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Abstract

Random quantum systems that exhibit unusual behavior associated with “infinite randomness”
fixed points are discussed, focusing on the random quantum Ising model. This system undergoes a
transition at zero temperature from a phase with infinite susceptibility and continuously variable
exponents to a ferromagnetic phase via a quantum critical point characterized by “tunneling
scaling” with energy Q and length scales, L, related by InQ? ~ L¥. Exact results in one dimension
and a scaling picture in higher dimensions are derived from a simple renormalization group.
Other random quantum critical points and quantum disordered phases that can exhibit similar
features are discussed briefly.

Quenched randomness can affect the collective behavior of systems with many degrees
of freedom in a wide variety of ways. These can crudely be characterized by how random
a system appears as it is looked at on larger and larger length scales or, roughly equiv-
alently, probed at lower and lower frequencies. The simplest—and best understood—are
situations in which the system behaves less and less random on larger and larger scales.
This occurs in many ordered phases and at some critical points, such as the normal to
superfluid transition of a helium film on a disordered substrate. In renormalization group
(RG) language, such systems, although random on small scales, are controlled by pure
fixed points; the randomness is effectively averaged out on large scales. More interesting
behavior occurs when the randomness is competitive at all scales; this occurs when a
system is controlled by a random fixed point. Such systems, which include spin glasses,
critical points of certain random magnets and electron localization, have received a great
deal of attention in the past few decades. In striking contrast to pure systems, many of the
properties of these systems are dominated by rare spatially localized “active” regions.[1]
An extreme limit of this would occur in a system which appeared more and more random
on larger and larger length scales; the fixed point in such a case would have, in a sense,
infinitely strong randomness. The large scale low frequency properties would be charac-
terized by extremely broad distributions of physical properties, such as relaxation times
or local susceptibilities. Such broad distributions are known to occur for the dynamical
properties of many classical random systems. Although these systems are controlled by
conventional finite randomness fixed points, the randomness causes a broad distribution
of free energy barriers with the times to overcome these depending exponentially on the
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barrier height.[1][2][3] When the typical size of the barriers grows with length scale, this
gives rise to extremely broad distributions of time scales [4] and to phenomena often
used to characterize systems as “glassy”: on any macroscopic time scale, almost all pro-
cesses are either much faster—and hence in local equilibrium—or much slower and hence
far from equilibrium, with only a few processes—consisting of a low density of active
regions-—evolving on the time scale being probed.

In quantum mechanics, energetics and dynamics are inextricably linked. Thus it should
not be surprising that an extreme separation of energy scales that is characteristic of infi-
nite randomness fixed points can occur due to the competition between randomness and
quantum fluctuations. This paper will briefly review some of the recent progress in un-
derstanding simple random quantum mechanical systems whose properties are controlled
by such “infinite randomness” fixed points.

We will focus initially on the simplest of all random quantum systems which can exhibit
a phase transition: the random quantum ferromagnetic Ising model with Hamiltonian

H=- ZJ,'J'U,-ZU; - Zhiaf — HZ[L,O’: (])
(i5) g i

where the {J;;} are random positive interactions, the random transverse fields {h;} cause
the quantum fluctuations, and H is an ordering field that couples to the (positive) mag-
netic moments {y;}; H will be set to zero unless otherwise specified. At temperature
T, such a quantum system in d-dimensions is equivalent to a d + 1 dimensional classical
Ising model with the couplings independent of the “time” direction in which it has extent
%. The pure system at zero temperature thus has, in any dimension, a quantum phase
transition as h is decreased which is in the universality class of the d + 1 dimensional
classical Ising model. We are interested in the low and zero temperature behavior of the
random system—both the nature of the zero-temperature phases and the ordering tran-
sition. Although zero-temperature quantum critical points can, of course, not be reached,
they typically control behavior over a substantial range of temperature and parameter
space.

Some insight into possible low T" behavior can be gleaned by considering a toy problem:
a one dimensional system in which all the {h;} are equal and the nearest-neighbor J;;
are equal to J with probability p or equal to 0 with probability 1 — p. This breaks the
system into segments of length L so it clearly has no phase transition. But the low T
behavior is nevertheless interesting: if h < J, the pure system would be ordered so that
long segments are “trying” to order and can thus have a large susceptibility. This can
be simply estimated: the ground state of a segment is the symmetric combination of
the up and down ferromagnetic states—essentially corresponding to the collective spin
of the segment pointing in the +x direction. The gap to the lowest excited state—the
antisymmetric combination of up and down or, equivalently, the segment spin in the —z
direction—is h(L) ~ J (%)L which acts like an effective transverse field on the segment.
The segment thus acts like a free spin with magnetic moment L and Curie susceptibility for
temperatures in the range h(L) << T << J, but is non-magnetic for T << h(L). Since
the density of segments of length L is p”, the density of “active” segments at temperature
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T is p»(#)/ () yielding a susceptibility

X~ (2)

(ignoring In T factors) with
y=1-In(1/p) /In(J/h) 3)
i.e. a continuously variable power law! The specific heat is similarly singular at low tem-

peratures.

But, one would think, a system of decoupled segments is obviously a pathological spe-
cial case of Eq. (1). Or is it? In fact, similar behavior of the susceptibility - indeed even
its origin is terms of (almost) decoupled clusters - is the generic low temperature nature
of the random quantum Ising model on the disordered side of the quantum critical point.
[5][6] Somehow, the system renormalizes at low energies towards a decoupled system char-
acterized by extremely broad distributions of effective couplings and effective transverse
fields.

This behavior, as well as that at the quantum critical point and in the ordered phase
can be understood via a simple renormalization group (RG) that is a generalization [5][6]
of one introduced by Ma, Dasgupta and Hu. [7] Our discussion here follows that of Mau et
al.[6] As we are interested in physics characteristic of broad distributions of couplings, we
first focus on the low energy behavior in this limit and later consider the regime of validity.
The basic strategy is to find the strongest coupling of the {J;;} and {h;} and minimize
the corresponding term in the Hamiltonian. The degrees of freedom associated with this
maximum energy scale, which we denote €, are then frozen at lower energy scales. If
the strongest coupling is a field, say hy, then the spin o is put in its local ground state,
i.e. in the z-direction, causing it to become non-magnetic. Effective interactions are then
generated between neighboring spins of k; but, as all other nearby couplings are likely to
be much smaller than hy, these can be treated by second order perturbation theory. This
yields new interactions

Jij = J,‘j + Jikaj/hk ~ max (Jij, Jikaj/hk) (4)

where we can use the maximum rather than the sum since one of the two terms is likely
to be much bigger than the other. If on the other hand, the strongest coupling is an
interaction, say Ji, then the two spins are combined together into a cluster which has
two ground states (both up or both down) and can thus be represented again by a spin
but now with a magnetic moment L(kty = Mg + pu, the sum of the magnetic moments of

the clusters—initially single spins—of which it is made. The effective field on the cluster
(k1) is

E(M) ~; hkhl/t]kl (5)
and the interactions of other clusters with the new one are

Jz‘(kl) ~ max(J,-k, Jil)' (6)
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Since all the new couplings are smaller than the initial £y, we have decreased the energy
scale to a smaller maximum energy, (2. The process is now iterated using, at each stage,
the effective couplings at scale (2. Note that the decimations change the structure of the
“lattice”, so that we should consider the spins to be the vertices of a somewhat random
graph with the RG modifying the spatial structure.

In the quantum disordered phase, under renormalization the fields eventually tend to
dominate the bonds and at small @ almost all the decimations are cluster annihilations
with the effective interactions connecting them becoming weaker and weaker; the system
thus renormalizes to a collection of asymptotically uncoupled clusters with a broad dis-
tribution of effective fields—directly analogous to the gaps i(L) of segments in our toy
example. In the ordered phase, in contrast, the interactions tend to dominate the fields at
low energies, and most decimations are thus of bonds; eventually this causes an infinite
cluster to form. The zero temperature quantum transition between these phases is thus a
novel kind of percolation with the annihilation and aggregation of clusters competing at
all energies at the critical point. But this competition is very delicate, indeed, locally it is
barely evident: at low energies, each cluster either has a field much bigger than its inter-
actions with other clusters, or has one strongly dominant interaction. The other couplings
are just enough to prevent the system from decoupling at any scale.

This cluster RG procedure is clearly approximate, but it has the potential of becoming
better and better if the distributions of the effective couplings broaden without bound as
the energy scale, €2, is lowered. As we shall see, this is exactly what happens at the quan-
tum critical point so that the cluster RG yields asymptotically exact results in the critical
regime, i.e. at low energies at and near the critical point. In two or three dimensions, the
RG can be carried out numerically [6] starting with only short-range interactions {J;;},
but in one dimension a special property enables direct analytical progress [5]: the effective
couplings remain independent under renormalization. Insight gleaned from the 1-d results,
combined with the general structure of the RG, yield a picture that is consistent with the
recent numerical RG results of Mau et al [6] as well as recent Monte Carlo simulations.
[18][19]

We focus first on the critical point. At each stage of the RG, an effective field, say h;, is
a product of some number, f;, of fields on a set (not necessarily distinct) of original sites,
divided by f; — 1 original interactions which connect these sites. The typical f; clearly
grows under renormalization at criticality, thus, although these sets of original couplings
are not independent (even in 1-d), one would guess that the width of the distribution of
In h; will diverge as 2 — 0: indeed, at the critical point, the distribution of In(%ﬂ)/ ln(%ﬂ)
and likewise In( —;31; /In(f2) tend to limiting fixed point distributions. [Note that £ simply
sets the basic energy scale.] The asymptotic exactness then follows immediately: all other
couplings near to an about-to-be-decimated coupling will almost surely be much weaker
than @ as 2 — 0.

The typical diameter, L, of a cluster at scale (2, scales as a power of f; and hence of
In( %’1) Thus, in contrast to conventional classical and quantum critical points at which
typical frequencies (or energies) scale as  ~ L%, here the scaling is very different:

In (%ﬂ) ~ LY )
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with some exponent ¥. This type of scaling, which arises from the necessity of virtual
excitations to high energies to flip clusters, we call “tunneling scaling”.

The magnetic properties of a cluster are dominated by the 4; active spins in the cluster—
i.e. those which have not yet been decimated; typically

i h&]"’. (8)

2

with some exponent ¢. Spins which are active at some scale in the same cluster will
coherently flip together as the cluster spin flips and hence be almost fully correlated. The
spin correlation function Cj; =< ofo} > is thus of order one if i and j are in the same
cluster at some 2. These rare pairs dominate the average correlation function yielding, at
criticality

— 1
ij ™~

9

(9)

|r5 — 7
with
n=2(d - ¢1). (10)

Although the average correlations thus appear similar to those at conventional random
critical points—such as a classical three dimensional random exchange Ising ferromagnet—
the physics is quite different: in conventional random systems, the pairs of spins which
dominate average critical correlations are themselves weakly correlated, and the correla-
tions between a typical pair of spins also falls off as a power of distance—albeit a larger
power than the average correlations. (8] By contrast, at the random quantum critical
point, the typical critical correlations between widely separated spins are very weak and
broadly distributed: typically

=InCy ~ ijlr; — x5l” (11)

with a random order one coefficient, «,;. These correlations arise from perturbative effects
- tunneling processes - ignored in the simple RG.

Deviations from the quantum critical point are of three types: Thermal fluctuations can
be understood by simply stopping the RG when ! ~ T'. Almost all decimated processes
then have energies much larger than T' and are hence frozen, while almost all remain-
ing processes involve couplings much less than 7' and thus have negligible effect on the
equilibrium properties. The clusters at = T are thus virtually independent spins with
moments {4;}. The susceptibility is then

[in ()%
X~ “—T— (12)

The effects of an ordering magnetic field, H, can be handled similarly by renormalizing
until H times a typical moment, y, is of order 2. The decimated clusters are non-magnetic,
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while the remaining clusters will almost all be fully polarized by the field. Thus the
magnetization at the quantum critical point will be

1
M~ (13)

-9

Q

[in ()]

in contrast to the power law scaling between M and H at conventional critical points.

Finally, and most interesting, are deviations from criticality at H = T = 0. If the
system is pushed slightly off critical—by, say, increasing all the fields {h;} by J, the RG

A
flows will move significantly away from the critical fixed point when & [ln (%ﬂ)] is of
order one. This yields a correlation length

£~ 187 (14)

with v = A—l- determined by the RG eigenvalue, A; this is conjectured to be related to the
scaling of the typical number of original fields, f;, involved in a cluster effective field. Thus,
as at conventional critical points, we have three basic exponents relating magnetization
(usually n/v, here ¢¢)), deviations from critical (v) and frequency (usually z, here %) to
length scale. Alternatively, in terms of a percolation picture, the active spins in a cluster
can be considered as constituting a fractal set with fractal dimension d = .

The main difference between the random quantum Ising critical behavior and conven-
tional critical points arises from the logarithmic connection between frequency or energy
and length scale Eq. (7), parametrized by 1. The consequences of this for the near critical
behavior are rather striking.

In the zero-temperature quantum disordered phase with small positive &, clusters much
larger than the correlation length are exponentially rare. Nevertheless, pairs of spins active
at some scale in such anomalously rare clusters will dominate the average correlations
vielding

C';;.N e~ Iri—r31/¢ (15)

at long distances (with subdominant prefactors—see 1-d result below). The typical corre-
lations - indeed those between almost all pairs of spins - fall off as a more rapid exponential
with

—In Cij o 1

i — 1y Euyp

(16)

with probability one as |r; — rj| = oo. In conventional random systems Euyp is a fixed

fraction of £ for small 4. But here, the two correlation lengths are very different with
Ep ~ 8] 0T~ 1P < g (17)

so that 9 is a measure of the deviation from conventional scaling.! Because of the broad
distribution of effective fields inherited from the higher energy critical fluctuations, there is

! Note that it is ¢ not &typ, Whose exponent v can be proven to satisfy v > %; indeed vy, =
v(1 ~ ) is less than % in one dimension; see [9)].
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still a broad—although finite width—distribution of energy scales in the weakly disordered
phase. This yields a scaling between energy, §2, and length scale, L—the distance between
surviving clusters at scale 2—of

Q~L* (18)
with 2 a continuous variable exponent which diverges as § — 0 as
z e~V (19)

Concommitantly, exactly as occurs in the toy finite-segment model, the 7 = 0 magneti-
zation scales as

M~ H: (20)

and the low T susceptibility as x(T) ~ Ti-1 (times powers of § and In H or InT). The
weakly disordered phase thus behaves like a line of zero temperature critical points! This
is an extreme manifestation, due to the quantum mechanics, of the weak thermodynamic
Griffiths singularities [10][11] and the stronger dynamical effects [3] in classical random
paramagnets that are caused by rare strongly coupled regions. As the system is taken
further away from the critical point, at some § the susceptibility will become finite [with
the analytic x H part then dominating M (H)]; but this is not a particularly special point;
it occurs even in the toy random-segment model.

In the zero temperature ordered phase for small negative d, the renormalization can be
continued past the crossover scale, £ ~ |§| ™, down to zero energy. What remains will be a
single infinite cluster of active spins—fractal on scales smaller than ¢ but uniform on larger
scales. These active spins have polarization of order one and constitute the spontaneous
magnetization, My, which scales as

My ~ (—6)# (21)
with
B =v(d—¢). (22)

In one dimension, the infinite cluster only forms at zero energy; at any positive T it will
fall apart into finite clusters since there can be no long range order at finite temperature.
But for d > 1, the infinite cluster will form at a non-zero energy scale € (although
it will continue to grow by agglomeration of finite clusters for ) < 2)[6]. Only at
temperatures T' > (2, will the infinite cluster fall apart and the system be paramagnetic.
For temperatures below Qq, the infinite cluster is held together by interactions that are
substantially stronger than T and the spontaneous magnetization will survive. Thus for
small 4, the ferromagnetic transition occurs at

T, ~ Qo ~ e KD (23)

with some (non-universal) constant K.
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So far, we have discussed a heuristic picture of the behavior of strongly random quantum
Ising ferromagnets based on a simple, but initially approximate, RG. Several questions
immediately arise: can the consequences of the RG be demonstrated more convincingly?
Can the claim of asymptotic exactness in the quantum critical regime be firmly estab-
lished? How general are the results? for weakly random Ising ferromagnets? for other
random quantum critical points? and, qualitatively, for other random quantum phases?
We will briefly address each of these in turn.

For the one dimensional random quantum Ising model the approximate RG, as men-
tioned earlier, has a great simplifying feature: if the couplings are initially independent,
the renormalized effective couplings will also be independent—although the moments and
lengths of clusters will be correlated with their effective fields, an important feature of the
physics and of the analysis.[5] The RG flows then become non-linear integro-differential
equations for two distributions: that of the cluster variables and that of the interaction
variables.

By the vagaries of fortune, these turn out to have a family of exact solutions which con-
tain both the critical behavior and the full crossovers from critical to the weakly ordered
and weakly disordered phases for small §. A great number of exact results can thereby be
obtained in the scaling limit of low energies and long distances near the quantum critical
point, even in the presence of a small ordering field, H. The structure discussed above is
found to obtain with the exponents

=1 g=Vorl

and v = 2. (24)

Remarkably, the zero temperature scaling function for the magnetization as a function
of H can be found in closed form: for |§| and m})—/ﬁj small?. The scaling variable is
v =61n(§p/H) in terms of which

Q17?2 [ Y2 e’” da
M~ |In|— — 277
[ B (H )} [sinh2 v + sinh -y o1ty dy (25)

with a(y) = |7|°Q4-1(cothy) a smooth even function of v and Q,, the Legendre function
of order p1. The small H limits in the ordered and disordered phases can be found and are
of the form discussed above [e.g. Eq. (20)]—but with the appropriate In H factors. It is
interesting to note that the analogous scaling function for M as a function of Hll}?;fg is not
known for the pure 2 — d (or equivalently quantum 1-d) Ising model! The fact that more
exact results can be obtained in the random than in the non-random system is surprising;
it is a consequence of the extreme separation of energy scales near the critical point.

Computation of the average correlation function can be reduced to analysis of a linear
ordinary differential equation from which the asymptotic form in the scaling limit £ — oo,
r >> &, can be derived. In the disordered phase,

—— &% ro 3 (2n%r\3
Cor ~ Wexp [-E - 5 ( E ) (26)

2 The basic energy scale £ is just a correction to scaling
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quite different from the usual Ornstein-Zernicke result.

These results, and others, are asymptotically exact consequences of the cluster RG, but
are they exact results for the actual 1-d random quantum Ising model? While there is
no proof at this point, the evidence overwhelmingly favors the affirmative answer. Many
properties of the 1-d random quantum model were computed exactly almost thirty years
ago by McCoy and Wu [11][12]*. Indeed, the existence of a phase with M scaling as a
continuously varying power of H is a consequence of this work. All quantities which can
be computed by both the cluster RG and by these or other exact [13][14][29] methods
agree and numerical computations [15][29]{16] provide further support. While there is no
rigorous computation of the interesting exponent ¢, the RG approximations involved in
obtaining it are very similar to those involved in obtaining the results that do agree with
rigorous methods. We thus believe that, like the Kosterlitz-Thouless predictions of exact
exponents from an approximate RG, the predicted ¢ = 1335 should be exact.

For dimensions greater than one, there are neither exact solutions nor exact quanti-
tative predictions—other than scaling laws-—from the cluster RG. But the RG can be
implemented numerically to yield arbitrarily accurate, at least in principle, exponents
and other quantities. This has recently been carried out in two and three dimensions by
Mau, Motrurich and Huse [6]; in both cases at the critical point the system renormalizes
at low energies to a fixed point with infinitely broad distributions of couplings scaling in
the manner described above. *

For d < 4, weak randomness is a relevant perturbation at the pure quantum critical
point (by the Harris criterion [17]) so we expect that—as in 1-d—the critical behavior
will be controlled by the infinite randomness fixed point for any amount of randomness.
5 In two dimensions preliminary estimates [6] yield ¥ ~ 0.2 - less than in 1-d but clearly
non-zero - and ¢ ~ 4. Recent Monte Carlo simulations with moderate randomness in
two dimensions [18][19] are consistent with the general picture discussed above although
they suggest a somewhat larger, but probably not inconsistent, value of ¢ [18]. Pich and
Young [18] find that at the critical point typical correlations decay as Eq. (11) and energy
scales as Eq. (7). The average correlations at criticality, in contrast, decay as a power
law with exponent 7 ~ 2.0. The data are substantially less consistent with conventional
scaling although great care must be taken. [31] Rieger and Kawashima [19]¢ studied the
behavior in the disordered phase obtaining a dynamic exponent z varying continuously
from 2 to 10, consistent with diverging at the critical point in the expected manner.
Analytic progress in two dimensions would seem unlikely except for one observation:

3 Actually McCoy and Wu studied the closely related classical anisotropically random 2-d Ising
model—named for them.

* 1t is important to note that the approximate cluster RG contains the seeds of its own po-
tential failure: if instead of broadening indefinitely, the widths of distributions of the In# or
InJ had saturated (or narrowed) at the critical point, this would have indicated a failure of the
approximation and, presumably, conventional £ ~ L~ scaling.

5 The behavior for d > 4 is less clear; weak randomness is naively irrelevant but rare regions
may, nevertheless, always drive the system to strong effective randomness.

6 The para-ferro transition temperature found in [19] appears to decrease less rapidly than
expected from Eq. (23), but this maybe a result of errors in the location of the quantum critical
point.
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since the extreme-randomness-dominated critical behavior is a type of two dimensional
percolation, conformal field theoretic methods might conceivably be useful.

At this stage, it appears that the scaling scenario discussed in this paper is indeed
correct for random quantum Ising ferro-magnets; certainly in one dimension, very likely
in two dimensions and probably also in three dimensions. But what other random quantum
systems will exhibit similar critical behavior?

It has been shown that in one dimension all random quantum Potts models are in the
same universality class as the Ising (¢ = 2) case, with the g—state degrees of freedom
riding on top of the underlying percolation structure.[20] This should also apply in higher
dimensions at least for strong randomness. 7 [30]

The critical points of quantum Ising spin glasses will also be in the same universality
class as ferromagnets: at low energies, the strongest couplings dominate at each scale and
the frustration is irrelevant.[6] A uniform z-field, H, will couple differently, however, and
of course the ordered phase will, except in 1-d, be very different from the ferromagnetic
case. Numerical simulations of two and three dimensional quantum spin glasses found
what appears to be more conventional scaling: with a range of Q ~ L2 scaling in the
disordered phase but z saturating at the critical point. [27][26] These may suffer, however,
from the same problems of analysis as ref. [31]

In one dimension there have been several other quantum transitions studied with qual-
itatively similar critical scaling, including the ordering transition in a random Ising an-
tiferromagnet with the total z-magnetization conserved-—i.e. a random XXZ model,[21]
and the transition in a random spin -1 antiferromagnetic chain from the topologically
ordered Haldane valence bond state to a disordered phase.[22] In both of these random
antiferromagnetic systems, the disordered phase is a “random singlet phase” first ana-
lyzed by Ma, Dasgupte and Hu [7] using an RG which motivated that used here. In this
random-singlet phase, most of the spins are paired in singlets at low temperatures but
a small density remain which will be paired into even more weakly bound singlets—via
virtual excitations of the intervening pairs—as the temperature is lowered. The scaling
of energy and length is again logarithmic tunneling scaling, Eq. (7), with ¢ = %.[21]
Although qualitatively similar behavior occurs in higher dimensional random antiferro-
magnets over a range of temperatures,[25] it probably does not persist to low energies;
the infinite randomness fixed point appears to be unstable [23] and the system will form
a different type of state.[24]

One of the challenging open questions is whether phases with tunneling scaling can
occur in random quantum systems in dimensions greater than one. But whether or not
this occurs, it is clear that disordered random quantum phases can exhibit, because of
proximity to random quantum critical points, strange behavior such as divergent suscepti-
bilities and continuously variable energy versus length exponents.[26][27] This is strikingly
different from disordered phases in pure or random classical systems.

In what experimental systems the kind of phenomena we have discussed here might
be found is largely an open question. But in addition to the kind of random magnets we
have discussed, there are potentially many other possibilities, including disordered heavy

T Weak randomness in 3-d should result in a first order transition for Potts models as is the
case for the pure systems
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fermion alloys [32], hydrogen-bonding solids, helium in porous media and on irregular
substrates, metal insulator transitions[33], etc. which might exhibit some or all of the
unusual features caused by randomness and quantum mechanics.

As a final note, it is worth mentioning that the one-dimensional random quantum Ising
ferromagnet discussed in this paper is essentially the only random system on a realistic
lattice that can undergo a phase transition—classical or quantum-—for which many exact
analytic results can be obtained. As such, it is a good testing ground for many of the
more general ideas about random systems—especially the crucial role played by localized
rare regions—developed by David Huse, this author and others.[28]

I would like to thank my collaborators on parts of this work—Siun-Chuon Mau, Olexei
Motrunich and especially David Huse and Peter Young for their substantial contributions
to my understanding of this subject. This work was supported in part by the National
Science Foundation via grant DMR 9630064, Harvard University’s MRSEC, and DMS
9304586.
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