued)
over such a large number of degrees of freedom, we resort to Monte
Carlo techniques.

As with the Monte Carlo integration mentioned earlier, we could
just generate configurations at random, and approximate the real
thermal averages, such as (M), by Monte Carlo averages:

1 Z M(C;) e BCH/FT
M 3

N Z o—E(C))/}T
i=1

The problem here is that because of the rapidly varying
exponential function in the Boltzmann distribution, most randomly
chosen configurations will make a negligible contribution to the
sum, since E will be relatively large.
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Review of Monte Carlo Integration

I = [ f(z)da
@é f(zi)

Q

Instead of choosing x; at regular intervals, just choose them at
random. Error is purely statistical, o« 1/v/ N independent of the
dimension of the integral. Other integration methods have error

x 1/N4,

Example is the numerical estimate of pi, using simple 2-d Monte
Carlo (dartboard method).

T :/1 /1p(:v y) dz dy

N
%E p(i, y:)
plz,y) =1  22+3y* <1
=0 otherwise
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Importance Sampling

In order to get sensible, accurate results when simulating statistical
systems with a rapidly varying Boltzmann distribution, it is vital
to use the idea of importance sampling in Monte Carlo integration.

Clearly the ideal situation would be to sample configurations with
a probability given by their Boltzmann weight p(C'), which gives a
measure of their contribution to the sum total. Then the Monte

Carlo average for M would just be:
1 N

This is great! Except that the sampling probability
p(Cy) = e PG/ | 7 depends on the partition function Z, which is
basically what we are trying to calculate in the first place!

If we don’t know what p(C') is, how can we do this?
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Calculating the Partition Function

Suppose we want to calculate the exact partition function Z
numerically. Need to do this for all 7', but let’s start with just one
temperature. For a real system, want O(10%®) spins, but let’s start
small and try to solve for a 32 x 32 lattice, i.e. O(10°) spins.

Number of configurations in the sum = 232*3% ~ 1039,

Suppose we had a gigantic parallel supercomputer, with 10 million
processors. Each processor could generate a configuration C,
calculate E(C) and the Boltzmann factor e F(©)/*T and add it to
the sum over configurations in one nanosecond (less than the time
for a single instruction for the fastest modern computer). We run
this calculation for the age of the universe. This gives

107 procs x 10° configs/proc/sec x 10* sec/yr x 10 yrs
~ 10% configs (not real close to what is needed)
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Detailed Balance

Clearly a sufficient (but not necessary) condition for an equilibrium
(time independent) probability distribution is the so-called detailed
balance condition

W(A—B)P(A,t) =W(B— A) P(B,t)

This method can be used for any probability distribution, but if we
choose the Boltzmann distribution

W(A—B) p(B) e FB/T

W(B—A)  p(A) e BQA/HT
o~ AB/KT

AE = E(B) — E(A)

N.B. Z does not appear in this expression! It only involves
quantities that we know (k,T’) or can easily calculate (E).
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Markov Processes

Let us set up a so-called Markov chain of configurations C; by the
introduction of a fictitious dynamics. The “time” t is computer
time (marking the number of iterations of the procedure), NOT
real time — our statistical system is considered to be in equilibrium,
and thus time invariant.

Let P(A,t) be the probability of being in configuration A at time t.

Let W(A— B) be the probability per unit time, or transition
probability, of going from A to B. Then:

P(A,1+1) = P(A,1) + £ [W(B—A) P(B,t) = W(A— B) P(A,1)]

At large t, once the arbitrary initial configuration is “forgotten,”
want P(A,t) — p(A).
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Monte Carlo Algorithms

So we have a valid Monte Carlo algorithm if:

e We have a means of generating a new configuration B from a
previous configuration A such that the transition probability
W (A — B) satisfies detailed balance

e The generation procedure is ergodic, i.e. every configuration can
be reached from every other configuration in a finite number of
iterations

The Metropolis algorithm satisfies the first criterion for all
statistical systems. The second criterion is model dependent, and
not always true (e.g. at T'=0).
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The Metropolis Algorithm

This dynamic method of generating an arbitrary probability
distribution was invented by Metropolis, Teller?, and Rosenbluth?
in 1953 (supposedly at a Los Alamos dinner party).

There are many possible choices of the W’s which will satisfy
detailed balance. They chose a very simple one:

W(A—)B) — ¢ AB/KT it AE >0
=1 if AE<O0
So, if E(B) > E(A)
W(A— B —[E(B)-E(A)|/kT 1
(A=B) _ e o~ AE/KT

W(B—A) 1
and if E(B) < E(A)
W(A— B) 1 _ ~AB/KT

W(B—A) e EBA-EBIHT ~
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COMPUTER SIMULATION
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Monte Carlo References

Here are some references to books with introductions to Monte Carlo methods,
especially for statistical physics:
e S. Koonin, Computational Physics

e H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods,
Vol. 2

e O. Mouritsen, Computer Studies of Phase Transitions and Critical Phenomena

e M.H. Kalos and P.A. Whitlock, Monte Carlo Methods, Vol. 1. Basics
These are a bit more advanced:

e K. Binder ed., Monte Carlo Methods in Statistical Physics
e K. Binder ed., Applications of the Monte Carlo Method in Statistical Physics

e D.P. Landau et. al, eds. Computer Simulation Studies in Condensed Matter
Physics: Recent Developments

e K. Kremer and K. Binder, Comput. Phys. Reports 7, 259 (1988).
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Metropolis Algorithm for the Ising Model

For the Ising model, the obvious change in the configuration is to
try to update (or “flip”) a spin, i.e. flip the sign (or direction) of
the spin variable. If we try to change many spins at once, AE will
be large, so the probability to accept the change, e*&/*T will be
small. So update a single spin at a time.

For a single spin flip, AE depends only on the spin values at the
site and its nearest neighbors, i.e. the update is local.

If AE <0, we make the proposed change.
If AE > 0, we make the change with probability e~ 2F/*T
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The Metropolis Update

Note that the Metropolis algorithm does not specify how the
changes to the configuration should be made — it just says that
any proposed change to the system should be accepted with a
certain probability that depends on the change in energy.

How the changes are made depends on the variables and the model
being studied. The only constraints on the update procedure are:

e it should be ergodic

e it should not be biased in such a way as to violate detailed

balance

Another issue is efficiency — the procedure should sample the
configuration space as effectively as possible. There is often some
freedom in tuning the algorithm to improve efficiency and
performance.
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Code for Metropolis Algorithm (in Fortran 77)

See Fig. 1.
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Programming the Metropolis Algorithm

Update a single site at a time. Choose sites at random to ensure no
bias (in most cases, this is not really necessary, and a simple
contiguous loop over lattice sites is sufficient).

A loop over all sites is referred to as one Metropolis sweep (or
iteration).

The probabilistic part of the algorithm is done using a random
number generator (hence the name — Monte Carlo — in reference to
games of chance). Generate a random floating point number r in
[0,1). A process with probability p is performed if r < p.

The Metropolis algorithm is very simple to program.
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Phase Transitions

Phase transitions are described by an order parameter which
differentiates the two phases. Usually it is zero in the disordered
phase, non-zero in the ordered phase, e.g. the magnetization for a
magnetic system.

Phase transitions are classified in part by their order:
e First order — discontinuity in the order parameter or energy, i.e.,
first derivative of the partition function.

e Second order — divergence in the susceptibility or specific heat,
i.e., second derivative of the partition function.

e Third order, etc.

First order transitions are classified by quantities such as the latent
heat, the discontinuous change in the energy at the critical point T..
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Measurements

We generate configurations of the Ising model using a Monte Carlo
algorithm, such as Metropolis. Then what do we do with them?
We want to numerically measure quantities of interest, such as:

energy E = —%(%Sﬂj V = volume (# sites)
irj

magnetization M = %ZSi
' 2

correlation function I'(n) = %ZSZ-SHN — (‘1/ _SZ-)

correlation length  T'(n) ~ e™"/¢

specific heat C/v =138 = <(E - (E))2> = (E?) — (E)?
susceptibility X/V = F 5 = (M = (M))?) = (M?) — (M)?

Quantities such as these are measured for each configuration, and
the averages and statistical errors calculated.
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PROBLEMS, SUBTLETIES AND TRICKS OF
THE TRADE
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Critical Exponents

Second order transitions are classified by their critical exponents,
which measure how quantities diverge at the critical point.
N.B. These are asymptotic (T" — T,) results.

M ~ |T — Tc|'3 magnetization
X ~ |T — TC|A’/ susceptibility
C ~ |T — Tc|a specific heat
& ~ |T — TC|V correlation length

In many cases, these exponents («, 3,7, v) are universal, i.e., they
do not depend on details of the model, but only on gross features
such as the dimension of the space and the symmetries of the
energy function. This explains the success of very simple spin
models like the Ising model in providing a quantitative description
of real magnets with complex interactions.
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Thermalization

Before taking measurements, we must be sure that the Markov
process has thermalized, or reached equilibrium, i.e. P(A,t) = p(A)
and the arbitrary initial configuration has been “forgotten.”

Approach to equilibrium is exponential ~ e/”. The autocorrelation
time T can be very large. You could thermalize for 100,000 sweeps

at a certain 7', but if 7 is of the same order, then the measurements
are suspect.

There are 3 main techniques for checking for thermalization:

Binning: Check to see whether measurements are converging to a
constant average value. Can do this by binning the data, i.e.
splitting measurements up into a number of large contiguous
segments (bins). Averages are taken over each bin, and data from
initial deviant bins is discarded. Binning can also be used to
calculate errors (see later).
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Problems in Monte Carlo Simulations

Although Monte Carlo simulation (using the Metropolis algorithm,
for example) appears very straightforward, there are in fact many
problems and subtleties that can trap the unwary and produce
unreliable results.

The following are some examples of common problems that arise in
Monte Carlo simulations, along with examples of techniques to
attempt to overcome them.
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Ergodicity

Can be very difficult to prove that the method of choosing new
configurations is ergodic (especially at T=0). Can get trapped in
subsets of configuration space, such as periodic loops.

May also have updates that are quasi-ergodic — there may be a
high energy barrier between subspaces, so it is theoretically
possible to reach all possible states, but highly improbable in a
finite time simulation.

Check: Compare results from multiple runs with different initial
configurations.
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Thermalization

Autocorrelations: Measure the autocorrelation time 7 over the
whole simulation, and then throw away data for at least the first
107 sweeps.

Hot and cold starts: Start from hot (random) configuration and
also a cold (ordered) configuration. When the two have converged
to the same results, then the system is equilibrated. (But what
about first order phase transitions at 7.7 Usually will not get
convergence — in fact this is a good way to look for first order
transitions.)
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Finite Size Effects

When studying any macroscopic system with a very large number
of degrees of freedom, invariably make an approximation and
simulate a smaller and/or discretized model system. This
introduces systematic errors called finite size effects. Have to
understand these, and be able to extrapolate to an infinite system,
usually by doing a number of simulations at different system sizes.

For spin models, we have a finite d-dimensional lattice of V = L¢
sites. But only get a true phase transition (i.e., divergence) when
L — o0. For a finite system, get rounded peaks rather than
divergences. The peaks narrow and increase in height as L is
increased, and the location of the peak shifts slightly.

Many problems require an empirical extrapolation to an infinite
system. But for phase transitions in statistical mechanics, some
elegant and useful theoretical results exist.
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Fitting

Once measurements are taken, generally need to fit the data to find
parameters such as critical exponents, using a multi-parameter fit
to data which usually has large errors. This is very difficult!

For example C = A+ B|T — T.|”" requires a four parameter fit,
and often there is so much freedom that a wide range of values are
possible. Usually need to assume A = 0, and get 7. from other
measurements.

The above formula is only true “asymptotically close” to T.. How
close is that? Not always clear. May see “apparent” or
pseudo-critical exponents, which change or disappear as the size of
the system is increased and we move closer to 7.

There may also be log |1 — T.| corrections to the asymptotic
formula, which are hard to distinguish from a small power-law
exponent. In this case may need input from theory.
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Finite Size Scaling

In some instances, e.g. second order phase transitions, the form of
the asymptotic (large L) behavior is known for finite size systems.

Crax(L) ~ Loty Chax(L) is height of specific heat peak
|T.(L) — T.| ~ LYY T.(L) is where Ciax(L) occurs, T = Te(00)
M (TC> ~ L_’B/ v Magnetization at 7, is zero only for L — oo

X (TC) ~ L0V Susceptibility diverges only for L — oo

Example of simple (non-rigorous) “proof” (for specific heat):

fmaX(L) ~ L correlation length cannot exceed length of lattice!
gmax(L) ~ |TC(L) — Tc|_y from definition of v
Therefore

L' ~ |TC(L) - T0|
Cmax(-L) ~ |TC(L> _ TC|_a
~ La/y
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Illustration of Finite Size Effects

Substitute for scanned figure 77
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Boundary Conditions

Generally use periodic boundary conditions, where the lattice wraps
around on itself to form a torus. This has been shown to give the
smallest finite size effects.

But then must be careful that in measuring the correlation
function, can only take measurements to L/2 for a lattice of size L,
since a distance n is equivalent to a distance n + L/2 on a lattice
that wraps around on itself.
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Finite Size Scaling

These relations are extremely useful, and even allow us to extract

exponents and T.(occ0). But only if we are at “large enough” L. If £
is very large (but not infinite), may get incorrect “pseudo-critical”

exponents.

This is often the case at a “weakly” first order transition (very
small latent heat). So it is often very difficult to distinguish
between a first and second order phase transition, or even to say for
sure if there is a phase transition at all —is £ = 0o, or just £ > L7
May need extremely large system sizes to get correct results.

In general, we don’t know the form of the finite size scaling, so must
try to fit data to a scaling function, or go to large enough systems
so that results — constant or can do a simple linear extrapolation.
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Random Number Generators

Generating “good” random numbers can be a major problem in
Monte Carlo simulations. Many basic random number generators
(RNGs) supplied with computers (especially parallel computers)
are not sufficient. Particularly true in the past, but unfortunately
still true far too often today!

There are many statistical tests for uniform distribution,
correlations, etc. Monte Carlo measurement of the energy of the
2-d Ising model is a good test — the result is known exactly for L?
lattice. Some RNGs pass statistical tests, but fail the Ising model
test!

Even some “good” RNGs having adequate randomness properties
are not good enough for Monte Carlo simulation because their
period of repetition is too small.
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Tuning the Acceptance

For the Ising model, there is only one possible change to the state:
S; — —S;. More generally (e.g., continuous spin models) we are
free to make the change in the variable as large or small as we like.

A small change means AFE is small and so the acceptance
(proportion of proposed changes that are accepted) is close to 1.
But then we move slowly through configuration space. Large
changes usually have large AE and thus low acceptance, which
again means that configuration space is not sampled efficiently.

General practice is to do a tradeoff and tune the size of the change
so that the acceptance ~ 0.5.
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Critical Slowing Down

A problem with Monte Carlo (MC) simulation is that the error
decreases only as 1/ VN , 5o need to do 100 times more work to get
one more significant figure accuracy. Unfortunately, things are even
worse. Error is only 1/v/N for N independent measurements. But
MC configurations are usually correlated — C;1; depends on C;.

Can check this by measuring the autocorrelation function (similar
to correlation function except in computer time, not real space) for
an operator (measurement) A:

(A0 A(0)) — {A(0))?
P = a0)) - (A0))2

~ e—t/Texp

Texp 18 the (exponential) autocorrelation time, and is equivalent to
the 7 which measures equilibration time of the Markov process.
Need to thermalize for time ¢ >> Teyp.
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Random Number Generators

Multiplicative linear congruential generators (MLCG) using 32-bit
integers have a period of at most 23! ~ 10!, This many random
numbers can be generated in seconds on a modern workstation.

Period must be much greater than the number of random numbers
used in the simulation, or else the results can be incorrect. Modest
Ising model simulation, 1024? lattice, 107 sweeps, uses ~ 103
random numbers.

Using 64-bit words, or combining two 32-bit MLCGs, can give
periods ~ 10'® ~ # nanoseconds per year. These are adequate for
largest simulations done today (Gigaflop-year). Other generators
(lagged Fibonacci, etc.) have even longer periods. These or
combined 64-bit MLCGs will be required for Teraflop-year
simulations.

Random number generators will be the subject of a later lecture.
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Dynamic Critical Exponents

To decorrelate a configuration, need to make changes on a scale of
the spatial correlation length. For local MC algorithms (such as
Metropolis) the effect of a change is only seen by nearest neighbors.
Since the update is a stochastic process, the changes should
propagate through the system like a random walk, so the number
of iterations required to propagate a distance ¢ goes like £2. At the
critical point, ¢ ~ L, so we expect 7 ~ L?. This is a major problem
for MC simulations, since we need large L.

More generally, 7(L) ~ L* where z is called the dynamic critical
exponent. For a local algorithm z > 1 and usually z = 2. One of
the active areas of research in MC simulation is trying to find new
algorithms with z < 2. These are usually non-local, multi-scale
algorithms, c.f. multigrid methods for solving PDEs, where the
same type of problem occurs.
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Critical Slowing Down

The integrated autocorrelation time

1 00
Tint = 5 + tgl p<t)
is a measure of how correlations affect statistical errors. It is
normalized so that Ty = Texp if p = e~t/7ew_ Tt can be shown that
for MC measurements

. 2Tillt
€Iror 1n mean — N e

o = +/variance

A major problem for MC simulations is that 7, diverges at T.!!
This is known as critical slowing down.
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Acceleration Algorithms

A number of different methods have been used to attempt to
“accelerate” the dynamics of Monte Carlo updates (i.e., reduce z).

e Over-relaxation

e Multigrid

e Fourier acceleration

e Cluster algorithms
The first two are commonly used to improve numerical solutions of
PDEs. In some cases, over-relaxation can reduce z to = 1.
Multigrid Monte Carlo and Fourier acceleration work well in

certain cases. Cluster algorithms work very well, but currently are
only applicable to a small class of spin models.
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The Potts Model

The Potts model is an obvious generalization of the Ising model to
an arbitrary number, (), of discrete states. Proposed by Domb to
his grad student, Potts.

E=-JX (S(Si,S]’)
(i:)

6 =1 ifSi:Sj = F=-J
=0 lfSQ;éS] = FE=0
As for Ising model, if J > 0, the energy is lower if neighboring
spins are the same (aligned).
2-state Potts < Ising.

(Q > 2 model has different critical exponents, interesting phase
structure. ) > 5 has first order transition in two dimensions.
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Cluster Algorithms

The idea behind cluster MC algorithms is very simple. Local MC
algorithms perform poorly because they update only one spin at a
time. Cluster algorithms use a clever way of finding large clusters
of sites which can be updated at once. (Remember that trying to
update a group of sites chosen at random gives a large AE and
thus a small acceptance).

Cluster algorithms were invented by Swendsen and Wang in 1987,
for Ising and Potts spin models. They have since been generalized
to other models, and other algorithms.
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The Swendsen-Wang Algorithm

Swendsen-Wang (SW) found that by placing bonds between
neighboring sites with the same spin value, the Potts model can be
written in terms of interacting clusters of connected spins.

For the particular choice p=1—e~7 (3 = ) the interaction
energy is zero, so the clusters are independent. This means we can
update all the clusters (by changing the current spin values to a
random new spin value) completely independently.

Since the clusters can be very large, the update is highly non-local,
and z can be very small (even zero).

Paul Coddington, NPAC, paulc@npac.syr.edu Jan 96, CPS-MC-57

CPS 713 Monte Carlo Simulation Other Monte Carlo Algorithms

Percolation

Swendsen and Wang derived their algorithm from a simple relation
which transforms a Potts spin model into a bond percolation
model. What is percolation?

Suppose we have a two-dimensional
lattice of sites, and we put a bond
between every pair of neighboring
sites with probability p. Sites are
then bonded together into connected
clusters.

At a critical value of p, will get percolation, i.e., one cluster will
span the lattice, meaning that there is a connected path across the
lattice through a single spanning cluster. For an infinite
two-dimensional lattice, p. = ;.
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Correlations

Correlations fig goes here.
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The Wolff Algorithm

Wolft introduced a variant of the SW algorithm, in which a site is
chosen at random, and a single cluster is grown around the site.
This tends to favor larger clusters, and thus smaller autocorrelation
times. Wolff also generalized the cluster algorithms to continuous
spin models.

Cluster algorithms work amazingly well for some models, e.g., 2-d
Ising model, where z ~ 0. Even for a large 5122 lattice, 7 = 10,
which is 0(1000) times smaller than 7 for the Metropolis algorithm.
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Parallel Monte Carlo Algorithms

Metropolis algorithm for spin models is easy to parallelize
efficiently, since it is regular and local.

e Regular data structures = simple domain decomposition
e Regular algorithm => lots of parallelism and perfect load balance

e Local interactions = local communications

Swendsen-Wang algorithm is difficult to parallelize efficiently,
since it is irregular and non-local.

e Clusters are irregular (fractal!) in size and shape = hard to load
balance, lots of non-local communication

Wolff algorithm is almost impossible to parallelize efficiently.

e Grow a single, irregular cluster starting at a random lattice site
= little parallelism, very hard to load balance
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Connected Component Labeling

The cluster algorithms are very different to Metropolis. The main
computational task is to take local information (bond connections)
and work out global information (clusters of sites).

This is an example of connected component labeling, which is a
standard graph problem — given a graph of vertices and edges, the
problem is to identify those vertices which form a connected set,
where a vertex is in the set if it has an edge connecting it to
another vertex in the set. For cluster algorithms, the vertices are
the lattice sites, the edges are the bonds, and the connected
components are the clusters.

Component labeling is commonly used in image processing, to join
neighboring pixels into connected regions which are the shapes in
the image. Efficient sequential algorithms exist for this procedure,
however implementing an efficient parallel algorithm is difficult.

Paul Coddington, NPAC, paulc@npac.syr.edu Jan 96, CPS-MC-60




Parallel Metropolis Algorithm

The Metropolis algorithm for a spin model is well suited to
parallelism, since it is

e regular — so can use standard data decomposition of the lattice
onto the processors and get good load balance

e local — the update of a site depends only on its nearest

neighbors, so only local communication is required

However, cannot update all sites at the same time. This would
violate detailed balance, since a site and its nearest neighbors are
dependent, and thus must be updated separately.
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Parallel Metropolis — Data Parallel

Parallel Metropolis using a checkerboard update is a data parallel
SIMD algorithm. It is very simple to code in Fortran 90 and High
Performance Fortran (HPF).

e Use standard domain decomposition and distribute the 2-d
lattice among processors using (BLOCK,BLOCK) form.

e Use a logical mask (black) which only activates the appropriate
(abstract) processors which deal with black sites. Then change
the mask (black = .NOT.black) and update the other sites.

e To get data from neighboring sites, use periodic shift operations
(CSHIFT) for periodic boundary conditions.
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Red/Black or Checkerboard Update

Instead, the lattice is partitioned into a checkerboard of alternating
red and black sites (note this can also be done for d > 2
dimensions). Can then update all the black sites in parallel (since
they are independent), followed by all the red sites in parallel.

+

This is known as a red/black or checkerboard update.

Note that unless there is more than one site per processor, the
efficiency is at most 50% since half the processors will be idle.
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Parallel Metropolis — Message Passing

If the number of lattice sites per processor is P P
> 27 need not use the checkerboard scheme, ® O O
since cannot update neighboring sites at once. O O|O O

This algorithm, when written using a message passing language
such as MPI, looks exactly the same as the sequential algorithm!
The only difference is how the shift subroutine, which finds
neighboring spin values, is implemented:

e sequential algorithm — shift handles the boundary conditions.

e parallel algorithm — shift handles boundary conditions and
does message passing if the neighboring spin is on a different
Processor.

Also, for the parallel algorithm, the size variable refers to the size
of the sub-lattice on each processor, not the total lattice size.
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Metropolis Code in a Data Parallel Language

See Figure 2.
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Coarse Grained Algorithm

On a coarse grained MIMD machine, there is a more efficient
parallel Metropolis algorithm. This requires a checkerboard
partitioning of the lattice. The data communication is done as
large blocks rather than single values, by passing a block of edge
data to neighboring processors after each red or black update.

This blocked communication greatly reduces the latency time for
communication, thereby improving efficiency. It is also possible to
overlap communications with computation, by computing edge
values first, and sending them while the interior points are being
computed. $ @
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Efficiency of the Parallel Algorithm

Since the Metropolis algorithm for spin models is local and regular,
it should parallelize very efficiently, even for the Ising model, which
has very little computation.

For a 2-d grid of N = P x P processors, use a (BLOCK,BLOCK)
distribution of the V' = L x L sites of a 2-d lattice over the processor
grid so that every processor has an [x[ sub-lattice (I = L/P).

Communication time o< [ — —
(# edge sites of sub-lattice,
i.e. perimeter). P P,

Calculation time o< I? L
(# sites of sub-lattice, P, P,
i.e. volume).

Thus, as long as [ is large enough, the communication/calculation
ratio will be small, and the efficiency will be near 1.
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Measurements

Measurements of standard quantities such as energy and
magnetization are easily done in parallel.

1. Calculate the quantities locally (e.g., energy per site), which can
be done completely in parallel (no checkerboarding required)

2. Do a partial sum over sites in each processor
3. Combine the partial sums on each processor, using for example

and EXCOMBINE in Express C or KXCOMB in Express Fortran.

In data parallel languages such as HPF, the last two steps can be
implemented using the SUM primitive. For example,
energy = SUM (energy-per-site) / volume
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Relation to PDE Solvers

The Metropolis algorithm for a 2-d spin model is similar in many
ways to numerical methods for solving differential equations, such
as Laplace’s equation V2¢ = 0. This can be discretized onto a 2-d
grid, with the update depending only on nearest neighbor points,
e.g., an iterative scheme to solve this equation would replace ¢; by
the average value of its four neighbors.

It is possible to iteratively update all sites at once (Jacobi
algorithm). However, using a red/black update gives better
convergence (like Gauss-Seidel). This is parallelized just like coarse
grain parallel Metropolis algorithm.

e standard block data decomposition
e red/black or checkerboard update

e local (blocked) communications
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Non-local Measurements

Some measurements are non-local, e.g., the correlation function
['(n) = %; SiS;1,- This can also be easily calculated in parallel, by
continually shifting a copy of the spin variables one site at a time.

1. After the first shift, every (abstract) processor calculates the
local value of I'(1), i.e., S;S;+1, at each site, and the sum over
sites is taken (e.g. using SUM).

2. After the second shift every processor calculates the local value
of I'(2), and the sum over sites is done.

3. This is continued until the spin has been shifted halfway around
the lattice (only halfway due to periodic boundary conditions).

For message passing languages it is more efficient to only do the
partial sums on each processor after every shift. The global sums
are done at the end on the vector I'(n) rather than each of the
individual values I'(1),T°(2), ...in turn, so as to reduce latency.
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Parallel Cluster Algorithms

For the Swendsen-Wang cluster algorithm, all sites need to
calculate their cluster labels, so can use standard domain
decomposition.

The measurements can be done in parallel, just as for Metropolis.

Updating the spins can easily be done in parallel, as can setting up
the bonds — all the sites just look at their nearest neighbors in the
positive directions, and put a bond between them with probability
p=(1—e"7) §(s;,s;) for the Potts model.

The only difficult problem in parallel is the connected component
labeling, that is, assigning to all the sites a cluster label that is
unique for each cluster. So implementing an efficient parallel
Swendsen-Wang cluster algorithm is basically equivalent to the
problem of implementing an efficient parallel connected component
labeling algorithm.
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The first attempts at parallelizing irregular cluster algorithms got poor speedups
compared to regular Metropolis algorithms. Figure taken from A.N. Burkitt and

D.W. Heermann, “Parallelization of a Cluster Algorithm”, Comp. Phys. Comm. 54,
210 (1989).
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The Need for a Parallel Algorithm

The reason we want to use cluster algorithms is that they offer
such a large reduction in computation time over the traditional
Metropolis algorithm. For example, for the Ising model on a 5122
lattice, the number of Metropolis iterations required to generate an
independent configuration is of order 1000, whereas for the cluster
algorithms it is of order 10, i.e., a 100-fold improvement in speed.

However, early attempts at running cluster algorithms on parallel
supercomputers gave speed-ups only of order 10, whereas the
Metropolis algorithm can easily have speed-ups of 100-1000 on
vector and parallel supercomputers.

So on modern supercomputers, the improvement of the cluster
algorithm is lost unless an efficient parallel algorithm can be found.
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Labeling or Growing a Single Cluster

First look at how sequential component labeling algorithms work.
Start with the Wolff algorithm, which “grows” a single cluster. Can
liken this to the growth of an ant colony, in the following manner:

1. Pick a site at random and place an ant on it.

2. The ant reproduces by placing a child on the four @
neighboring sites (in 2-d) with probability p. ®

3. This “generation” of ants also looks at each of ®
its four neighbors in turn, and if it is not already
occupied, places a child of its own there with ?

probability p.

4. The ant colony continues to grow until the final @ paent (initia site)
generation produces no children. children

@ 3rd generation
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Regular and Local vs. Irregular and Non-Local

The same type of problem occurs in many different guises in
computational physics. In many applications, there are standard
algorithms that are regular, simple, often local, and thus parallelize
very efficiently. However, it is this very regularity and locality that
makes them poor algorithms.

Complex physical problems and physical systems are usually
irregular, often non-local, and change rapidly with time, so simple
regular and local algorithms tend to have problems, such as critical
slowing down.

More complex algorithms, such as non-local, irregular cluster
algorithms; multiscale and multigrid methods for PDEs and spin
models; adaptive, irregular grids for finite element calculations;
hierarchical, adaptive N-body solvers; etc., all work much better,
but are much more difficult to parallelize!

Paul Coddington, NPAC, paulc@npac.syr.edu Jan 96, CPS-MC-78




Breadth-First Search (FGHK)

First proposed by Fisher and Galler, implemented in a more
efficient manner by Hoshen and Kopelmann for percolation studies.

Uses the idea of a rooted tree. Each site has a pointer to another

site in the cluster, and so on down a tree-like structure. The site

that is the root of the tree has the label for the cluster. Sites find
their labels by traversal of the tree. Periodically pruning the tree
(making shortcuts) makes the algorithm efficient.

The breadth-first search is better suited to a parallelism than the
depth-first search, since it involves an outer loop over all sites,
which can be parallelized using standard domain decomposition.
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Depth-First Search (“Ants-in-the-Labyrinth”)

A Wolff cluster is grown in the same way as the ant colony analogy.
Placing a baby ant on a new site corresponds to putting a bond
between the two sites (with probability p), and an ant colony
corresponds to a cluster.

This is straightforward to program — just need to keep track of
which sites are in the cluster, and which are the newly labeled sites
(latest generation of ants) to be looped over in the next iteration.

This algorithm can also be used to do the connected component
labeling for all sites in the Swendsen-Wang algorithm, given the
configuration of bonds, by just adding an extra loop over all sites.
If a site has already been labeled (assigned to a cluster), go to the
next site. If not, increment the cluster label counter and give it to
a new parent ant on that site, which then propagates the label
through the labyrinth of bonds connecting sites in the cluster.
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SIMD Local Propagation

Notice that this algorithm is purely SIMD, since every processor
does the same thing at the same time. Since it propagates the label
only one lattice spacing at a step, the number of steps required to
label the clusters is the maximum path length (along bonded sites)
between any two sites in the same cluster. For cluster algorithms
this will be order L (the length of the lattice), since at T, there is
one large cluster.

This method will work better for labeling small connected
components, and worse for labeling objects such as spirals. The
method is much too inefficient for cluster algorithms, basically
because the parallel algorithm suffers from the same kind of
“critical slowing down” (trying to label a large cluster using local
steps) as does the sequential Metropolis algorithm!

Need a non-local parallel algorithm.
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Local Label Propagation

The simplest and most obvious parallel component labeling
algorithm proceeds as follows, assuming one lattice site per
(abstract) processor.

1. Assign a unique label to each site (e.g., the processor number).

2. Every site looks at its neighbor in the positive z direction.
If there is a bond between them, and the neighbor’s cluster label
is smaller than the label at the site in question, then it sets its
label to be the same as its neighbor’s.
If the neighbor’s label is bigger, then it gets the smaller label.
This is repeated in the y direction (and other directions in
higher dimensions).

3. Repeat the previous step until none of the labels has changed, in
which case the clusters have been correctly labeled.
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MIMD Local Propagation

On a coarse grain MIMD machine, this algorithm is much more
effective. In this case, we can label the clusters on the sub-lattice
on each processor using a fast, efficient sequential algorithm. The
local label propagation is now done only on the edges of the
sub-lattices, to match up labels of clusters that cross processor
boundaries.

Now have good load balancing, and the label of the largest cluster

is propagated across the number of processors, not the number of
sites. For an L? lattice on a P? processor array:

communication ~ P (L) =L calculation ~ L—Q

P P?

P2
lc ~ —
comm /calc 7

As long as L > P, will get good efficiencies for this method.
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Global Equivalencing

Cluster labeling can be looked on as a special case of an
equivalence problem: given a list of equivalences (site i = site j),
put all the elements into equivalence classes (cluster labels). There
are many algorithms known for solving this problem.

Parallel implementation:
1. Label sub-clusters sequentially for sublattice on each node.

2. Each processor looks at the edges of its neighbors and creates a
list of equivalences.

3. Lists are sent to one of the nodes, which creates the global
equivalence classes and returns the results to all nodes.
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Parallel Labeling for Image Processing

There is a large literature of parallel algorithms for pixel
connectivity and connected component labeling applications in
image processing. But many of these are useless for spin models:

1. Pixel connectivity is a special case of component labeling, and
some of the algorithms cannot be generalized.

2. Most computer science analysis of algorithms concentrates on
worse case complexity. We are interested only in average time
complexity to label a large number of configurations.

3. Algorithms with optimal asymptotic efficiencies are not
necessarily optimal on real machines. For one “asymptotically
optimal” parallel component labeling algorithm, need ~ 10°
processors to get a speedup of 1!

4. Some algorithms may work well on small, regular objects, but
not on large, irregular spin model clusters.
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Multigrid Algorithm

Instead of just looking at neighboring sites, look at sites a distance
2™ away (this is fast on a hypercube).

If the label is the same at any point, put a connection between the
sites. If there are connections A 2~ B - C, make a connection

2m+1
—

Now changes in the labels can be propagated long distances in one
iteration. Expect labeling in ~ log, L iterations, each of which
takes ~ log, L multigrid steps, each taking time O(1) on
hypercube. So time complexity of O(log L)?.
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Hierarchical Method

Problems with global equivalencing;:

e Equivalence step is a sequential bottleneck

e One node needs enough memory for all cluster labels
These problems are alleviated by hierarchically merging the labels,
using a quad-tree approach as shown below. Takes log P steps

rather than P. More complicated to implement, a number of
optimizations are required to get good performance.
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Get/Send Algorithm (cont.)

Start with every site (abstract processor) having the processor
number as its unique label (i.e., the root of its own tree). Each
iteration consists of the following steps:

1. Local label propagation

2. Send — if a processor’s label changes during step (1), it sends
the new label to the root of its current sub-cluster (i.e., the
processor number given by its old label), which picks the
smallest of all the labels it receives as its new label.

3. Scan (optional) — propagate labels fast along rows and
columns, using scan or parallel prefiz operations.

4. Get — every site gets the (possibly new) label from the root
processor for its current label.

5. Check for completion — continue if any labels have changed.
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Get/Send Algorithm (Shiloach-Vishkin)

Another non-local SIMD algorithm that has been implemented is a
method similar to an algorithm due to Shiloach and Vishkin. It is
based on the rooted tree approach of the FGHK algorithm
(breadth-first search).

This “Get/Send” algorithm again has ~ log L iterations (rather
than L), and O(log L)? time complexity, since non-local
communications take time O(log L).

This algorithm is faster in practice than multigrid, both of which
are much faster than local label propagation. Currently these are
only implemented on SIMD machines, where performance is quite
poor due to load balance problems. Should be much better on
MIMD machines.
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1. Get/Send algorithm after local label propagation and a scan operation. The colors

represent different cluster labels, and the algorithm starts with random labels at each site.
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The Get/Send and MultiGrid algorithms are logarithmic in the lattice size L, unlike the
simple local label propagation algorithm which usually takes time of order L, but can be

order L? for complex clusters like spirals.
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3. Get/Send algorithm after a few iterations.
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2. Get/Send algorithm after a send.
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Parallel Wolff Algorithm

To parallelize the Wolff algorithm, need to use a parallel depth-first
search (“ants-in-the-labyrinth”) algorithm, since that is how the
Wolff cluster is grown. Unfortunately, this is a sequential process

— each ant generation has to follow the previous one.

The only parallelism is within a generation, i.e. over the

“wavefront” of the expanding cluster. The amount of parallelism is
very limited, especially if the cluster being grown is small.

A major problem in parallelizing depth-first search methods is that
the load balance can be very poor, since the computation is usually
confined to a particular (contiguous) section of the data. Can
sometimes alleviate this problem by using scattered or cyclic data
distribution, rather than the standard block distribution. Howver

there is a tradeoff — the data is no longer local so extra

communication is required.
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4. The final cluster labels.
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Parallel Ants With Cyclic Data Distribution

In distribution
(x,CYCLIC(2)) data dealt out
to processors (indicated with different

2

column-cyclic

is

colors) like cards to card players,

columns at a time.
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The Wolff cluster shown in the previous
figure but now with a column-cyclic

Note

that the load balance is much improved

distribution of data to processors.

by this non-local data distribution.
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Problems with Parallel Ants

i
"
-

LY

The Wolft cluster is shown here in gray, with the initial site in black. A particular

generation of ants is shown in red. The black squares represent processor boundaries for
a standard (BLOCK,BLOCK) data distribution. Note that the load balance (number of

red sites per processor) is very poor.
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Independent Monte Carlo Simulations

This is very easy to do. Just set up different random number
streams on each processor (which is done in any case on a parallel
machine, but here different processors could be different
workstations in a network), set up different random initial
configurations on each processor, and then run completely
independent simulations on each processor. This gives a parallel
efficiency of 100%!

This simple idea works very well for cluster algorithms, as long as
the lattice is small enough that all the data will fit into the
memory of a single processor. This was a problem for early parallel
machines, but is usually no problem for workstation networks and

machines like the IBM SP2. Note that this only works for MIMD
machines, since cluster algorithms are irregular.
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Independent Parallelism

For a data parallel Wolff algorithm, it is not possible to get the
high efficiences that can be obtained for regular (e.g. Metropolis)
algorithms, even using a cyclic data distribution. However highly
irregular Monte Carlo methods, such as the Wolff algorithm, can
be parallelized efficiently, since domain decomposition is not the
only level of parallelism available for MC algorithms.

Remember that the basic idea of MC simulation is to approximate
an extremely large or infinite sum (or large or infinite dimensional
integral) by a finite sum over important configurations. The error
is predominantly statistical, that is, proportional to 1/ V/N, where
N is the number of independent configurations. So here is another
way the simulation can be done in parallel — if different processors
are generating independent configurations to add to the sum.
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Message Passing vs Data Parallel

Coarse grain parallel algorithms using message passing on MIMD
machines give excellent performance for regular algorithms such as
Metropolis, and fairly good performance for irregular cluster
algorithms. This is because the efficient sequential algorithms can
be used on the sub-domain on each processor.

Data parallel languages such as High Performance Fortran handle
regular algorithms very efficiently, and are much easier to program
that explicit message passing languages. However they do not
perform as well for irregular cluster algorithms. This is mainly
because the slower SIMD algorithms must be used even for the
domain within each processor. There are also load balancing
problems.
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“Hybrid” Parallelism

Parallel Swendsen-Wang cluster algorithms for moderate sized
lattices (~ 5122) work fairly efficiently for moderate numbers of
nodes (~ 64) on a MIMD machine. However, this does not prevent
us from using massively parallel MIMD machines with ~ 1000
nodes for this problem.

Can use a hybrid of domain (data) parallelism and independent
parallelism (over different MC runs). For example, can run 8
independent simulations of 64 nodes each on a 512-node machine.

This gives much better performance than running parallel cluster
algorithms on vector supercomputers, since these applications do
not vectorize well.
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RANDOM NUMBER GENERATORS
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Irregular Problems in HPF

These types of irregular, non-local problems provide a real
challenge to efficient implementation (for algorithms and
compilers) in data parallel languages such as HPF.

It may be that good performance can only come by using library
routines, e.g. for connected component labeling in this case, which
would be implemented using an efficient message passing routine.

HPF can handle independent and hybrid parallelism using the
INDEPENDENT construct.
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Essential Properties of a Random Number Generaltor

Repeatability — the same sequence should be produced with the
same initial values (or seeds). This is vital for debugging etc.

Randomness — should produce independent uniformly distributed
random variables that pass all statistical tests for randomness.

Long period — a pseudo-random number sequence uses finite
precision arithmetic, so the sequence must repeat itself with a finite
period. This should be much longer than the amount of random
numbers needed for the simulation.

Insensitive to seeds — period and randomness properties should
not depend on the initial seeds.
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Pseudo-Random Numbers

Monte Carlo simulations are inherently probabilistic, and thus
make frequent use of programs to generate random numbers, as do
many other applications. On a computer these numbers are not
random at all — they are strictly deterministic and reproducable,
but they look like a stream of random numbers. For this reason
such programs are more correctly called pseudo-random number
generators.

A standard pseudo-random number generator aims to produce a
sequence of real random numbers that are uncorrelated and
uniformly distributed in the interval [0,1). Such a generator can
also be used to produce random integers and sequences with a
probability distribution that is not uniform.
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TYPES OF GENERATORS
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Further Properties of a Good Random Number GEnerat

Portability — should give the same results on different computers.

Efficiency — should be fast (small number of floating point
operations) and not use much memory.

Disjoint subsequences — different seeds should produce long
independent (disjoint) subsequences so that there are no
correlations between simulations with different initial seeds.

Homogeneity — sequences of all bits should be random.
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Choosing the Parameters for LCGs

The period and randomness properties of linear congruential
generators are highly dependent on the choice of the parameters A,
C, and M. Poorly chosen values can give very small periods and
bad randomness properties.

One common choice is C = 0, which can speed up the generator on
some computers (although on most machines a combined
multiply/add is no slower than a multiply). This is called a
multiplicative linear congruential generator (MLCG). In this case
we must be careful to exclude zero as a seed (or the period of the
generator would be 1!). The maximum period is thus M — 1.

Since LCGs are mathematically very simple, analytic tests of
randomness, such as the spectral test, can be used to find good
parameter values.
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Multiplicative Linear Congruential Generators

One of the simplest, most widely used, and oldest (D.H. Lehmer,
1948) random number generators is the (multiplicative) linear
congruential generator (MLCG or LCG). The generator is specified
by integer constants A, C' and M, and produces a sequence S; of
random integers via

S; = (A*S.,j_l-l-C) mod M (1)

To generate real numbers in [0,1) we can just use r; = S;/M, so M
should be large (near 2°2 for 32-bit real numbers).

M is the maximum period for this type of generator, but the period
can be much less. A, C' and M must be carefully chosen in order to
produce sequences that are random and have a long period.
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Problems with Linear Congruential Generators

Linear congruential generators are very efficient, are theoretically
quite well understood, and work well for many applications.
However they have some drawbacks (which can generally be
improved by increasing M):

e The maximum period is M — 1, which is much too small for 32-bit
generators where M < 2%2 =~ 107, since this can be exhausted in a
few minutes on a workstation. Need to use integers with at least
48 and preferably 64 bits. On most machines this requires
multiple precision arithmetic which can be slow.

e d-tuples of successive random numbers show a regular lattice
structure when plotted in d-dimensions. This is the scatter plot
test.

e These generators have been proven to have correlations between
numbers that are 2" apart in the sequence. This can be a major
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Some Good Parameter Choices for LCGs

32-bit

A=69069, C=0 or 1, M=22 (VAX)

A=1664525, C=0, M=2% (transputers)

A=16807, C=0, M=23! — 1 (some IBM systems)
A=1103515245, C=12345, M=23! (UNIX rand routine)
48-bit

A=5DEECE66D5, C=B15, M=2% (UNIX drand48 routine)
A=5Y C=0, M=2*" (CDC vector machines)
A=2875A2E7B1755, C=0, M= 2*® (Cray vector machines)
64-bit

A=131 C=0, M=2% (Numerical Algorithms Group)
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Combined Linear Congruential Generators

Simple LCGs obtain the new random number solely from the
previous number in the sequence. One might expect that
correlations would be reduced by combining more than one
previous value.

Empirically it has been shown that all the drawbacks of LCGs can
be overcome by combining two LCGs.

T = (Al * X1+ Cl) mod M, (2)
Yy, = (AQ *Yi—1 + CQ) mod M,
S; = (x; +vy;) mod max(My, M>)

Again, the parameters must be chosen carefully. A good choice is
Ay = 40014, C; = 0, M, = 2147483563
Ay = 40692, Cy = 0, My = 2147483399
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problem for applications using a regular grid or lattice.
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Scatter Plot Tests

———
————
———

0.0 001 00
Scatter plot for an LCG shows Scatter plot for a combined LCG

unwanted regular structure. shows desired randomness.
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Properties of Combined LCGs

The period of this generator is M; * M,, which can be of order 10!8
for combining two 32-bit LCGs, which is adequate for current
computers. A Gigaflop-year is 3 x10'° flops.

Empirical tests show no d-tuple lattice structure or 2" correlations
in the sequence for the combined generator.

The period and randomness properties could be improved by using
two 48-bit or 64-bit LCGs instead of 32-bit generators.

The authors of the Numerical Recipes books suggest that this
generator, combined with a shuffling procedure to further reduce
any possible correlations, has “perfect” randomness properties,
with perfect defined as “we will pay $1000 to anyone who convinces
us otherwise (by finding a statistical test that [this generator] fails
in a non-trivial way, excluding the ordinary limitations of a

machine’s floating point representation).”
Jan 96, CPS-MC-116
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Implementation of Lagged Fibonacci Generators

Need to store a table of the previous p numbers in the sequence,
where p is the largest lag. This is known as the lag table.

For LCGs, need only one or two initial seeds to start the recursion
relation. For LFGs, need to generate a seed table, i.e. all p initial
values in the lag table. This must be done using a different random
number generator. It is crucial that the numbers in the seed table
are not correlated, or these correlations can be propagated
throughout the sequence.

The lag table is accessed and updated using a circular list
technique, where pointers to the p!” and ¢'* previous values are
stored and updated, rather than moving the positions of all
elements of the lag table after every iteration.
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Lagged Fibonacci Generators

Lagged Fibonacci Generators (LFGs) attempt to improve on LCGs
by using more than one previous value in the sequence, in order to
reduce the correlations and increase the period. This is similar to
combined LCGs, but in this case the numbers are taken from a
single sequence, rather than two independent sequences.

We could combine the previous two numbers in the sequence, to
produce something based on a Fibonacci sequence S; = S;_1 + S;_».
A better method is to use lagged Fibonacci sequences, where each
number is a combination of any two previous values:

Sj = (Si_p ® Syj_q) mod M

where p and ¢ are called the lags, and ® is any arithmetic
operation, such as +, —, % or @ (the bitwise exclusive OR function
XO0R). These operations are done modulo some large integer value
M. Multiplication is done on the set of odd integers.
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Problems with Lagged Fibonacci Generators

Very few mathematical results have been derived about the
randomness properties of these generators, so little is known about
their theoretical properties. We are forced to rely on results of
empirical statistical tests.

When the arithmetic operation used is XOR, the LFGs are more
commonly referred to as generalized feedback shift register
generators. These have often been used for simulation because they
are extremely fast, since XOR can be done with simple bit
operations. However the randomness properties of these generators
are quite poor unless the lag is extremely large.

It has recently been shown that LFGs perform poorly for certain
types of applications, such as random walks and percolation
clusters, unless very large lags are used.

Paul Coddington, NPAC, paulc@npac.syr.edu Jan 96, CPS-MC-121

CPS 713 Monte Carlo Simulation Types of Generators

Properties of Lagged Fibonacci Generators

For b-bit precision seeds, the period is (2¥ — 1)2"7%, or (27 — 1)20—3
for multiplication, for suitably chosen lags. This maximum period
is only obtained when the lags p and ¢ satisfy certain mathematical
properties. Lists of suitable lags have been published.

Note that the period can be made arbitrarily large by increasing
the largest lag (i.e. the size of the lag table). This is a very useful
property for large-scale simulations. Empirical tests have shown
that the randomness properties of these generators are also
improved by increasing the lag.

Another very useful property of LFGs which use the operations +
or — is that we can do all the computations modulo 1 on real
numbers in the interval [0,1), and save having to do a
multiplication to convert between integers and reals. These
generators are consequently very fast.
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Requirements for a Parallel Generator

For random number generators on parallel computers, it is vital
that there are no correlations between the random number streams
on different processors. For example, we don’t want one processor
repeating part of another processors sequence.

This could occur if we just use the naive method of running a LCG
on each different processor and just giving randomly chosen seeds
to each processor.

In many applications we also need to ensure that we get the same
results for any number of processors. This is certainly the case for
programs written in High Performance Fortran (HPF).
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Parallel Algorithm using Splitting

If we can easily compute an arbitrary element of the sequence, we
can also parallelize the algorithm by splitting it into contiguous
sub-sequences separated by a large distance D, one on each
processor. For instance, D could be the period divided by the
number of processors. Splitting into N such sub-sequences for N
processors will mean that

Processor 1 has sub-sequence 51, .59, Ss, ...
Processor 2 has sub-sequence Spy1, Spi2, Spis, - --
Processor k has sub-sequence S(;_1)p41, S(k—1)D+2> S(k—1)D+35 - - -

This method will give the same results on different processors if we
take N to be the number of abstract (rather than physical)
processors. i.e. the number of elements in a data parallel array.
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Parallel Algorithm using Leapfrog

A simple way of generating a sequence of random numbers in
parallel is for processor P of an N processor machine to generate
the sub-sequence Sp, Spin, Spion, ..., so that the sequence is
spread across processors. This is known as the leapfrog technique.

Multiplicative LCGs are mathematically simple enough that we
can calculate analytically an arbitrary element in the sequence, by
recursively applying equation 1:

SP+N = (a*SP+C) mod M (3)
N-1
a=AY, ¢ = p AP =(AY —1)/(A-1)
=0
Thus moving through the sequence with stride N, rather than 1, is
simply accomplished by specifying a different multiplier and

additive constant for the generator on each processor. Note this
will give the same results for any number of processors.
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Parallel Lagged Fibonacci Generators 11

Alternatively, can parallelize over the lag table, but this requires
communication and is thus unacceptably slow compared to other
parallel random number generators which have no inter-processor
communication.

If XOR is used, the iterative formula is simple enough to allow
analytic calculation of any term in the sequence, so leapfrog or
splitting methods can be used. However these generators are rather
suspect and do not have good randomness properties unless very
large lags are used.
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Parallel Lagged Fibonacci Generators

LFGs can be implemented very easily in parallel, by just running
independent generators with different seed tables on different
processors. This works very well provided the seed tables are set up
to be independent and uncorrelated. If not, any correlations can
persist throughout the simulation. The seed tables should be
initialized using a different generator, such as a parallel linear
congruential generator.

The problem with this simple approach is that it will give different
results on different numbers of processors. This can be avoided by
having a different generator on each virtual or abstract processor,
i.e. each element of a data parallel array (e.g. in HPF or
CMFortran). However this requires a lot of memory to hold the lag
table (which must be large for good randomness properties) for
each array element, which can be infeasible.
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Statistical Tests of Randomness

A number of statistical tests of randomness have been developed as
tests for random number generators (see Knuth).

e Uniform distribution

e Serial correlations

e Run

e Collision

e Chi squared

Any test for which it is possible to calculate analytically what a
truly random distribution would produce can be used.
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Recommendations

Never use the default random number generator supplied by the
computer vendor without first identifying the algorithm it uses. In
many cases the algorithms are very poor and you will have to use
another generator.

Always check your results by doing independent runs with different
random number generators.

Good pseudo-random number generators:
e Combined LCGs

e Good 48-bit or 64-bit LCGs such as drand48

e Lagged Fibonacci generators using +,-,* as long as the lag is very
large (at least 1000 for + and -, at least 100 for *).

More work needs to be done on developing and testing parallel
random number generators.
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Monte Carlo Tests of Randomness

Statistical tests are vital, but passing such tests is no guarantee
that a generator will perform well for a certain application. Tests
that are specific to certain applications can be more effective.

In the case of Monte Carlo simulations, there are a number of
problems (e.g. 2-D Ising model, simple percolation and random
walk models) for which exact results are known. It is thus possible
to compare Monte Carlo results with exact results, and check that
they agree within statistical error.

These “Monte Carlo tests” provide some of the best empirical tests
of randomness.
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SPIN GLASSES
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Frustration

Consider an Ising ferromagnet defined on a triangular lattice. This
is similar to the square lattice case, except now every site has six
nearest neighbors instead of four. The triangular lattice
ferromagnet has a phase transition with the same critical
exponents as the square lattice ferromagnet.

This is not the case for the triangular ¢
lattice antiferromagnet. The behavior is
very different, since not all neighboring
sites can simultaneously have the lowest

energy, so some links (in red) are ~ -
unsatisfied. The model is said to be ? ¢
frustrated. -J
Dealing with frustration is a difficult problem!
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Spin Models Revisited

Recall that the Ising model has energy
E=—-JXx 55 S==1 or |

[i.J]
For J > 0 we have a ferromagnet. Energy is smallest when
neighboring spins are aligned, either 17 or ||. Ground state ("= 0

lowest energy state) is when all spins are aligned, or parallel (all
+1 or all —1).

For J < 0 we have an antiferromagnet. Energy is smallest when
neighboring spins are opposite, either 1] or |. Ground state is
when all spins are antiparallel, i.e. a checkerboard configuration for
a square 2D lattice.

Thus there are only two possible ground states for Ising
ferromagnets and antiferromagnets on a square lattice.
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Spin Glasses

Certain metallic alloys have magnetic interactions which oscillate
in value as a function of the separation of the different atoms.

These alloys can be created in an amorphous state — the positions
of the atoms are random and disordered like a glass, rather than
regular and ordered like a crystal.

Since the distances between atoms in the glass varies, and the
interaction oscillates in value as a function of distance, the
magnetic interactions between spins are thus sometimes
ferromagnetic, sometimes antiferromagnetic. This is what is known
as a spin glass.

Spin glasses have a number of physically and mathematically
interesting properties, and are the subject of much research.
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A Frustrated Spin Model

Generalize the interactions in an Ising spin model, so interaction
strength becomes a variable, dependent on the lattice site:
E=—% J;;SS;
(i.)
Consider the model where the strength is constant in magnitude
(|Ji;| = J), but varying in sign, i.e.,

Jjj:_i_t] or —J, J>0

Suppose we choose the sign at random ¢

for every 7,7 link. This will introduce +J ?
frustration, since not all links around
certain plaquettes can be satisfied.

+J -J
Randomness and frustration are the
hallmarks of real systems called spin +J
glasses. ¢ ¢
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Monte Carlo Simulation of Spin Glasses

The interesting behavior in a spin glass occurs at very low
temperature, so we want to do a Monte Carlo simulation of an
Ising spin glass at low T

Suppose we adopt the usual MC approach — generate an initial
random configuration of spins, and then start running the
simulation at the temperature 7" where we want to study the
system. After some thermalization time 7, the system will reach
thermal equilibrium, and we can start taking measurements as
usual.

Right?
Well, not exactly.
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Properties of Spin Glasses

e transition to a “glassy” phase at low temperatures
e susceptibility has a cusp rather than a divergence at T

e remanent magnetization, i.e. very long equilibration times —
logarithmic rather than exponential relaxation to equilibrium,
M ~1/logt

e very large number of metastable states (local minima of the
energy) in spin glass phase

e degeneracy (or near-degeneracy) of ground state, with many
configurations having (nearly) the lowest energy value

e finding ground states is a difficult (NP hard) problem

e main properties of real spin glasses (e.g. amorphous alloys) can
be described fairly well by +.J spin glass Ising model on a regular
crystalline lattice
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Thermalization of Spin Glasses

Thus, for a system like an Ising spin glass with a rough “energy
landscape” with many local minima, starting from a random initial
configuration and running at a very low temperature 7', the system
will invariably get trapped in a local minimum, and never reach a
thermalized state (at least not in the finite time of a real
simulation).

This is analogous to quenching a metal, i.e., starting from a very
hot (disordered) state, and rapidly cooling to a low temperature
state (by plunging it into cold water, for example). For real metals,
this will also produce a local minimum of the energy, leading to a
brittle, non-crystalline state.
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Quasi-Ergodicity

Recall that a Monte Carlo algorithm will work only if it is ergodic,
that is, it is possible to reach any state from any other state in a
finite number of iterations.

The Metropolis algorithm is ergodic for 7" > 0 since there is always
a finite probability e 2E/*T of flipping a spin. However, the
algorithm may not be ergodic at 1" = 0, since moving from one
ground state to another in a frustrated spin model may require
higher energy intermediate states.

For T very small, the probability of climbing out of a local
minimum is non-zero, but may be so small that in any real
simulation it will never happen. The system is then only
quasi-ergodic.
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Simulated Annealing

In order to avoid the metastable states produced by quenching,
metals are often cooled very slowly, which allows them time to
order themselves into stable, structurally strong, low energy
configurations. This is called annealing.

Annealing gives the system the opportunity to jump out of local
minima with a reasonable probability while the temperature is still
relatively high.

We can adopt the same approach in Monte Carlo simulations. We
start with a random configuration at a very high temperature, and
then reduce the temperature “very slowly” until we reach the
desired low temperature. This should result in a thermalized
(equilibrium) configuration.
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Optimization

Finding the ground state of a spin glass is an example of an
optimization problem, i.e.

Find the minimum (or maximum) value of a cost function
C'(s) for all possible states s.

For the Ising spin glass, the cost function is the energy, and the
states are all 2%V possible configurations of an N site lattice.

Kirkpatrick et al. realized that the method of simulated annealing
that they were using for finding ground states in spin models could
be generalized to solving arbitrary optimization problems by
introducing a fictitious temperature and associating the cost
function with the energy.
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Finding Ground States

In many cases, we are interested in finding the ground state of a
spin model, i.e. the zero temperature, lowest energy state. In many
regular models, it is possible to deduce the form of the ground
state configurations. However, for some disordered frustrated
systems, such as spin glasses, finding a ground state is very difficult
— in fact it is NP hard, i.e. there is no polynomial time algorithm
for finding a solution.

In practice, ground states are found using simulated annealing.
This involves starting from a number of different random initial
configurations, and slowly cooling them down to zero temperature.
This produces local energy minima that are close to, and possibly
equal to, the global minimum.
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Finding an Optimal Solution

We expect that as long as the temperature is reduced “slowly
enough,” i.e. in small enough increments, and allowing time for
thermalization at each 7', then simulated annealing should allow us
to reach the ground state (the optimal solution). But what is “slow
enough”?

Geman and Geman showed that if the temperature is reduced as
T, =Ty /log k

for T} large enough (so configurations at 7 are close to random),
then we are “statistically” guaranteed to find the optimal value.

This means that if we anneal slowly enough, we have a non-zero
probability of obtaining the optimal solution. Thus, if we perform
enough different annealings, starting at different random initial
configurations, we will eventually obtain an optimal solution.
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Optimization Using Simulated Annealing

For a general optimization problem, the temperature is just a
parameter that governs the probability of increasing the cost
function at any step, via the usual Metropolis algorithm form
e~2C/T where AC is the change in the cost function due to a
change in the configuration (the parameter values).

Zero temperature corresponds to a steepest descent type algorithm,
where only changes that do not increase the energy are accepted.
Just as for the spin glass, having a non-zero temperature allows the
procedure to jump out of local minima.

Simulated annealing works well in practice for many combinatorial
optimization problems.
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Disadvantages of Simulated Annealing

e Repeatedly annealing with a 1/logk schedule is very slow,
especially if the cost function is expensive to compute.

e For problems where the energy landscape is smooth, or there are
few local minima, SA is overkill — simpler, faster methods (e.g.,
gradient descent) will work better. But generally don’t know
what the energy landscape is for a particular problem.

e Heuristic methods, which are problem-specific or take advantage
of extra information about the system, will often be better than
general methods, although SA is often comparable to heuristics.

e The method cannot tell whether it has found an optimal
solution. Some other complimentary method (e.g. branch and
bound) is required to do this.
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Advantages of Simulated Annealing

Although Geman & Geman’s result may seem like a rather weak
statement, guaranteeing a statistically optimal solution for
arbitrary problems is more than other optimization techniques can
claim.

Simulated annealing:

e can deal with arbitrary systems and cost functions
o statistically guarantees finding an optimal solution
e is relatively easy to code, even for complex problems
e generally gives a “good” solution
This makes annealing an attractive option for optimization

problems where heuristic (specialized or problem specific) methods
are not available.
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Graph Partitioning

In designing computer chips, there are a number of elements to be
connected. If there are too many elements to fit on one chip, they
need to be partitioned onto (for example) two chips. Since wires
between chips are expensive, the number of connections between
chips should be minimized. Since silicon area is also expensive, the
number of elements on each chip should be about the same.

This is an example of a graph partitioning problem. If we consider
the elements as vertices and the wires as edges of a graph, the
problem is to partition the graph into two equal sets while
minimizing the number of edges between each set. This is known
to be an NP-hard problem.

This was the application to which simulated annealing was first
applied (see the paper by Kirkpatrick et al.)
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The Traveling Salesman Problem

This classic optimization problem can be very simply stated — a
salesman has to visit IV cities, and wants to take the shortest
possible route. Here, the cost function is the length of the tour.

Changing a configuration (a particular tour) is not as simple as a
single spin flip in the spin glass problem, or moving an element
from one side to the other in the graph partitioning problem.

Each tour can be presented as a permutation of the numbers 1 to
N, which represent the cities. The simplest change to the tour is to
swap pairs of cities, and measure the change in the tour path.

2 2
1 1
3 3
4 4
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A Graph Problem Disguised as a Spin Model

Introduce a variable S; which is +1 if the element is on the first
chip, and —1 if it is on the second. Introduce a connectivity matrix
C;; =11if 7 and j are connected, O otherwise.

The penalty for connections between chips is

H=—- ZCZ]SNS']
)

We want roughly the same number of elements in chip 1 (S; = +1)
and chip 2 (S; = —1), so we want to make x; S; as close as possible
to zero. Can do this by adding a penalty term to the cost function

2
ij i
= constant — X JZJSZSJ where szj = ij —2u

The problem now looks like an Ising spin glass! As we might
expect, SA works well for this problem.
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The Update Step

For the TSP, the update of the configuration is performed by
swapping the order of two adjacent cities in the tour.

There is no reason why we have to swap adjacent cities in the tour
— larger, non-local swaps may be more effective at sampling the
different configurations, especially at high 7. At low T, large
moves are not so useful since they will mainly be rejected. The
type of move can depend on the temperature.

Choosing effective, ergodic updates is very important for SA. The
updates should explore the parameter space as efficiently as
possible. As in a Metropolis Monte Carlo simulation, we aim to
choose the update so that the acceptance ratio is neither too large
nore too small.
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Geometric Annealing

The Geman & Geman result is a bound on the annealing schedule
in order to guarantee an optimal solution. For some problems, we
can get the same result with a faster annealing schedule. Also, in

many cases where we want good but not optimal solutions, faster

annealing is more effective.

A popular annealing schedule is one that is exponential (or
geometric) rather than logarithmic:

T = a T, O<a<l1l.=d" T, = T, e_Ck, C=—-loga

This is known as geometric annealing (sometimes referred to as
simulated quenching). Usually, this gives quite good results as long
as a and NV, are chosen appropriately.
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The Annealing Schedule

To quantify how fast we perform the annealing, we need to specify:
T} : the range of temperatures
Nj : the number of Metropolis iterations at each Tj

This is known as the annealing schedule. T} and N; are parameters
that can be tuned to improve the performance of SA for different
problems. Finding a good annealing schedule is key to producing
good solutions in a reasonable time.

Often don’t need true optimal solution — just a “good” solution,
say within 1% of the lowest value. There is a tradeoff between
quality of solution and time to find it.
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Determining the Annealing Schedule

Ideally, one would like a method for determining the annealing
schedule based on the behavior of the specific system. We can
obtain some guiding principles by considering the statistical
mechanics of the problem.

One good rule of thumb is that we would like to minimize the
variation from equilibrium. During the annealing, we can measure
the energy (cost) E and specific heat (variance of the energy) Cy
at each temperature value. These values can be used to help
determine the annealing schedule.

Note that since we are constantly changing T, it is very difficult to
measure equilibrium values of £ and Cy for each temperature.
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See figure tsp.ps.

Results of geometric simulated annealing for the TSP.
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Parallel Simulated Annealing

SA can be easily parallelized on a coarse grain machine by using
independent parallelism, that is, using a different random initial
condition and different random number streams on each processor.
Each processor will find an independent local minima, and we
choose the smallest of these as our best solution. Alternatively, we
may want to pass information between processors during the
annealing, for example, to replicate “good” configurations.

For large problems, we may just want a good approximate solution
to be generated quickly, so we parallelize the problem. For example,
we could use domain decomposition for the Ising spin glass, or map
a TSP tour onto a ring of processors (see Fox et al. books).
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A “Physical” Annealing Schedule

N : We would like to choose NV, so thermal equilibrium is reached
at T before moving to 7.
Can check this using standard methods for testing for
equilibration (binning). Or alternatively, can use clever
techniques for estimating 7.y, from measurements of £, and then
set Ni X Texp-

T} : To avoid moving too far from equilibrium, could choose T},
so that fluctuations in E (7}) overlap those of E (Tj41).

T dT T AT
AFE

T ~1T, — ——
k+1 k C.
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Tempering for Optimization

One of the main problems with simulated annealing is that it is
difficult to find an optimal annealing schedule, and that changing
T drives the system out of equilibrium.

If we use tempering instead, the system is always in equilibrium.
Also, we can determine the temperature changes (the equivalent of
the annealing schedule) automatically, by varying the AT's so that
the acceptance of a change is ~ 50%.

A lot of work still needs to be done in order to perfect his method.
ATs may be too small, a random walk in 7" may not be optimal —
this all has yet to be studied in detail.
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Simulated Tempering

Simulated tempering was invented by Parisi and Marinari to study
disordered Ising spin models (spins in a random external magnetic
field). These models have a first order phase transition, so there
are two coexisting states at 7. — a high energy and low energy
state. The standard Metropolis algorithm tends to get stuck in one
of these states.

Tempering does a Monte Carlo update of the temperature — i.e.
try to change T', and do a Metropolis accept/reject depending on
A(E/ET).

Constantly changing 7' in a range slightly above and below 7.,
moves the configuration in and out of high and low E states, thus
providing a correct sampling of the configurations at 7..

The repeated heating and cooling is like tempering in metals.
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