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1. General introduction to the problems
1.1. Some general comments

Disorder, frustration, turbulence and chaos are characteristic features
of our time period. They appear to penetrate many different layers of
our existence. It is therefore no accident that, in recent years, there has
been a lot of research activity into the mathematics and physics of

— disordered systems (in condensed matter physics);

— (chaotic behaviour of) dynamical systems;

— turbulence (in fluid dynamics).

In the past fifteen years, say, these subjects of theoretical and
experimental research have become immensely popular and have
reached a fairly mature stage, although many of the important issues are
really still wide open—at least when looked upon from a very slightly
mathematical point of view. :

One may have different opinions as to how important the mathemati-
cal physics of disordered systems, dynamical systems and fluid dynamics
is. For a mathematical physicist, though, these subjects offer an
opportunity to confront himself, intellectually, with some basic themes
of contemporary science. -

As an encouraging feature of our times, I should like to draw

attention to the fact that mathematics and theoretical physics are on *

converging trajectories once again. We hope that this trend will result in
a genuine and fruitful new encounter, and not in a collision. People in
both fields, and in between, have some responsibility to achieve that
goal.

The lectures of Tom Spencer and myself are intended to survey a
small fraction of the more mathematical aspects of disordered systems
theory. These aspects are certainly not particularly central for the future
of that subject, but we feel it is always worthwhile to find out what, in a
scientific endeavour, can be motivated or understood in a way that does
not leave further doubts. The choice of material reflects to a large extent
our area of competence and our personal taste. We have no mBUEow to
give a complete survey. (We do what we can.) :
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It is hoped that our efforts are not completely useless and that they
are acceptable as a tiny contribution to scientific culture, not unlike a
good painting of Mont Blanc may represent a tiny, yet worthwhile
contribution to general culture, although a mountaineer who wants to
climb Mont Blanc may actually prefer a map of the area over 2 good
painting of Mont Blanc.

1.2. Topics in disordered systems theory

It may be useful to distinguish the following four main areas:

(A) Mechanisms for the creation of disorder.

(B) Static aspects and equilibrium properties of disordered systems.

(C) Dynamical aspects of disordered systems; relaxation to equilibrium,
metastability.

(D) Transport in disordered systems.

The least developed topic might well be topic (C), although there are
now some beginnings in that direction.

In the lectures of Tom Spencer and myself, the main emphasis is on
topics (B) and (D). Some more specialized themes concerning (A) and
(B) appear in accompanying lecture and seminar notes by various
people.

We proceed to sketch some theoretical problems met in the study of
topics (A) through (D). :

(A) Mechanisms for the creation of disorder

One typical instance of creation of disorder is the meliing of a crystal
lattice. We mention this as just one example of an order—disorder
transition; it is a fairly challenging and difficult example.

It is fair to say, we think, that there is no fundamental (microscopic)
theory of crystallization and of melting, yet, but there are amusing
phenomenological approaches towards understanding melting. One
popular such approach is to describe disorder relative to a perfect crystal
lattice in terms of defects, namely dislocations and disclinations. Disor-
der is created when these defects are generated, and these defects are
generated by thermal motion and mechanical deformations. There is an
elegant differential-geometric description of dislocations and disclin-
ations. An imperfect crystal can be viewed as a cell complex equipped
with an affine connection. A dislocation then is a locus of torsion, while
disclinations correspond to curvature [1]. (Part of) This discrete geomet-
rical structure can be described with the help of Regge calculus [2].
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Dislocations and disclinations are defects of dimension v — 2, where vis
the dimension of the underlying lattice (or cell complex). Thus they are
point defects for » =2, and line defects for v =3.

One approach towards a theoretical description of melting is to view
this process as a condensation of defects. In this view of melting, the
question whether the melting transition is continuous or first order and
whether there might exist phases intermediate between the completely
ordered and the completely disordered phase, depends on fairly
detailed properties of the effective interactions between defects. There
are several indications that three-dimensional melting is weakly first
order.

The mere existence of the melting transition, described as a conden-
sation of defects, can be understood, heuristically, with the help of a
simple energy—entropy argument and has been proven rigorously in the
framework of simple models.

In two dimensions, the mean energy of an isolated point defect in a
square area of diameter 1 is proportional to log I. The total number of
possible positions is proportional to I? i.e. the entropy grows logarith-
mically in /. Hence the free energy behaves like

F=E — TS ~const. log I — kT const.’ log [ . (1)

Thus, for T large enough, a dilute system of bound point defects
becomes unstable in the thermodynamic limit, i.e. defects unbind and
form a plasma.

It should be emphasized that in two-dimensional systems with regular
short-range interactions, a crystal lattice is unstable and translational
invariance remains unbroken at all temperatures (Mermin’s theorem)
[3], although directional ordering is possible. Eq. (1) is an appropriate
ansatz for the description of the unbinding of disclination pairs.

In three dimensions, dislocations are line defects with a self-energy
roughly proportional to their length, /. In a cubic area of diameter ~
const. /, the number of possible configurations of a single dislocation
loop of length [ is clearly proportional to exp[const. 1], so the entropy
grows linearly in /. The free energy thus behaves like

F ~const. [ — kT const.’ [ . ’ (2)

. . . ¢
Hence, for T large enough, a dilute system of dislocation loops becomes
unstable in large volumes, i.e. dislocation loops condense and the

crystal lattice melts [4].

——
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Another mechanism for generating disorder is dilution. Consider a
crystalline system with the property that atoms at the sites of some
regular sublattice can, in principle, be replaced by another type of atoms
or molecules. Let p denote the probability that the atom at a site of that
sublattice is substituted by another atom (we then say that the site is
“occupied”), and suppose that the events that different sites are
occupied or remain empty are all independent of each other. The
process so obtained is called Bernoulli site percolation [5]. One is
interested, for example, in understanding the structure of the random
connected sets of occupied sites. In particular, one may ask whether
there are o connected sets of occupied sites, what the probability is that
a given site belongs to an infinite cluster, and how these quantities
depend on p, etc.

The percolation problem just described has some natural generaliz-
ations. If we view a perfect v-dimensional (crystalline) lattice as a cell
complex, it is natural to introduce the notion of percolation of k-cells
with k < v [6]. These percolation processes are interesting in their own
right, but are, in several instances, important in the study of other
problems. For example, two-cell percolation is a toy problem in
studying lattice gauge theory, but it is also important as a tool in the
study of bond percolation in three dimensions. The reason is that k-cell
percolation and (v — k)-cell percolation are dual to each other, in the
sense of Kramers—Wannier duality. ‘I'hree-dimensional bond perco-
lation, in turn, is important in the study of dilute magnets.

Percolation is a special case of the so-called g-states Potts models
which is obtained when one sets g =1 in the Fortuin—Kasteleyn
representation of the Potts models. Potts models associated with k-cells
can be defined for arbitrary k, 1 < k < v — 1. They exhibit transitions as
the temperature is varied, and the interesting fact is that the nature of
the transition changes from continuous to first order, as q is increased
from g = 1 towards g = = [7]. Among the fascinating aspects of g-states
Potts models associated with k-cells (2<k<wv—2) is their rich
random-geometrical and random-topological structure [8].

The theory of site and bond percolation is, as mentioned, an essential
tool in the study of dilute ( ferro) magnets [9]. These are systems doped
with some density, p, of (ferro) magnetic ions which have short-range
(ferro) magnetic (exchange) interactions. The magnetic properties of
such systems depend not only on the usual thermodynamic parameters
such as temperature, but also on p. In the simplest models, the magnetic
moments of two ions are correlated only if they belong to the same site-
or bond-connected cluster. This shows why site or bond percolation is
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" MWMM“MM um.o dilute ferromagnets are dilute m::.\wwweiamdmau If m:o
exchange coefficient is nearest neighbour and negative and if the lattice
contains two interpenetrating sublattices (e.g. even E..R.* o.aav, then the
ground state and (for v > v,) the 52-88@9..»88 BE_&.::E states are
antiferromagnetic if the external magnetic .moE <mEm~.._nm. In zero
magnetic field the classical antiferromagnet is, in .mmor on:_.<m_05 to the
ferromagnet. However, the behaviour of a a__Eo. m:ﬁnﬂoammnnﬁ
changes drastically when an external magnetic mn_a.a turned on. .vo_‘
suitably chosen exchange couplings, the dilute mssmoﬁo:”_wmzn" in a
uniform magnetic field is nearly equivalent toa \m«now.:awzﬁ in a random
staggered magnetic field. This :msmmodsm:o:xo:m—nm:w proposed by
Aharony and Fishman [10]) will be described in lecture 4. The models
thus obtained are the so-called random field \mzdinmﬁnu. Amﬂmﬂzv
which have attracted a lot of experimental and Eno_‘.n:nm_ interest in the
past few years. For large anisotropy, the magnetic moments can be
described by Ising spins and one obtains the random field Ising iono_
(RFIM) studied in lecture 4. We shall sketch an argument explaining
why the lower critical &anﬂos. v,, of ::w WJ:M is most v—.ocw_u_wg “.Moh.~
inary Ising model has lower critical dimension one,
Mﬂm&%%a“:nmwmaa \WE enhances disorder. One reason why the RFIM vmm
attracted much theoretical activity is that there have been two conflict-
ing arguments, one predicting v, =2 (Imry and Ma [11}]) and :_w\ 1:_2
one predicting v, =3 (based on results of <o=.=m and of Parisi and
Sourlas [12]). The controversy has, to a .nonmannmc_o extent, been
settled in recent work of Imbrie [13], following work of Orw:.nom and of
Fisher, Frohlich and Spencer [14]. The apparently wrong mnaa_o:ou .:z:
v, =3 was based on the celebrated dimensional reduction 8&554@
which relates an RFFM in D dimensions to an ordinary mo:oawm:oﬁb:
zero field) in dimension » = D — 2. There is now some Bmarn:..wz.ow_
understanding of the circumstances that make 93.@3_052 reduction
fail in the RFIM. The cxact solution of the RF spherical model suggests
that dimensional reduction may be correct, qualitatively for RF models
described, approximately, by Gaussian &&: wave .anQ. More
noteworthy is the observation that &Bnnm_osm_. reduction appears to
work for a g¢* - we > lattice theory in an N.Snwsnwx 3:&0.3 magnetic
field. The critical behaviour of this theory in &Ensm_o.: D is nm_wﬂn.a. to
the Lee-Yang edge singularity in the (v = D - N.V-Q_Eosm.._o:w_ Ising
model (Parisi and Sourlas [15]). It would be interesting to nail this down

relevant in the analysis of such magnets. This will be discussed in detail
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more precisely. Remarkable is the fact that a theory that has as
academic an appearance as the g¢' — we’ theory in an imaginary
random magnetic field describes something as concrete as branched
polymers (Parisi and Sourlas [15]). All this leads to the prediction of
precise values of the critical exponents of branched polymers in three
dimensions (predictions which are fairly well confirmed by numerical
experiments).

The upper critical dimension for branched polymers is eight which is
related to the fact that the Hausdorff dimension of branched polymers
reaches four in high dimensions, so that the intersection probability of
two branched polymers tends to 0 in dimension =8. Above dimension 8,
the critical exponents have the values v = 1/4, 7 = 0. In the disguise of
lattice animals, branched polymers arise in the study of the cluster
shapes of bond percolation processes. Thus percolation theory helps in
understanding random magnetic systems (dilute magnets) and, in turn,
random magnetic systems help to understand some aspects of the
percolation problem.

It is remarkable that the branched polymer exponents v = 1/4, 5 =0
are also the mean-field values of some critical exponents of a large class
of (discrete) random-surface theories. In recent times, random-surface
theories have come to play a fairly prominent role in statistical physics
and disordered systems theory. Numerous problems in statistical physics
actually lead fairly directly to the study of statistical fluctuations of
random surfaces [16]. Among them we wish to mention the following
examples:

(1) Crystal growth; statistics of crystal surfaces.

(2) Domain walls and interfaces in magnets, spin glasses and alloys
(see also lecture 3).

(3) Role of gases of domain walls and their fluctuations in order—
disorder transitions; of domain walls and interfaces and their fluctua-
tions in (uniaxial) commensurate-incommensurate transitions, etc.

(4) Critical behaviour in surface models and uses of ‘“‘critical”
surfaces of Hausdorff dimension >2 in the catalysis of chemical
reactions. ,

(5) Wetting and unpinning.

(6) Surface structures in soap foam, in emulsions, in systems of
membrane-like polymers, etc. (nice examples of disordered systems).

There are now some encouraging beginnings in the direction of a
statistical mechanics of random surfaces [6,8, 16-19]. Some basic
phenomena, like surface roughening [18}], surface crumpling {16, 17},
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collapse of surfaces into (branched) polymers _.5_. or breathing (the
converse of collapse) [16, 17, 19], etc. have been _mo_m.ﬁna. and ﬁro_.o. are
simple models in which these phenomena can .vo studied mathematical-
ly. There are fairly interesting models Eﬁir_o:. problems (1) through
(6) above have found complete or partial mo_E._onm. .

So far we have isolated the following mechanisms for the creation of
disorder: . . .
(i) Order—disorder transition via condensation of topological defects.
(ii) Creation of disorder via dilution. .
(iii) Creation of disorder by E:an.u_.: magnetic m.aEm.
(iv) Creation of disorder by domain wall wandering and other surface
fluctuations. .

We now wish to discuss a fifth such mechanism:
w) Creation of disorder through .xw:h.w::.oa. o

This mechanism has been a focal point of recent theoretical interest:
It is fundamental in the study of spin glasses and real m_mm.mnm. .)m an
example of a fully frustrated system, oosman. a ﬁio-a_aoam_o..w_
antiferromagnet on a triangular lattice. On the vertices of nm.n: nﬂm:.m_m.
there are Ising spins which feel antiferromagnetic exchange interactions
(fig. 1.1). No matter how the spins are oaoaﬁa. there are two vertices
in each triangle with the property that the spins at those vertices receive
conflicting instructions as to whether to be up or down. As a result n.:n_.n
are very many groundstates or states very :.own_w degenerate with a
groundstate in this system, causing a violation of the third law nm
thermodynamics [20], i.e. the residual entropy at 0 temperature is
strictly positive. This might be a rather typical mnm:.:‘n of D.—._mz.wﬂoa
systems. It suggests that low-temperature phase diagrams in such
systems may be very complicated. o .

A typical system with random frustration is a spin glass ﬂ:” At each
site of the lattice Z” there is attached an Ising spin. Two spins o; and o;

i
)
!
i
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interact by an exchange force of strength J;;, and J,; is a random variable
with distribution dp(J;) such that the support of dp is not entirely
contained in the positive half axis. If dp¢J;) = 8(J;;) dJ;;, for li—j|>1,
then the interactions are nearest neighbour and one can form the
quantity ,

H
5=1II 4, (3)
{i.jY€ap

~where p is a plaquette (unit square) in Z". We set

7, =signJ, . 4)
A plaquette for which 7, = —1 is called frustrated. Let ¢ be a unit cube of
Z’. Clearly
I1r=1, (5)
pEdc

for all c. (This is the analogue of the homogeneous Maxwell equations.)
Therefore, the plaquettes p for which 7, =—1 are dual to closed
surfaces, X, of dimension » — 2. (In two dimensions they are isolated
spots, in three dimensions they are dual to loops.) Now on every loop ¥
interlacing a closed surface X dual to frustrated plaqueties, there is some
site j such that the spin at j receives conflicting instructions from its
neighbours as to whether to be up or down. This is easily verified.

If the external magnetic field, h, vanishes, configurations of exchange
constants, :&. fall into equivalence classes: two configurations J and J'
are equivalent if and only if there exists a,

a: jJEZ = a;€(+1, -1}, (6)
such that
Ji=al;a; . 7)
By changing the variables
o =0, m%v

one sees that two spin glass systems with equivalent exchange constants
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are completely equivalent, for h=0. ‘;ﬁww describe ww@:anw_ vrﬁmnﬁm. H({v, s, - . .}) is minimal, given X, %,, .. .. - (14)
i and (8) are called gauge transformations. Note ) ,
, M“M “wwsmﬂu““mwwnwumwm 7, mﬁnovmzca:.ni :mamm gauge transformations. o It is easy to see from that that there are, in general, lots of states whose
Thus systems related to cach other by gauge transformations are energies are &Bom.ﬁ _amzzmm_ to 5@. groundstate energy, because the
equivalent, as long as h vanishes. It is oo:<aao=r. Eanomoﬁ.o, to n:o_Mua of the domain walls is non-unique, given a tiny energy uncertain-
introduce gauge-invariant correlations. Let I; be a path in Z’ starting at ty. One may thus expect that the entropy at zero temperature is
: and ending at j. We define positive, or, at least, that it rises very sharply near T = 0, and that, at
I an gat) low temperatures, there are enormously many (meta) stable states of
enormous life-time related to configurations whose energy is very close to
;)= o; A [1 \tv gj» ©) the groundstate energy but separatied from the dstate b high
i ; o groundstate by very nig
ke ! energy barriers.
and, as a special case, ) : .F\E_o .:.n spin glass problem in zero magnetic field is mzmm.&. very
’ . difficult, it appears to be really hard to analyze spin glass phase diagrams
C({i, j)) = oJ,0;. (10) in the presence of a variable external magnetic field. In this sityation
. there is no gauge invariance, and the gauge-invariant formalism de-
Let 3 be a (v — 2)-dimensional surface dual to frustrated plaquettes, &\ scribed mvo<n m.m quite useless. It is n::o.m.mmm to expect :Sr. in _w_.m.n
and let 2 be an arbitrary loop interlacing 2. Then P o:O.:m: dimension, there are lots of transitions as the magnetic m.oE is
: varied (devil’s staircases?), but all we know for sure is that if the
M <= I1 J;<0. (11) w:,o:mﬁ of the Q:Q.:m_ magnetic mo.E is above some critical .<m_.=o,
G.yes ? G jyeg frustration becomes irrelevant, ordering sets in, and the equilibrium

state is unique.

It is interesting to note that the signs of the exchange couplings are
determined by Bernoulli bond percolation:

Thus 3 is the boundary of a sheet or domain wall, y, of dimension v — 1
with the property that, for each bond {i, j) dual to v, i

C({i, j))<0. sign J IA 1, with probability p,
i | = i il —
In the case of nearest-neighbour interactions, the total energy of a | 1, with probability 1 — p,
configuration of domain walls {v,, 72, - - -} is given by a where p = [ dp(J). The surfaces ¥ dual to frustrated plaquettes are the
(12) “boundaries” of clusters of (v — 1)-cells dual to bonds (i, j) for which
H({v, 7 -- -} = M E(v.) J,; <0. The statistics of the surfaces ¥ is therefore a problem in bond
. percolation (apparently a rather challenging one; see sect. 3.5). For fully
with ' frustrated spin glasses, p =1/2. )
Another aspect of the spin glass problem is the destructive interference
E(y)=2 > (] (13) of interactions. We recall that the Ruderman-Kittel interaction in

(i.j) dual to y three-dimensional spin glasses has exchange couplings

Every equivalence class of exchange couplings, J, determines a unique o
configuration of (v —2)-dimensional surfaces, 3.,3,,..., dual to I~ 8&.@?. u:_ . (s
frustrated plaquettes which are bousidaries of domain walls. The li—jl

problem of calculating the groundstate energy of a spin glass can be “

; \ e i are : . anpe (Y Verpes) Ve
understood as the problem of choosing domain walls y;, %, . . . insucha These couplings arc thus of very long range (£, |J, | diverges). However,
way that

roughly speaking, the events that J; = +J and that J, = —J are equally
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likely, because the magnetic ions are distributed randomly. ‘_,Em.nmcmom
huge cancellations in the total exchange energy and enhances a_mcﬁnq
so drastically that spin glass models are in disordered phases, with
clustering of correlations, for long range nocv._.w:mm J; with the property
that corresponding systems with couplings _.~c,_ are permanently
ordered, or do not even behave 995035@38:%. (A spin glass with
couplings {J;} with the property that J; =0, sup; L, J% < const.,
uniformly in p =2, 3, . .. where F(J) = [ dp(J)F(J), is thermodynami-
cally stable [22] and appears to have a unique Gibbs state at high
temperatures [23]. For more detailed results see lectures 2 and 3.)
We have just learned that disorder and decay of ooﬂo_.w:o:m in spin
glasses are enhanced by destructive interference of competing ferro- and
antiferromagnetic interactions and by frustration. It is natural to ask
whether similar mechanisms are at work in other systems, as well. It is
expected [24] that frustration is an important aspect of .R& glasses. The
principle of this can be understood quite easily: consider a substance

made up of several species of atoms, AL,A,, ..., A, in ratos
n,:n,:---:n,. Suppose that kn, atoms of type A,, kn, atoms of type
A,, ..., kn,_ atoms of type A, form a rather stable compound (an

approximately rigid body), €. A low-temperature nO:gojmwS of such
compounds can be thought of as corresponding approximately :,u a
closest-packing configuration of @’s. But, depending on the mnoBmEnw_
(steric) properties of €, there may or may not exist a configuration of
density close to closest-packing density that forms a regular lattice.
Indeed, configurations of (approximately) closest-packing density may
correspond to aperiodic tilings of physical space. There are many
regular compounds € which cannot be arranged in a periodic array of
high density (e.g. pentagons in the plane, .. .). Since we have assumed
that, at low temperature, a compound € is, approximately, a rigid body,
we may describe its position in space by centre of mass coordinates, x,
and a frame (dreibein) R € SO(3). (In systems with different isomers, R
may be, more generally, an element of O(3).) Now consider two
compounds € and €', with positions (x, R), (x’, R"), with |x — x'| small.
Purely geometrical and energetic circumstances may favour Rand R’ to
have a certain relative orientation to each other which is given by an
element J of some subgroup G C SO(3) which depends on (x,R)and x".

It may happen that if one tries to line up n compounds ¢€,,...,¢€, at
roughly equidistant positions x,,. . . , x,, located along a loop Lin space,
one is unable to choose orientations R, ..., R, such that

R, =Jx ,x)R,, _ (16)
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for all j, with x_,, =x,. The reason is very simple. Let

Jo=11J(x.,, x). (17)

=1

By iterating (16) we see that, in order to obtain a perfect arrangement,
we must require

.\mxk_ = ka_ H A~va

hence
Jo=1. (19)

But a minimum-energy, approximately closest-packing configuration
may have to violate (19) for many loops, & (unless the compounds € can
be arranged in a dense, periodic array). To understand this one could
try to describe the low-temperature properties of the system by an
effective Hamilton function, H, given by -

H({x, R}) =2 o.({x, R}, i€0), (20)
where ¢ is an arbitrary finite cluster of compounds, and

o ({x,R},i€c)=0
if

max |x, —x[>p,

t.fin ¢
for some finite p. Since the compounds € have a positive diameter, D,
the potentials ¢, vanish when the cardinality of ¢ is larger than some
finite integer n, ~ (p/D)’. Unfortunateiy, while it appears possible to
explicitly write down reasonable expressions for the potentials, ¢,, it
looks horrendously complicated to even calculate approximate ground-
states or estimate the residual entropy at 7= 0. One would really have
to rely on large-scale computer calculations.

If one is dealing with a system that has a phase where translational

disorder is rather weak, i.c. the positions, x,. of the compounds are
essentially frozen at the sites of an irregular (possibly random) attice,
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A, but orientational disorder is tolerated, energetically, and rather large,
then one might hope to describe that phase of the system by an effective
theory on A. The possible orientations, R, at each site x € A, would be
chosen to belong to some (e. g discrete) subset R of SO(3), and to
lowest order in an expansion in powers of {R,}, x € A, the Hamilton
function would have the form

H= 2 t(RI-JXR)), (21)

xy© Ty
(x,y)C A

where J , belongs to some (typically discrete) subgroup G C SO(3), for
every co:a {(x, y) of A. Frustration then occurs on loops, A, of the dual
lattice with the property that, for loops £ of A interlacing A,

=[loJ,=1. (22)

(r,y)EL

“ispge

The stable defects of configurations {R_} can be classified by :QBO"OE
(m(G/H), w,(G/H), m,(G/H), where H is the “‘symmetry mch > of
the orientational nosmmcnw:o:mv Many concepts and ideas used in the

_analysis of the spin glass problem can be carried over to this situation,

but in the present case the randomness of the couplings (J2 ,}—if they
are random at all—is coupled to the randomness of the _m:_no A which
probably renders the analysis considerably more difficult. .

Clearly, orientational ordering is possible without there being trans-
lational long-range order. But then the.concept of frustration becomes
rather vague and is useful, at best, to explain properties of the
short-range ordering of large but finite ““compounds of compounds”
Anyhow, two-dimensional gases or liquids of compounds must generally
be expected to exhibit long-range orientational ordering (dipolar-,
quadrupolar-, . . . ordering), and this does not contradict the Mermin-
Wagner theorem, as is well known.

This concludes our m:?@ of :.n :Bnn—_n:_mim for the creation of
disorder”.

(B) Static aspects and equilibrium properties of disordered systems
Since my lectures are organized around this topic, it is best to present

now a short outline of subsequent lectures. In lecture 2, I shall discuss.

the high-temperature and/or large magnetic field properties Qm dis-
ordered magnets and spin glasses. To be specific, let us nosm_aw_. the
example of a dilute ferromagnet. The Hamilton function is given, for
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example, by
H=- 2 oJo+h2 o, (23)
(i.jyczy iezv

where o, = =1, h (the magnetic field) is real and

;= ﬁ 1, with probability p,

“ 10, with probability 1 — p . (24)

It is well known that there are no phase transitions in this system for
h#0. Let T_(p) denote the critical temperature of the model in zero
magnetic field, h =0, T_(1) being the critical 8:6@?::8 of the pure
Ising model. We shall show that

T.(p)<pT.(1),
and

T.(p)=0, for p<p,

where p_ is the percolation threshold of v-dimensional bond perco-

‘lation. More difficult is the proof that T ( p) is positive, for p > p_. This,

is shown in lecture 3 (modulo the “usual suspects’ of bond percolation
in v =3, known to hold when v =2). Thus the phase diagram can be
summarized as in fig. 1.2. In the disordered phase (7' > T ( p)), but for
T <T.(1), one encounters the famous Griffiths singulurities. We show
that, as a function of A, the free energy f(T, h) of the system has an

T
disordered —<———
TN / // convergent high—T
// S U:mmm / expansion

////ﬂ/ V/ N /./, 5 .

NS ////////M// N ) The transition as
Griffiths pd / < T passes trough
singularities T_(p) is continuous,
(high—T ordered but critical exponents
expansion phase may change (Harris
diverges) © criterion).

)
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essential singularity at h = 0, for T.(p)<T <T,(1),butis differentiable
at h=0, i.e. m(h)=(3f(T, h)/3h) tends to 0, as h—0. One of our
new results is that, for T > To( p), with T.(p)<To(p)<T(1), AT, h)
is actually C” in h (Frohlich and Imbrie [25]). It would be interesting to
know whether f(T, h) is quasi-analyticath =0, but we rather expect it is
not.

The features of the high-temperature phase described above for the
dilute ferromagnet appear to be generally valid for disordered magnets
and spin glasses, and part of this picture will be established for a general
class of models. We also show that ordering in dilute ferromagnets at
low temperature is stable against introducing a sufficiently small density
of antiferromagnetic exchange couplings, in a variety of models (lecture
3). However, when the density of antiferromagnetic bonds increases,
frustration tends to increase as well, and curious phenomena may
happen. It is known that the magnetization decreases and it may, in fact,
decrease so much that its sign is opposite to the sign of the boundary
condition. Curious things happen when neither ferro- nor antifer-
romagnetic exchange couplings percolate, but together they do. When
the resulting system is highly frustrated, it is really a (dilute) spin glass.
But when frustration is suppressed, i.e. frustrated loops have a very low
density, the system behaves like an antiferromagnet. When such a
system is put into a uniform magnetic field, its behaviour is described by
the random field Ising model (RFIM). This is discussed in lecture 4, and
the phase diagram of the RFIM is developed in some detail. In
particular, we show that if the disorder in the magnetic field is large
enough, then the equilibrium state of the RFIM is unique, and
connected correlations decay at arbitrary temperatures. Uniqueness and
clustering hold, of course, at high temperatures for arbitrarily weak
disorder. However, for v > 2, small disorder and at low temperatures,
long-range order is expected on the basis of the improved Imry-Ma
argument (see refs. [26] and [14] for results) and Imbrie [13] has
established this fact rigorously for T=0 and v =3. The conjectured
phase diagram of the RFIM in » > 2 is then as in fig. 1.3. Here H?is the
variance of the random magnetic field, /,, and the mean of h;is assumed
to vanish, for all JEZ". It is expected that when the mean, h, of h; is
nonzero, then the equilibrium state is unique, and connected corre-
lations decay, but this has only been shown for h large enough.

For spin glasses much less is known. Th
concern the disordered regime and a result

e only safely established facts

concerning the positivity of

the entropy at zero temperature in a somewhat artificial model. If the

. e
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Fig. 1.3. The conjectured phase diagram of the RFIM in p>2. Improved expansions are
due to Frohlich and Imbrie {25] and Berretti [27].

exchange couplings {J;} are independent, bounded random variables
with

J;=0 and [J,|7 =< const. |i — jle G.mv
for p=2,3,..., then there is no ordering (the Edwards—Anderson

order parameter vanishes) for arbitrary temperatures and magnetic
fields, provided

a>1, inv=1, : (26a)
« =2, continuous internal symmetry in v = 2, Ammg

and, for arbitrary », one strongly expects that there is a disordered
high-temperature phase, provided a > (v/2). (Sec refs. {22] and [23] for
further results.) It is expected that, in one dimension, the Ising spin glass
has a transition if « <1 (a > 1/2 is required to obtain thermodynamic
behaviour; Kotliar, Anderson and Stein [28]). It is well known (and
rigorous proofs exist) that in deterministic ferromagnets, the corres-
ponding critical values of a are twice as big [29].

Some interesting conceptual problems arise when one tries to give a
complete description of all possible Gibbs states of a spin glass, for a
given sample of J’s. It is conceivable that for example in one
dimension, for 1/2 < a < 1, exotic Gibbs states exist which could be con-
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structed by choosing {J,;} -dependent boundary conditionsinaclassofb.c.
of *‘measure 0’ (to be somewhat vague).

In my last lecture, I shall derive the connection between Ising models
in imaginary random magnetic fields and branched polymers discovered
by Parisi and Sourlas and the application of this connection and the
dimensional reduction technique to predict the values of the critical
exponents for the three-dimensional branched polymer system. (The
notes have been compiled by Bovier, Glaus and the author.) The
mean field theory for branched polymers and other rigorous results
would provide a natural gateway to the exciting topic of random surfaces
and their appearances in statistical physics. But there is no room for a
systematic account of these matters, except for a discussion of the
intricacies and subtleties that one meets when one analyzes the fluctua-
tions of the interface in the RFIM. In particular, we discuss why and how
the Grinstein—-Ma arguments fail at low temperatures, €.g. in dimension
4, and we discuss some conjectures concerning the interface of the
threc-dimensional RFIM (possible transition from logarithmic to power
law fluctuations).

(C) Dynamical aspects of disordered systems

Consider, for example, a dilute magnet with ferromagnetic exchange
couplings just barely above percolation threshold and a very low density
of antiferromagnetic exchange couplings sprinkled in, in such a way that
there is very little frustration. Then in dimension » =2, we would expect
that there is ordering at very low temperature. However, the spontane-
ous magnetization in the Gibbs state with + boundary conditions at =
may actually be negative, since a family of finite clusters of ferromag-
netic couplings of fairly high density may be antiferromagnetically con-
nected to the infinite cluster. If such a system is subject to a fairly strong
homogeneous external magnetic field in the + direction, the total mag-
netization is positive and itremains positive when the external field is slow-
ly turncd off. It is plausible that, in this system, relaxation back to equilib-
rium, where the magnetization is negative, would take an astronomically
long time. Similar reasoning applies to the RFIM and to spin glasses. One
may thus expect as typical dynamical features of disordered magnetsatlow
temperature:

— complicated hysteresis phenomena and path-dependence;

- freezing in metastable states of enormous life-time;

- very slow relaxation to equilibrium;

— slow decay of autocorrelation functions (in this connection, it has been

e o e e e
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proposed that (1/f)- or Flicker noise may describe how the system

hops from one metastable state to another, but other spectra seem to

appear, as well).
Of course, at high temperatures in the disordered phase, relaxation
towards equilibrium occurs relatively rapidly, in particular relaxation
times are finite.

The very properties of the dynamics of disordered systems at low
temperatures, in particular the existence of many metastable states of
very long life-time and the slow decay of autocorrelations in time, make
Monte-Carlo simulations of the equilibrium properties of such systems
very difficult and generally quite unreliable. But see, e.g., ref. [30].
(The model dynamics and the Monte-Carlo dynamics are in general
chosen to be dissipative dynamics given by temperature-dependent
stochastic processes whose invariant measures are given by the Gibbs
states.) But what obstructs the Monte-Carlo method bothers the
experimentalist even more. His experimental data tend to be strongly

“path-dependent, and he has a very hard time to actually “see”

equilibrium. A certain lack of awareness of these circumstances has
recently led to controversies about the correct interpretation of experi-
ments done on the three-dimensional RFIM; Villain and Bruinsma et al.
have clarified the situation by appealing to the dynamical facts described
above and have developed a heuristic description of the time depen- -
dence of various quantities [31].

The challenge to the theoretician who wants to explain, theoretically,
the outcome of experiments done on disordered systems at low
temperatures is to understand dissipative dynamics in systems with =
many degrees of freedom and to develop a good theory of metastability.

The last part of this introduction is devoted to the fascinating subject
of (D).

(D) Transport in disordered systems
This is a huge subject in itself. Among the fairly fashionable topics of
transport theory, one finds: 4
(i) Classical and quantum mechanics of particles moving through
random arrays of scatterers, or
(ii) moving in stochastically time-dependent potentials.
(iii) Transport of heat, sound, light, clectric charge, ctc. through
disordered media (Anderson localization, Anderson transition, ctc.).
(iv) Random walks in random environments.

A typical example of problem (i) is the Lorentz gas. A classical
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numerous discussions with J. Imbrie, but especially with Tom Spencer.
Many of the mathematically rigorous results in lecture 5 are novel or
new and are based on collaboration with A. Bovier, G. Felder and U.
Glaus, but the punch line is a brief discussion of the Parisi-Sourlas
results on branched polymers. Some of the rigorous work in lecture 5 is
related to earlier work of M. Aizenman, D. Brydges, T. Spencer and
myself, M. Aizenman and C.E. Newman and others. See also the notes
of David Brydges for a review of work concerning related questions.
The numerical results described in lecture 5 have been compiled by S.
Carracciolo and U. Glaus.

(3) Acknowledgements. I thank M. Aizenman, J.T. Chayes, L. Chayes,
G. Felder, D. Fisher, J. Imbrie, L. Russo and T. Spencer for enjoyable
and fruitful collaborations which led to some of the results reviewed in
the following and shaped my perspective. I owe a great deal to D.
Brydges, E.H. Lieb, E. Seiler and T. Spencer for having gotten me
interested in and taught statistical physics. Without my collaboration
with Tom Spencer and our friendship I would never have gotten
involved in work that I believe has been worth our efforts.

I also thank K. Osterwalder and R. Stora for having invited me to
lecture at Les Houches and for having organized such a good school.

2. The :Em—_-SEvmnmEqnz behaviour of disordered magnets

2.1. Definition of models and main results

We consider disordered magnets aom,nacoa“ in an idealized manner, as
classical lattice spin systems with coupling constants that are random

variables. A typical Hamilton function of such a system in a box A
contained in the lattice Z” is given by

Hy=~- 2 J,00,+2 ho, 2.1)

ijain A JEA

and we usually suppose that
o, = *1 (Ising spins), VjE€Z".

In (2.1) J,, denotes the exchange coupling between o, and o; and is a

model, closely related to independent work of J.T. Chalker, and on

&
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real-valued random function on Z* x Z* with distribution

~~
(a8
~
~—

dR(1)=11dp; (4,
Ly

where the measures dp,,, are probability measures. Furthermore, h,is
some inhomogeneous magnetic field, a random function on Z* with
distribution

dLry=[Tdan), (2.3)

where dA is some probability measure on R. We shall shortly consider
different special cases.
Let

W=-2 J,o0, (2.4)
ieA
JEAS

(the interaction energy between the spinsin A and in A°), and letdb, be
some probability measure on {o;}, j € A, whose role is to impose
boundary conditions (b.c.) on the system inside A which we regard as an
idealized description of part of the experimental setup available to
measure statistical properties of the system.

The equilibrium state of the system at inverse temperature 8 with b.c.
db is defined by

dug, (0)=2Z,, e P Qnés.; %.,?vv Il do, (2.5)
€A
where do; is the counting measure on {—1, 1}, and Z,,, is the usual
partition function chosen so that Jdpg, (o)y=1.
If F'is a function on {0,}, j € A, we denote by
(F)g=(F)yy, =(F)y,J, h) (2.6)

.

the integral

\atu.iqv Flo),
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i.e. (F), is the expectation value of Fin dug,, which is a random
variable, since it still depends on J={J;} and h={h;}.
The quenched expectation of F is then given by

m% (F)p,,(J, h)dR(J)dL(h), (2.7)

i.e. (F),is averaged over all possible samples. Next, we consider some
specific models and summarize some results.

(1) Random field Ising model, large disorder
J;=0for|i—j|#1;J,=1for li = j| = 1; {h;} independent, identically
distributed (i.i.d.) B:moa variables with a_m:_vc:on dA(h;) given by

dA(h) = (V2w H) ™ exp{—h}2H} dh, (2.8)
with

e Aot <1 (2.9)
Under these conditions, the thermodynamic limit

(F)(h)= lim (F) g, (k) (2.10)
exists and is independent ot b.c., for dL — almost all A. Moreover,
there exists a constant m(8) > 0 independent of h such that connected
correlations have almost surely tree decay with decay rate m(3).

(2) High-temperature spin glass
J;=0for |i—j|#1,

QEA.\:.V WQPA.\.L
= (V2ma) T exp{-(J; — J)724%} dJy, (211)

when |i — j| = 1; dA(h;) arbitrary; 8 small. (If supp dp C [0, ), we call
such a model a dilute ferromagnet.) The main results for these models
are the existence of the thermodynamic limit, independence of b.c. and
tree decay of connected correlations with decay rate m(B8)=
m( B; dp, dA) independent of J and A (for almost all J and k).
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(3) Low-temperature, predominantly ferromagnetic spin glass (see also
lecture 3)

Jyasin(2), J=1, A<1, B>»1, h=0. (2.12)
The main result for these models is that there are two extremal
equilibrium states with opposite spontaneous magnetization and with
the property that connected correlations have tree decay.

The results summarized in (1)~-(3) have the common feature that they
can be proven by means of improved ‘‘high-temperature” expansions
which were recently developed by Imbrie and the author [1}. and, in a
weaker form, by Berretti [2]. We outline Berretti’s expansion below.
The more powerful tools in ref. [1] are technically rather involved and
cannot be explained here. However, they share several features with the
techniques, discussed in Tom Spencer’s lectures, that were developed in
ref. [3] to establish Anderson localization.

H

(4) Random field Ising model, small disorder (s¢e also lecture 4)

3 T . 2 _ 2
J,j asin (1), 3!:. H =h/ <1, B>1. (2.13)

Quasi-theorem. For v >2, there are two extremal equilibrium states
with opposite spontaneous magnetization, and connected correfations
have tree decay.

In the generality in which it is stated here, this result has not been
proven, yet, but Imbric has proven it for v = 3 and B8 = =, see ref. {4]. It
is expected that a combination of the methods of refs. [1] and [4] would
yield a proof of the quasi-theorem, above, for v = 3.

One may hope to show by means of energy—entropy considerations
that in two dimensions there are no states with spontancous magneti-
zation, as suggested by the arguments in refs. [5, 6, 2]. In any event, the
odds are in favour of the conjecture that the lower critical dimension of
the random field Ising model is d, = 2.

(5) High-temperature spin glass, long-range interactions
We assume that

| . ) 5
e \_A.\ v.\:mAUn, MJ—UM\ __,\:___\.m\m‘ Ar._:nv
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for some p-independent constant k and all p=2,3,.... The distri-
bution dA may be arbitrary, and g is required to be very small. Under
these conditions we make the following

Conjecture. An improved high-temperature expansion converges almost
surely and uniformly in A, and correlations have cluster decomposition
properties.

This conjecture is still open, but a proof now appears to be within
reach.

In one and two dimensions there are, however, some rigorous results.

Let the Hamilton function be given by

H=-2JG, Pli=jl™"s;-s;, (215)
1

where the J(i, j) are i.i.d. random variables with rean 0 and variance 1,
foralli,jinZ*, and the spins S, are unit vectors inRY,N=1,2,3,....The
resuit is: .
Theorem.
(1) For v=1, N=1,2,3,... and a>1, there is no spontaneous
magnetization, and the equilibrium state is unique (in a sense explained
later), for all B <. See ref. [7].
(2) For v=2, N=2,3,... and a =2, there is no spontaneous mag-
netization and no breaking of the O(N) invariance, for all B <. See ref.

(8].

It is expected that, in one dimension and for N=1 (Ising) and
1/2< a <1, there are transitions. More about these matters appear in
lecture 3.

Next, we wish to describe the main difficultics one meets when one
trics to usc high- or low-temperature expansion techniques to analyze
disordered magnets in regions of thermodynamic parameters where
they are expected to have only finitely many extremal equilibrium states
with good cluster decomposition properties.

(A) The Griffiths singularities [10]
Let J, =0 for [i—jl>1, and let J; be a bounded random variable for
lé—jl=1Dbut A>0. Let

J,=1, maxJ, =J . >1. (2.16)
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~1
o
~d

By ergodicity, there exist = many connected regions, (2(J. 8. 1
rg¢ y gions, {X{J. o6, L),
containing a cube with sides of length L =1,2,3, .. in the lattice such
that

_.\:I.\_A%Amw (2.17)

for any given § >0 and J € [1 + 26, J_, ]. Let B, be the transition point
Ana:na point) in the Ising model with J,, = 1, for all nearest-neighbour
pairs £, j. If we restrict the system to £(J, 8, L), choose L very large
and let Re B range over the interval (8,J "', B,), then the system on
€2(J, 8, L) behaves like a low-temperature system, with a susceptibility
of order L". In particular, we expect singularities in the complex
B-plane and in the complex A-plane close to the real axes and pinching
the real axes, as L — =. Nevertheless, the entire system in the ther-
modynamic limit remains in the single-phase region, as long as

B<By,

multiple xvjm.mml
region ’

single- phase
', region
v 7/

convergent
+

R s

but Griffiths
singularities;

1
high—T expan-
sion

h

—————— -

iimaginary axis 1s full ot singuiarities

tor 3 > ,::H._x c,o

Fig 2.1
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situation is described in fig. 2.1. Expansion in 4 around & = 0 converges
mOamA&Lmom:a_im_:m:.monmv.ﬁ._:mognEro_omammmsméwx__m

in the complex h-plane is covered by singularities, but, for 8 < g, there
is no spontaneous magnetization at # = 0, and the magnetization is C” at
h =0. (Most of this can actually be proven {1, 10].) We also expect
Griffiths-type singularities in the random field Ising model in the
complex H-plane (H* = FJ in regions where the expansion of ref. [1]
actually converges, i.e. where the equilibrium state is unique and has
cluster decomposition properties. The main problem is to develop
expansion techniques which converge even in the presence of Griffiths

singularities. Solutions of this problem have been found in refs. [1, 2].

(B) Problems with long-range exchange couplings

Consider the model described in (5). It is easy to check that under
conditions (2.14), individual terms in the high-temperature expansion
are all almost surely finite, but to establish almost sure convergence is
non-trivial, because of combinatorial problems. The difficulty described
here is not purely academic, since, e.g., the Ruderman-Kittel interac-
tion is not absolutely summable. Mathematically, it is somewhat related
to, though presumably easier than, the difficulties one meets when one
tries to prove convergence of the Mayer expansion for dipole gases
which were finally overcome with the help of renormalization group
methods [11]. In v = 1 and 2 dimensions, presumably optimal results are
now known.

2.2. Griffiths’ theorem on Griffiths singularities

We now want to state and prove a rigorous result on the existence of the
singularities described in (A) above in a simple example. We let A be a
periodic box in Z" (wrapped on a torus). The Hamilton function for a
magnet in A is chosen to be

H=-2J,00,+h2 o, (2.18)
ij i
with
0, |i—jl>1,

J, =41, with probability p w li-jl=1
[ y

0, with probability 1~ p (2.19)

since ﬁ =1 (see sect. 2.2 for a more precise statement). The expected’
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or
Jrr., for|i—jl=1
J. = “ tye s
7o, otherwise |, (2.20)
with
7, =1, with probability p
and

7,=0, with probability 1 — p .

For this system we show that when A 77" and for B > g,, but 8 not too
large, the imaginary axis in the complex h-plane contains 4 singularity at
h =0 (and is presumably full of singularities), but the spontaneous
magnetization vanishes when-h — ) along the real axis {10]. Moreover.
the results of ref. [1] imply that the magnetization can be C” in h at
h =0, in this situation.

Calculation of magnetization

To be specific, we choose J;; as in (2.20), but (2.19) can be treated too.
We call a site j occupied if and only if 7, = |, otherwise it is called empty.
Let C denote an arbitrary configuration of occupied sites in A (ie. a
family of disjoint, connected clusters of occupied sites). Furthermore,

|C| = number of sites belonging to C |
P , = probability of occurrence of ¢ ,

calculated according to (2.20);

M = average magnetization per site in A |

M . = average magnetization per site in (.

Mo=[AI"Y 2 jclp M, . (2.21)

[N <IN

v sweer
W Npess L
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— 2Bk

and let f. denote the free energy per site of the system restricted to C,
1.€.

Bfe=~|Cl " log Z, (2.23)

where Z_ is the partition function. Then

3f, oz ofc of
=Yc_ 92 %c_ _,5,%c 2.24
Me=Sh=on oz = 7%, (2.24)
Writing .
o~ Bho Nom‘.m,.wisiv

and summing over all values of o;,{ € C, we see that oéiﬁNn is a
polynomial in z of degree |C|. Hence

IC|

Ze=const. z D[] (z-¢.(C), (2.25)

a=1

where { (C) is the ath zero of Z.. The Lee-Yang theorem [12] tells us
that

|£(C) =1, forall a. _4 (2.26)

By (2.23)—(2.25)

ICl
1 11 1
Me=2Bz A; AR P ﬁav . 227
Inserting (2.27) into (2.21) we find
1€l
M= =11 S (clPe, (1-221C 3 (2 - g,(0)7)

CgA a=1

=—p+2z2 n,(Mz-¢)", (2.28)

a=1

z=e (2.22)
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where p is as in (2.20), N, is a finite integer, and

n(A) = 4] Ao 3 m©) Pes)>0, (2.29)

for some a

where m_(C) is the number of times {, occurs in @Lﬁ:ﬁ .- 1t follows
that

Ny |Cl
Sam=-14" 3 (3 p.,)
a=1 CCA ta=1
= M _>_r__ﬁ._~uq.;
cga
=p. (2.30)

Proof of the main theorem. From (2.28) and (2.30) we conclude that,
for |z| #1, M,(2) is bounded uniformly in A. Moreover, for positive
z#1, M,(z) converges to a limit, as A 7 Z”, because the ther-
modynamic limit of the quenched free energy, f,(z), with periodic b.c.
exists, for positive z, and

of

9z’

M, (2)=-2B2 for positive z# 1 .

Thus, by Vitali’s theorem,

M,(z)—> M(z), as A ~Z" for all z, with |z]|# 1,
where M is the magnetization in the thermodynamic limit, and f.(2)
converges, as A /' Z", forall z, with |z| # 0, 1. Let 8, = £,( p = 1) be the

transition point of the v-dimensional (pure) Ising model.

Theorem 2.1 [10]. For B> B,, M(z) cannot be continued analytically
from {z:]z|>1} to {z:|z| <1}, or conversely, (along the real axis).

Proof. Assume the contrary. Then there is some real x > 1 and ap >0,
with x — p <1, such that the Taylor series of M(z) around z = x has
radius of convergence p, and the disc of convergence of that series
contains an arc A, '
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>HANHn_e“_&_AmV.

for some & >0 (see fig. 2.2). Given B> By and & > 0, we may choose A
so large that A contains some singularities, £, of M,(z) (because for
every & > 0 there is a connected cluster, @, not winding around A, with
the property that Mg(z) has a singularity at some point ¢, with
|¢— 1] <e¢). The residue, 7, of the pole at &, is given by (2.29). Let ¢,
be some connected cluster of sites in A not winding around A and such
that Mg (z) has a singularity at £, i.e. £, is azero of Zg . Let {2 be the
mBm:nmmncvm properly containing €, and suppose that A is a union of n
disjoint translates, Q(x) (x€ A), of Q. Then

’

nW=AT 2 2 kPe
RNt 2

where € (x) is obtained by translating ¢, by x. Now
S Pea=Pe(l- Pe)" "

where L’ ranges over all configurations C, such that
cnN DQLM@%\«L, fori=1,...,k,

for x & {x,, -

LX)

Cc N 2x)ZE,(0),

and x,, ..., X, areé given, and

Pe. = p'l(1 = p)
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2:08. mcun. is the set of sites in {2 within distance 1 from ¢, and not
contained in €,. The theory of the Ising model at 8 = 0 thus shows that

n -
i\cw_uﬂ_ P =|0|"'Pc,=P,>0, (2.31)
uniformly in A.
Lemma 2.2.
(A P
o) =2 D 50 2
r—1 r—1

forr>1, uniformly in A.

1..8&? Set [, =e'* and meditate the situation of fig. 2.3. We sct
r,, e =r{, — {,. By convexity of the unit disk,

m 3
_63 - &»_ < ‘M , forr>1. (2.32)

Hence, since |u| = Re(ue'), for arbitrary u €C and ¥ € R,




J. Frohlich

|M (rg ) =2r Re((2rL,) ‘M (rL,) e'%)

umﬂASg > 1,(A)

r— 1 b#a Tab

cos(d, - 6,5))

1,(A)

r—1°

=2r by (2.29) and (2.32),

=2

-, by (2.31). Q.E.D.
r—1

Hence M(r¢,) divergesto +,as7 N\ L. This contradicts our mmm:E.v:o:
that M(z) is holomorphic in some neighbourhood of the arc A4 intro-
duced at the start of the proof of the theorem. By the
(h—>-hez— z~!)-symmetry of the model, M(z"'y=—-M(z), and
hence M(z) has no analytic continuation from {z: |z| A.S to {z:|z|>1}
along the real axis, either. The proof of the theorem is thus complete.

Remarks .

(1) For another rough sketch of Griffiths’ result [10] and proof, see
also ref. [13]. We emphasize that the above theorem proves that M(z)
has a singularity at z = 1. However, for small a:ocm.v p and B > B, the
results of ref. [1] prove that M(z) is C~ in z, for positive z,evenatz = 1.

(2) Isakov [14] has recently proved that in the pure Ising model, for
m > mou

(nty"! A & V?T@v:i const.” .
' ah”"

(3) The above proof clearly extends to a wide variety of Uoczam._.v\
conditions and other, more complicated distributions, dp(J;), with
support on [0, ). As an example, we choose

dp(J) = ?R: + > p.8(J— Ev dJ,
a=1
with 0 < J, 7 +®, as @ / =, and p, >0, for all a, L7 _0 P. =1 In this
model M(z) has a singularity at z = 1, for all values of 8. wcm Em.am:_a
in ref. [1] show that M(z) is C~ for positive z, even at z = 1, if B is small
enough..

(4) It would be interesting to know whether M(z) is quasi-analytic at
{z:]z] = 1}.

gt A L R e
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Next we propose to estimate the transition points, B.(p), of dilute
ferromagnets, such as those defined in (2.19), (2.20). [We characterize
B.(p) by the property that lim, , M(z)>0, for 8> B.(p). Clearly
B.(p =1) = B,.] The following lemma appears in ref. [15]:

Lemma 2.3.  The equilibrium expectation, {a,), = (0,) ,(J, h), of the
spin at the origin is separately concave in each Jy-

Proof.
wAQovm
@.\C. ”AQOQ..,Q.\.VE|AQ‘OVEAG.~._SVD«
hence
3*(a,) .
m,\w £ = AQ‘GAQ..Q\VNVm - AQ:Q‘NQ\vaQ.N.Q\vm
if

- AAQcQ._Q.\vm - AchmAQ_.Q.\v\L..Acu.ﬁvm
T AQ‘cvaAASQ\.vuvm - Ae.._.q‘vwv
= INAQ,EQ.\vaAQ.cQ..Q\vm - Aa.cvaQuQ\vmv

<0,

by Sﬂ?.w" and second Griffiths inequality. (We have used the fact that
(o,0)" =1") OQ.E.D.

This lemma permits us to apply Jensen’s inequality when integrating
(ay)4(J, h)y over J , for arbitrary (i, j). Thus

/[ .
kﬁ : an.\:v AchmA.\, h)= A«J.vm f‘%_—ﬁ.atﬁ.\:v .\:v. b‘v

(i j)
HAQ.cva.N hy, (2.33)
where J is the mean of J,, and J = p, in example (2.19). The right-hand

side of (2.33) is the magnetization in a pure Ising model at temperature
BJ. A simple application of the ergodic theorem shows that the




