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We study a simple model for a disordered ferromagnet in zero dimensions. By analytic means and
by direct computation of 200 terms in the perturbation expansion for the free energy, we show that
the series is not Borel summable for any finite disorder. We discuss the significance of this result for

more complicated systems.

I. INTRODUCTION

It is well known that perturbative calculations of criti-
cal exponents using the € expansion’ are asymptotic? rath-
er than convergent. In fact, this seems to be generally the
case for perturbation expansions in physics. If one is ex-
panding a physical quantity f in powers of a parameter g,
ie.,

flg)=13 Axg®, (1)
K

then the coefficient Ax typically has the form
Ax =cK’aXK1[1+0(1/K)] )

for large K. The series has zero radius of convergence be-
cause of the factor of K!. One can, nonetheless, try to
sum up the series using a Borel transform.? Here one
looks at the function obtained from the series without the
factors of K|, namely

Ak
Fp(g)= % —E'—g (3

which has a radius of convergence 1/ |a |, and one puts
back the K'! to recover f(g) by a Laplace transform, i.e.,

flg= f0°° e ~'Fglgndt . @)

One therefore needs to determine Fp along the entire posi-
tive real axis, not just inside its radius of convergence.
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This can be carried out either by a Padé analysis® or, as
we shall see in Sec. IV below, by a conformal transforma-
tion.* A necessary condition for this to work is that
Fgp(g) has no singularity on the positive real axis, other-
wise the integral in Eq. (4) is ill defined. This means that
the parameter @ in Eq. (2) cannot be positive because the
singularity closest to the origin would then be on the posi-
tive axis. Even if this is not the case there could be sub-
dominant terms which spoil Borel summability. For ex-
ample, if

=K ci{—a)¥+e b K[1+0(1/K)] (5)

with a,b real and a > b >0, then Fp(g) has poles at —1/a
and 1/b. Hence the factors of b¥ in Eq. (5) spoil Borel
summability even though they are exponentially small

~ compared with the (—a)X terms.

Expansions for critical exponents of pure, i.e., nonran-
dom, systems turn out to be Borel summable and the
Borel transformation has been used to obtain very accu-
rate exponents.”> However, the question of Borel summa-
bility of expansions for disordered systems has not been
discussed very much, at least to our knowledge, apart
from some work on the percolation problem.%’ We have
no general solution to this problem but have found it very
useful to investigate a simple model in detail and this pa-
per reports the results of our investigations. The model
has just a single degree of freedom, so there is no phase
transition and we are simply looking at a perturbation ex-
pansion of the free energy. We studied it because the free
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energy can be computed exactly and we can obtain a large
number of terms (200) in the perturbation expansion. We
shall see that the high-order behavior is surprisingly rich
and is not Borel summable for any finite disorder.

The plan of the paper is as follows. I Sec. II we intro-
duce the model while Sec. IIT attempts to look at the
high-order behavior using a saddle-point method com-
bined with the replica trick. As we shall see this has been
only partially successful. Consequently, we have also nu-
merically computed the coefficients in -the expansion (up
to 200 terms for various values of ihe disorder) and
present these results in Sec. IV. They clearly show a rath-
er complicated behavior which is not Berel summable. In
Sec. V we summarize our results and ciscuss their possi-
ble physical significance. We also comment on their
relevance to more redlistic models witk many degrees of
freedom. Some technmical aspects of the replica saddle-
point method are given in Appendix A, while Appendix B
describes the technique for numerical evaluation of the
coeflicients.

1I. THE MODEL

We wish to find a very simple modsl of a disordered
system where the free energy can be obtained exactly and
where a large number of coefficients in the expansion can
be computed. We also have in mind the problem of phase
transitions in disordered ferromagnets, for which a
Ginzburg-Landau-Wilson (GLW) “¢*’ Hamiltonian is the
starting point.® In fact, the high-orcer behavior of a
GLW Hamiltonian is very closely relatzd to the behavior
of the corresponding model with just a single degree of
freedom, see, e.g., Ref. 7. We therefore study the follow-
ing model for a single “soft spin.”
given by

u .
=L(1+9)p*+ Z(ﬁ“ , - (6)

where ¢ represents the spin, 3 the quenched disorder, and
1> 0 for stability. From H one obtains the partition fune-
tien, Z, by integrating over ¢, i.c.,

;b)—f°° 1/277 e ¥ 7)

The random variable ¢ has a Gaussian distribution of A

variance 2w so the average free energy, f, is given by

—f= f_:__dlﬁ__

Note that f=0 if u =w =0.

e~V /WInZ () )

It is clearly straightforward to compute numerically the

double integral in Egs. (7) and (8) to obtain f for any
choice of # and w. One can also expand f in powers of
these quantities. We have found it more convenient to fix
the ratio between w and u, i.e.,

w=Au, 9)

so f can be expanded in terms of the single variable u, the
coefficients being polynomials in A, i.e.,

~undefined unless A < 1.

Thre Hamiltonian is |
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—f=S AxMuk (10)
K=1

The purpose of this paper is to compute the Ag(A) for

- large K.

Equation (8), of course, describes the quenched free en-
ergy. If, instead, we average Z rather than In Z over ¥

we obtain the annealed partition function, Z,,,. Perform-
ing the integral over i first, one has
w d f 2 4
Zopn= f_w mexp “‘%——(u —w)% ) (11)

which is just the partition of a pure system with u re-
placed by u —w. Hence the annealed problem is
However, the quenched model is
well defined for any positive A.

III. SADDLE-POINT APPROACH

* For pure systems one can determine the form of the

~ high-order coefficients by a saddle-point technique.? To

apply such an approach here we first use the replica trick’

" to average over the disorder, i.e.,

—f = lim ((Z"]w—D/n , (12)

~ where [ - - - l.v is the average over ¢ written out explicitly
for [InZ () ]y in Eq. (8). Clearly, one has
w0 d¢a U
ZMa= s _ 1 24U 4
(2= [ 11 |52 3 -y 3

+2‘f [%qﬂé]z , (13)

where: a=1, ..
[Z7].y as

[Z"]ev=

.,h, is a replica label and, expanding

3 Ax(n Auk (14)

[where Ag(n,A)=nAg(A) as
Ag(n,A) is given by

n—0], the coeflicient

Ag(n,A)= K'4K f1>¢exp [—_zqsa]

X [Edfé—k [Eq&é]z]’( (15)

Here [ D¢ is a  short-hand notation  for

[ _Tl.(d¢a/V2mw). We do the ¢, integfpls by steepest

descents for large K. First, multiply the ¢,
by VK so

_(=Dfk"”? o 2K 1K
Ag(n === "0 f pge . 16)
where
amn

f{4a} =—%§¢§+ln[§¢g~k [245‘21]2] .

a

The extrema of f{¢,} are where
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a_'}"z‘p/zi]
v [
= —14 =0. (18)
TG pACIAETS [ S ¢ ]2
o «

The solutions have the form )

o=(xd.,t¢., ..., L., 0,0,...,0}, (19)

where the number of ¢, terms is s and the number of
zero terms is # —s5;

pe=4/s (20)
and at the saddle point f takes the value f; where

fim—2+In16+1In %—). @1)

There are 2°"C, solutions for a given s. Next, we discuss
the Gaussian fluctuations about the saddle points. Taking
the second derivative of f and inserting the saddle point
values for ¢ from Egs. (19) and (20) we find

28,8 2A 4

- s 1A 50 PP
i - 0, a<s.B>s 22)
a¢aa¢ﬁ g
(27
~ 1o’ a,B>s .

The corresponding eigenvalues are
—2, 2/{1—As), —1/(1—As),

with degeneracies 1,s —1, and n —s, respectively. Naive-
ly, we are looking for the absolute maximum of f and re-
quire that all eigenvalues are negative. Actually the n —0
limit makes things more complicated and one should in-
clude all saddle points, but let us ignore this complication
for the moment. For A <1 the maxima are the s=1 solu-
tions. Integrating out the Gaussian fluctuations, multiply-
ing by the number of solutions, and letting n —0 we find
a contribution A{(A) to the coefficient Ax(A), where

(—DRKY [401—A)]F
V2K V1A

The superscript ““1”" indicates that this is the contribution
from the s=1 saddle points. Note that it is of the expect-
ed form given in Eq. (2) and the coefficients alternate in
sign. However, the other saddle points do contribute as
well. From the discussion in Appendix A and our nu-
merical results we beheve that the complete result for
Ag(A) is #

A=

ey

AW =[ A+ 4 (MI[1+0(1/VK)], (4
where
f R K .
A}<°°’(A.)=*‘/K——(I:3A,;—ex‘p(—y\/f +o)cos(uV'K +8) .

(25)

The values of the coefficients v, o, g, and 8 will be dis-
cussed in Sec. IV and Appendix A. Here we just note
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three points about Egs. (23)-(25). Flrstly, both terms in
Eq. (24) contribute for A< 1 but only A4f® Y(A) is present
for A>1. Secondly, Af(°'(A) dominates for A>1,
whereas A§ dominates if A < +. Finally, the oscillations
of the cosine in Eq. (25) have a longer and longer period
as K increases. This means that the Borel transform Fp
has, a singularity on the positive real axis. We believe this
is an essential singularity. An argument for this is ob-
tained by cons1der1ng the related series
f(x)= S g sin(aVK )x¥ and replacing the sum by an in-
tegral [M. Nauenberg (private communication)]. 0 This
can be reduced to a Gaussian integral whose evaluation
gives an essential singularity at x=1. For A<, 4¢*'(4)
is exponentially small compared with A1) but the
(essential) singularity of the Borel transformation on the
positive axis means that the series is not summable for
any nonzero A. In the next section, we give numerfcal re-
sults which strongly support the results in Eqgs. (23)-(25). -

IV. NUMERICAL RESULTS

As discussed in Appendix B, it is reasonably straight-
forward to compute the coefficients Ax(A) iteratively from
the lower-order terms. However, in practice the final re-
sult is a sum of terms each of which is much larger in
magnitude than the final answer. Hence, there is a prob-
lem with round-off errors in going to very high order. To
circumvent this we have done every stage of the calcula-
tion exactly by expressing the results as rational fractions.
To cope with the enormous integers involved the program
was written using MACSYMA. One is then limited by
computer time and memory. We have been able to deter-
mine up to 200 terms for several choices of A.

Figure 1 plots the ratio of the exact coefficient Ax(A) to
the asymptotic result from the s=1 saddle point given by
Eq. (23) for several values of A. Note that for A=0.5, 0.4,
0.2, and 0.1 the ratio approaches 1 as expected from the
discussion in Sec. III. However, for A=0.6 the ratio ap-

1.2+
L
r LR N =
Ag(A) 1.0 L .!‘!uw&‘ ﬂ'ul‘:’?
Al () . "oyl
K L | .
. g A
M " 08
* 06
o} . = os
s 04
" 02
. v o0
L]
- .~ 06 . .
10° 10! 102 . 10

K

FIG. 1. Plot of the ratio of the Kth term, Ax(A), to the pre-
diction from the s =1 saddle point, 4£(A), for several values of
A.



36

SUMMAERILITY OF PERTURBATION EXPANSIONS IN ...

pears to be tending to unity but suddenly deviates after

about 80 terms. For A=0.8 the ratio never approaches

very close to unity and becomes very different for X Z8.

This is precisely the behavior expected from Egs.
(23)—(25), where the ratio should tencl to 1 for A<0.5.
For A only slightly greater than 0.5 the ratio will be close
to unity for moderate values of K, because of the
exp(—yVK ) term in Eq. (25), but will differ strongly
from this value at larger K, where the AK factor strongly
outweighs the (1—A)X factor in Eq. (23.. S
Next we check that our results are of the form in Eq.
unity. In Appendix A we give arguments according to
which .

172

|22 e o2
A 2 1. 4n =
172 '
2R 0 37
=5 cos |- |, 8==H e _
where

R =[(In2)?>+(37)?]'/2=9.45023. ..

and 27

O=tan—'(37/In2)=1.497 38. .. .

This is tested in Fig. 2, which shows results for A=1.
There is a strong similarity between the data and the
theory, though the two do not agree precisely, since the
data are clearly decreasing in magnitude as well as oscil-
lating. In fact, this can be compensated for simply by ‘a
very small change in R to R=9.607, as shown in Fig. 3,
where now the agreement is excellent. The calculation in
Appendix A is rather analogous to thzt in Ref. 7 for the
percolation problem. It was subsequently shown!! that
some of the coefficients in the result of Ref. 7 are slightly
in error, although the basic structure is correct, and we
suspect the same may be true here, though we have so far

200

120

FIG. 2. The diamonds plot cos(uV'K +-8) against K where
u and 8 are given in Eqgs. (26) and (27). The squares
plot Ax(A=1)/[cexp(—yVK +0)] where c=—KI4M)5/
{7'72K3/2) and y and o are given by Eqs. (26) and (27). The two
sets of data would agree if the calculations in Appendix A were
completely correct.
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FIG. 3. Same as for Fig. 2 but with the value of R in Eq. (27)
changed slightly to 9.607. The agreement is now excellent.

(26) - been unable to carry through a calculation like that of
—--— Ref. 11 for the present problem. Similar data are shown

in Fig. 4 for A=0.6 for the choice R=9.615, 8=1.495,
again very close to the values in Eq. (27).

We feel that the results in Figs. 1-4 give a rather con-
vincing verification of the form of high-order behavior de-
scribed by Eqs. (23)-(25). It now remains to discuss how
accurate an answer for f one can get from the series,
given that the series is not Borel summable, so there must
be some error even if one could compute all the terms. A
technique which is useful for series with simple oscillatory
behavior like Eq. (23) is that of a conformal transforma-
tion.* For Eq. (23) one would introduce a new variable,

i

_ [144(1—A)u]?2—1
[1+4(1—A)u]'?+1

y[4(1—A)u] (28)

»

and reexpress the series for fin terms of y, i.e.,

—f= S K!Bg(A)pX, (29)
K

where we have explicitly taken out the factor of K!. The

2.0
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FIG. 4. Similar to Figs. 2 and 3 but the squares plot
[Ag{A=0.6)— A£)(0.6)]/[c exp(—yV'k +0)] with R=9.615,
0=1.495. The agreement is very good, which shows that where
the A=0.6 data in Fig. 1 start to deviate from a ratio of unity

they then have the behavior in Eq. (25).
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motivation for introducing y is that the leading singularity
in the Borel transform is at y = —1 while the integral in
Eq. (4) goes from y=0 to y=1. Hence it is not necessary
to know Fp outside its radius of convergence, unless other
singularities come into play. The Borel transform, Egs.
(3) and (4), now take the form

—f =3 Bx(MIg[4(1—L0)u], (30)
2 |
where
—_ ® ,—t K
Ix(x)= [ % e~ Ty (en)¥dr . (31)

Notice that the Bg(A) are independent of u. The Ix may
be evaluated by a saddle-point method with the results

172 1/6
41 K?
IK(X)= -
3 X
1/3
Xexp | —3 K +L [14+0(K~23)]
x 3x o

(32)

Hence provided the Bx grow less fast than exp(K2/3) suc-
cessive partial sums in Eq. (30) will converge to the
correct answer. This is certainly the case for pure sys-
tems.'? However, the Borel transform of the new term,
Eq. (25), which appears for random systems, has a singu-
larity on the positive axis at ¥ =1/(4A), which causes the
Bg to grow exponentially with K, since the point
u=—1/(41) becomes y=(1—VA)/(1+VL) in the
transformed plane and hence the By vary as
[(1+VA)/(1—V'X)]X. Presumably, this will be modulat-
ed by exponential and cosine factors similar to those in
Eq. (25). Figure 5 plots log;o | Bx | against K for A=0.6
and K <200 and clearly shows the expected straight-line
behavior. The best fit, also shown, has slope 0.81 close to
(14+v2)/(1—V'X), which is equal to 0.79 for A=0.6.

L 4

200

~
slope = 0.81
<
od* 100 1
e
g
A=08
0 T T
o 100 200 300
K
FIG. 5. A plot of the logarithm of the transformed

coefficients Bx(A) defined in Eq. (29) against K for A=0.6. The
best fit to the data has slope 0.81 compared with the expected
value of (1+V'A)/(1—VX) which is 0.79.
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FIG. 6. A plot of the difference between the exact free energy
J, and the estimate from N terms in the perturbation expansion,
[, defined by Eq. (33). The data are for u =1 and A=0.2,
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FIG. 8. Same as Fig. 6 but for A=0.6 and 0.8.



Defining the sum of the first N terms in Eq. (30) by fy,
ie.,
N
-——fN= E BK(A.)IK[4(1—)\.)1¢] s (33)
K=1 ‘
we show the difference fiy —f for u=1 and several values
of A in Figs. 6—8. For small A, one sces there is a wide

range N, where fy is very close to the exact result but for
larger A no range of N gives a good result.

V. DISCUSSION .7 i

We have shown, fairly convincingly, we believe, that
the series expansion for the free energy of our toy model
of a disordered ferromagnet is not Borel summable. The
series exists and the coefficients are finite but a complete
knowledge of the series is not enough to obtain the free
energy exactly, at least with the resummation techniques
known to us. The Borel transform gives a reasonably ac-
curate result for small disorder if one stops the expansion
at an appropriate point. Adding more terms gives a
worse value. In this respect the Borel transform itself is
rather like the original asymptotic expansion.

If the perturbation expansion of the toy model has this
rich behavior and is not Borel summable, we suspect that
the same will be true of realistic models for disordered

172
1

f nonpert ~4V Tiu exp

1 R
4Au 2A |

the only part of which we are certain is correct is the lead-

ing term exp(—1/4Au). Essential singularities of this
form will ensure the breakdown of Borel summability.
For realistic models for disordered ferromagnets (i.e., for
dimension > 1), the essential singularities are the Griffith
singularities. It remains to give a clear analytic derivation
of our results, which would probably mean doing away
with the replica trick. We leave this for future work.
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APPENDIX A

In this Appendix, the replica trick will be used in an at-
tempt to derive Eq. (25) for 44°)(A). Unfortunately, our
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" ferromagnets.

s1n(9/2)+l—2- {sin
20 )
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If this is so, then the € expansion would
not converge to the exact exponents even if one could

- compute an infinite number of terms. However, the fixed

point values of # and A in three dimensions do seem to lie
in a region where the perturbation theory gives some use-
ful information, ? and in practice, the chief error probably

 arises from the shortness of the series rather than lack of

Borel summability.

It was pointed out by Griffiths'® that there are singular-
ities in random systems everywhere below the transition
temperature of the corresponding pure system. For static
quantities these are weak essential singularities,'* though
they do give rise to stronger - effects in dynamics. 51t
seems tempting to relate lack of Borel summability to
Griffiths singularities. However, the present model has no
Griffiths singularities because it describes only a single de-
gree of freedom, so the connection, if any, is not very
clear to us. In our model, lack of summability presum-
ably occurs because there is a finite probability that the
coefficient of ¢? in Eq. (6) is negative, in which case the
subsequent expansion in powers of u is meaningless.
There is an essential singularity as ¥ —0 in the averaged
free energy, due to this mechanism. Using the very ques-
tionable replica methods of Appendix A, we estimate that
the nonperturbative part of the free energy has the form

172

cos(0/2)+~—

5 1+0

I
T

1R
A | 2u

calculation is incomplete and is only included in the hope
that it may stimulate others to produce a satisfactory
treatment.

Assembling results from Egs. (16)-(22),

o 2K InK —K) -
Ag(mA)=nAg(A) =2 % ~K~"%4Ks . (Al
where
n s (=1 (_1)S—1 1 k
— n s = ) A2
S s§1 Cs2 (1~ As )(I —n)/2 s ( )

correct to the level of Gaussian fluctuations about each
saddle. Note that the contributions to S from even values
of s are pure imaginary, so it is not obvious whether
Ag (L) derived from Eqs. (Al) and (A2) is real—as, of
course, it should be.

As emphasized by McKane,” whose approach we shall-
closely follow, the sum in expressions like Eq. (A2) must
first be carried out before setting n =0:

3 K)dz

21112 -1

S=S fis,n:K)=§, L&

s=1

) (A3)

where cis a contour which surrounds the positive integers
1,2,...,n Equation (A3) is valid if f(z,n;K) is analytic
within the contour c¢.. In our case the function f(z,n;K)
has a branch cut at z=1/A. For A>1 this causes no
difficulties. However, for the physically interesting case
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when A <1, we must modify (A3) by separating out the
terms in the sum with s =1,2,...,m, where m is the
smallest integer less than 1/A. As K— w0, these terms
are dominated by the s =1 term and so this is the only
one we retain. The sum over the remammg terms from
s=m +1,...,n can be carried out using the contour de-
formations given by McKane’ (after one recognizes that
the sum can be extended to include
s=n+1n+2,...,n+m as the extra terms give no
contribution, since "C, ;=0,i >0). The result is

I

S(w) +n J‘5+eo dz : 1

—ex
5w 23/ gime_ o —imz P

The ambiguity in the signs arise from the fact that (—1
not depend on the sign choice adopted.

:I:i%z—l—%InZ—{—(K—%)[In)\—Hn(I—I/M)]] )

)(s—l)/?.
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SzS(l)_*_S(eo) s (A4)

SD=n2 20— 1)K /(1—2)12 (A5)

S=— T8 [P LK) £OD), (G
© Sln

and 1/A <8<m +1. Note that for A> 1, there would be
no need to separate off the term with s =1 and so
§=S'=) Expressing "C; in terms of gamma functions,
one finds after some algebra that

(AT)

can be written as (e ¥™)*—1/2 The final result should

For large K, the integral in Eq. (A7) can be evaluated by steepest descents. Settmg z—V Kz and retaining terms up to

O(1) gives

(e0)__ +iw dz o 1
stel=tnt K1/4 f,‘/—_m 2372 jinVEKe_

eX
e —inVKz p

ii—g-z +1In2— 1

vK .

(A8)

1 1
w“’[@

There are two saddles, one of which is in the upper half-plane, while the other is in the lower half-plane. Adopting the

+ signs in (A8) gives

S(cc)zSu +Sl , (Ag)
nVarK 2Rk | 1
— KA . i0/2 i6
Su="r 1z %P |~ = RIPTI J [1+0[¢—f H , (A10)
AKX 2Rk |7 R 1
— n o I} --16[/2 _1 —19[ X
S; 1% exp[ z[ 2 4ke J 1+0 —_\/E H , (All)
I
where , , We let ¢—(1+9)"1"2¢ in Eq. (7) so
R=[(m22+(3m?]"2, Ry=[(In2+ (@2, (A12) '
f=tan~'(37/In2) , G =tan"!(7/In2) . (A13) (1+14) Vim
For large K, S; is numerically much gre{atﬁer than S, so  Where
the natural approach would be to set S'®'~S;. There _ 2
now arises two (probably related) difficulties. S’ ac- v=u/(1+9). (B2)

cording to (A9) is not real. If one makes the ad hoc asser-
tion that S‘©’=2 ReS), one only obtains poor agreement
with the calculated numerical coefficients. However, set-
ting S®)=2 ReS, gives an approx1matlon for Ag* (L), of
the form of Eq. (25), which is in quite good agreement
with the numerical coefficients (see Figs. 2 and 3). We
feel that this must be more than a numerical coincidence,
but we are at a loss to explain why the nominally dom-
inant contribution from the saddle in the lower half-plane
should be discarded, and equally baffled by the fact that
our expression for S is not real. We suspect that progress
is only likely to be made through a calculation 31m11ar to
that of Ref. 11.

‘ APPENDIX B
In this appendix we describe how the coefficients in the
expansion were generated numerically.

Expanding the exp( —v¢*/4) factor in Eq. (B1) and doing
the integrals one finds

ZW/Zo) =1+ 3 ano” (B3)
n=1
where
Zo(h)=(144)" 172, (B4)
and
ay =(—pptdn =t (B5)
4"nl

In practice, we determined a, recursively in terms of

a,_y, e, a,=—(4n—1)4n —3)a, _1/(4n). Next we
have to take the logarithm of Z and find
InZ () —InZ(o)= 3, b,v" (B6)

n=1



36 SUMMAEILITY OF PERTURBATION EXPANSIONS IN . . .

where the b, are generated recursively in terms of the
lower-order b’s and the a, from the forriula

n-—-l

bnzan_— 2 mby, an—m )

which is derived by equating the logarithmic derivative of
Eq. (B3) to the derivative of Eq. (B6) and multiplying by
the denominator. ,

So far the value of ¢ has been kept fixed. We next ex-
pand v” in powers of ¥, i.e., '

un/(l_l_,lp)?.n i -
Coad yrl2n K - UE ];;
=u K2=0( 1) (on —DIK! " (B8)
and average over the ¢ with the result that
(2n +2m —1)!
n — n B
[ Jer =t E_w (2n —1)m ®9)
We can now put all the results together to find
—f=Xcnmu"w"™ (B10)
n,m .
where
(2n +2m —1)!
=by,—— Bil
Cn,m bm (2)2 1 )!m 1 ( )

for n>1, and cq,, is obtamed from the expanswn of
In Zy(1h), i.e.,

[InZo(P) av= 2 co,mw™

w7

- - ————rational fractions (as long as A is rational).

. ments then limited us to 200 terms.

B2
binomial expansion.

2219
$0 cpo=0 and
(2m)!
Co,m =m7 (B13‘)
for m > 1. Writing w =Au Eq. (B10) becomes
—f=3 Ax(MuX (B14)
K=1
where
K
k(A= 3 ck—nnA® (B15)

n=0

The terms in Eq. (B15) alternate in sign and are each gen-
erally much bigger than the final answer. Hence round-

. off errors limit the number of terms one can calculate if
. one used real arithmetic. To get round this difficulty we

note that all the quantities involved in the calculation are
We therefore
did the calculation by manipulating rational fractions, us-
ing MACSYMA to perform the reductions to lowest com-

. mon denominator and to keep track of the enormous in-

tegers generated. Storage and computer time require-
Similar manipula-
tions were used to generate the transformed coefficients
Bg(A) in Eq. (29) in terms of the Ag(A). This is quite
simple since the inverse transformation to Eq. (28) is

(1_x>u_—y——2 , (B16)
(1—y)
so uX can be trivially expanded in powers of y using the
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