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The dynamics of a random Ising ferromagnet is considered, for a gerieral distribution P(J) of
exchange interactions, in the Griffiths phase. The autocorrelation function C(¢) is found to have
the previously derived asymptotic form, C(¢)~expl—A(n#)?/“~V], where d is the spatial di-

mension, only if —InlP(J)] grows faster than

J4W@=1D a5 j— oo, Otherwise, the asymptotic

form of C(t) depends explicitly on the form of P(J) at large J.

'

A number of recent papers! 6 have dealt with the dy-
namics of random magnetic systems in the “Griffiths
phase,” which refers to the temperature regime between
the transition temperature for magnetic long-range order
in the random system and the highest possible transition
temperature allowed in principle by a rare statistical fluc-
tuation of the disorder over the whole system. The latter
temperature is called the *“Griffiths temperature” Tg.
Thus, for a ferromagnet with site or bond dilution, T is
the critical temperature of the undiluted system; for a fer-
romagnet with a bounded distribution of exchange in-
teractions, T is the critical temperature obtained when

- all bonds take the maximum value. For a ferromagnet
with an unbounded distribution of exchange interactions,
the Griffiths phase extends to infinite temperature.

For a random Ising ferromagnet, the result !>

C(t) ~expl — A (nt) 4/ @~ 1] ' '6))

has been obtained for the asymptotic behavior of the spin
autocorrelation function in the Griffiths phase. In Eq. (1),
d is the spatial dimension, and 4 depends on the system
parameters (temperature, concentration of missing sites
or bonds, etc.). The physics behind Eq. (1) concerns the
dominance, as t— oo, of large regions in which, due to
rare statistical fluctuations in the disorder, the exchange
interactions have values characteristic of an ordered phase
at the given temperature. Because these regions are finite
they do relax, but only slowly due to their large size.
While Eq. (1) is technically derived as an inequality,’ the
right-hand side being a lower bound on C(t), we believe,
and will assume hereafter, that it gives the correct asymp-
totic time dependence, provided the disorder distribution
satisfies the condition discussed below.

In this paper, we pay special attention to the case where
the distribution P(J) of the exchange interactions is un-
bounded. We show that, provided that P(J) decreases
sufficiently rapidly for large J, i.e., faster than
expl—J4@=D] Eq. (1) is recovered. If P(J) decreases
more slowly, however, Eq. (1) no longer holds, and the
asymptotic form of C (t) depends explicitly on the large-J
form of P(J). In particular, for the class of distributions
P,(J)~expl—(J/Jp)"], we recover Eq. (1) for
n>d/(d—1), but obtain C(t)~exp{—I[(T/2J¢)int]1%
for n<d/(d—1). For example, the simple exponential
distribution, n =1, belongs (for any d) to the latter class
and yields power-law relaxation, C(z) ~¢ ~ " '“'¢,

The calculations, which follow the method of Refs. 1-6,
are most simply presented within a variational framework
which we believe, however, gives correct asymptotic forms
of C(t). For concreteness we will, in the first instance,
consider the distributions

P,()=(n/Jo)J/Jo)* Lexpl— (J/To)", )

where the algebraic prefactor is merely for computational
convenience. More general distributions will be discussed
subsequently. A lower bound for C(¢) is constructed as
follows. Consider a compact region, of linear dimension
L, in which all bonds exceed J in value. The probability of
a given site belonging to such a region is of order (neglect-
ing algebraic prefactors)

" N
pL)~ [L dJ'P,,(J')] =expl—L2(J/7)™, (3)

~ where V is the number of bonds in the region and we have

ignored a constant factor of order unity between N and
L% This reglon will relax at least as slowly as an isolated
system of size L in which all bonds are equal to J. (Any
coupling to spins outside the region should not change this
result, since the spins outside will typically relax much
faster than those inside.) The latter has relaxation time

t(J)~explo(N)L?~YT]. )

In the Arrhenius formula (4), the activation barrier
o(J)L?™! is simply the free energy of the domain wall
that has to be passed through the system in order to re-
verse its magnetization: o(J) is the surface tension of a
pure Ising model with exchange constant J. Obviously
Eq. (4) requires J > J.(T'), where J,(T') is the critical ex-
change constant for a pure Ising model at temperature 7.
The best lower bound on C(¢) is obtained by maximizing
C(¢) with respect to both J and L.

Combining (3) and (4) gives, for the mean autocorrela-
tion function,

ct)= max fexpl — LA /Jg) " —te ~oWLIT]} &)
(Note that replacing max; by X.; would give the same
asymptotic behavior, as the sum would be dominated by

the largest term for large £.) It is convenient to eliminate
L in favor of a new variable x =o(J)L?4~1/T. Then

C(t)= max fexpl— A ()x¥ @D — o =1} | (6)
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where
AW =/T)T/o(J)14/ @~ @)

Maximizing C(¢) with respect to J requires minimizing
A(J). To see whether there exists a nontrivial minimum,
we consider the limiting behavior for J— J. and J— oo,
As J— J., A(J) diverges as

AN~ —J,) "%,

where v is the correlation length exponent of the pure sys-
tem, and we have used the scaling law o oc (J —J,) @~ D,
For large J (.e., J>J.~T), c(J)— 2J, and

A(J)~Jn—d/(d—l) .

Thus if n > d/(d —1), then 4(J) is an increasing function
of J for large J, as well as for J— J;, and the absolute
minimum of 4(J) must occur at some finite value J* (7).
In fact o =Jf(T/J) implies :

J¥=qaT,
AUT*)=b(T/Jo)",

where a,b depend only on n and d.

Returning to (6), with J=J%, and maximizing with

respect to x, yields x*==Inz to leading order for large ¢,
and

C(t) = expl—b(T/J) "(ng) ¢/ @ =17 | (8)

retaining only leading order terms in the exponent. Thus,
the standard result (1) is recovered for n > d/(d—1). To
interpret the above results physically, we note that
x¥=c(L*)?"/T=Int implies that L*~[(T/
NInz]V¥@=1 e, the size of the dominant regions in-
creases with time. Note that the same time dependence is

obtained on maximizing with respect to L at any fixed’

J > J,. Maximizing with respect to J merely optimizes
the amplitude 4 in Eq. (1).

For n <d/(d —1), A(J) tends to zero for large J, and
so has no minimum for finite J. To interpret this, we re-
turn to (5) and set o=2J, since we anticipate that large J
will dominate for large ¢ Eliminating J in favor of
y=QJ/T)L* ! yields

c@)= max fexpl — (Tp/2J0) "L "4~ =1 21} (9)
,y

For n<d/(d—1), it is clear that L =1 maximizes C(¢),
i.e., isolated strong bonds dominate at long times. Set-
ting L =1 in (9), and maximizing with respect to y, yields,
to leading order for large ¢, y * ~Inz and

C(t) = expl— (T/270)"(nt)"] , - ao

where we have once more retained only the leading order
term in the exponent. Since y* =2J%/T==In¢, the dom-
inant value J* of J increases with ¢ as J* ~ (7/2)Int.

With the realization that isolated strong bonds dom-
inate for n <d/(d —1), we can generalize Eq. (10) for
any distribution such that —InP(J) grows more slowly
than J4@~1 for J— 0. Since the relaxation time for a
very strong bond J>> T is 7 =exp{(2J/T) we obtain

c) =) =q [drPWexp(~1e /Ty, (1)

where g is the (mean) number of nearest neighbors of a
site. (The factor ¢ appears because there are q/2 bonds
per site, and each frozen bond freezes two spins. We as-
sume, of course, nearest-neighbor interactions only.) Al-
though we have written Eq. (11) as an inequality, we ex-
pect it to be asymptotically exact for long times.

For large ¢, asymptotic analysis of the integral may be
employed. Three regimes must be considered. (i) If P(J)
vanishes faster than a simple exponential, ie., as

expl—(J/Jo)"] with 1<n<d/(d—1), conventional
steepest descent methods yield:
TP(J*) 2
Ci()=gpP(y*) | ZE 2
e [P'®) |
x expl(T/2)P'(J*)/P(J*)], (12)
: T 2P(J*)t T
J¥=Zn | = | =Ly 13
2 TP 2 ° (13)

where P'(J) means dP/dJ. (ii) For P(J) vanishing
slower than an exponential, but faster than a power law,
one obtains '

5

2 -1

Ci)=q|P %lnz P —;-lnt (14)
(iii) The power-law form P(J)~B/J* (with ¢ > 1) yields
—(e—1)
aw=|—2LB_[1 Ly, . (15)
(a—1) || 2 : ,

For classes (i) and (i), the leading time dependence is
captured by

c@)~P

_;:lmJ R

since the factors involving P((T/2)int)/| P'((T/2)1nt) |
give only powers of In¢. For the special case of a pure ex-
ponential distribution, P(J) =(1/J o)exp(—J/Jy), we find
C1()=q(T/2T)T(T/270)t """ where I'(x) is the
gamma function. This result reduces to (12) for 7> 2J,
and to (14) for T <K 2J,.

It is interesting that for distributions in classes (ii) and
(iii), the decay of C(¢) is slower than power law in time
[much slower for class (iii)]. It seems certain that con-
ventional dynamic scaling,” which predicts power-law de-
cay at T, C(t)~t ~%#/? where B and z are the order-
parameter exponent and dynamical exponent respectively,
must break down for these systems, since the decay is al-
ready slower than a power law in the Griffiths phase.

All of the above results are specific to Ising ferromag-
nets, and it might be wondered if similar dependence on
P(J) occurs in Heisenberg systems, for which the result
C(t) ~exp(— At ') has recently been derived®* by as-
suming the dominance at long times of large, strongly
correlated regions. In this case, however, isolated strong
bonds are ineffective in hindering relaxation, since there
are no activation barriers. Relaxation occurs instead by
diffusion of the magnetization vector, and large correlated
regions are essential for slow relaxation.*

We conclude by reconsidering the case of dilution disor-
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der, to obtain a tighter lower bound on C(z) than the re-
sult obtained earlier by one of us.* For dilution disorder,
with sites (or bonds) occupied at random with probability
D, slow relaxation is due to large, rare regions in which the
concentration p’ of occupied sites or bonds exceeds locally
the critical value p.(T") necessary for the formation of an
ordered phase in the bulk. The analog of Eq. (6) is

C(t) = max fexp[— A(PpIx¥ @~V —te ~*1},  (16)

p’x

where

AQ@) =T /a(p')1¢/ @1

f("Y=p'In

2y —p
2| +a=pom

1-p'
1—p |’

Here o(p') is the surface tension of a bulk system with
site or bond occupation probability p', and expl —Nf(p’)]
is the probability that, in a region containing NV sites and
bonds, Np' will be occupied. Equation (16) requires that
we minimize 4(p') with respect to p’. If the minimum
occurs at p"=p* Eq. (16) yields

C(t)=expl—A(p*)(nr)4/@—1]

\

(retaining only the leading order term in the exponent).
In Ref. 4 it was stated that p* =1, i.e., that the dominant
contributions for long times come from regions of fully oc-
cupied sites or bonds. However, this is by no means clear,
since f(p’) approaches the limiting value £(1)=In(1/p)
from below with infinite slope.® If p* < 1, the previous re-
sults* should be modified by replacing A(1) by A(p*),
yielding a better lower bound on C(z). The qualitative
conclusions, however, are unchanged.

In summary, the result C(z)~expl—A(ns)¥/ @1,
for the asymptotic decay of the spin autocorrelation func-
tion, holds only if P(J) falls off sufficiently rapidly at
large J, such that large quasiordered regions dominate the
dynamics. Otherwise, the long-time dynamics are dom-
inated by isolated strong bonds, and the result depends ex-
plicitly on the large J form of P(J). In the latter regime,
C(t)~P((T/2)Int) gives the leading time dependence
for most distributions P(J).
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