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EXPERIMENTS ON THE RANDOM FIELD ISING MODEL

D.P. BELANGER

Department of Physics, University of California

Santa Cruz, CA 95064, USA

New advances in experiments on the random-�eld Ising model, as realized in dilute antiferromagnets,

have brought us much closer to a full characterization of the static and dynamic critical behavior

of the unusual phase transition in three dimensions (d = 3). The most important experiments

that have laid the ground work for our present understanding are reviewed. Comparisons of the

data with Monte Carlo simulations of the d = 3 critical behavior are made. We review the current

experimental understanding of the destroyed d = 2 transition and the experiments exploring the

d = 2 metastability at low T . Connections to theories most relevant to the interpretations of all

the experiments are discussed.

1 Introduction

The random-�eld Ising model

1

(RFIM) has been an important focus of theoretical and

experimental studies of the statistical physics of random and frustrated systems. Although

there are some similarities, particularly at large random �elds, to the physics of spin-

glasses

2

, also covered in this book, the three dimensional (d = 3) ground state of the

RFIM in the small random-�eld limit has the same long-range order as would be observed

in the absence of random �elds. Hence, the two models di�er fundamentally. Nevertheless,

the d = 3 RFIM transition is profoundly altered by the random �eld. For d = 2 the random

�eld destroys the transition which takes place in the absence of the random �eld. Not only

does the RFIM have signi�cance in the formation of long-range order in real materials,

where defects causing random �elds are often present, it also challenges the methods and

ideas of theorists and experimentalists that have been developed in past studies of phase

transitions in pure, translationally invariant materials. There are a number of relevant

reviews that have been written covering the formidable problems encountered in the exper-

imental study of RFIM systems

3;4

. This one represents a comprehensive overview of the

experimental situation in the most studied systems, the dilute anisotropic antiferromagnets,

emphasizing the most current experimental results. The theories and computer simulations

most relevant to interpretations of the behavior observed in dilute antiferromagnets will be

included. A few systems that are not antiferromagnets will be mentioned in section 11. A

comprehensive review of the theory of the RFIM by Nattermann also appears in this book.

For d = 3 it has been rigorously

5

shown that a transition must take place for small

random �elds. As we shall see, the RFIM transition is very di�erent from the more usual

phase transitions encountered in antiferromagnets. The RFIM can be most simply modeled

by spins on a lattice that point along one axis and are subjected to a random ordering

�eld that competes with the long-range collective spin ordering. One simple Hamiltonian

representing an Ising ferromagnet with an imposed random �eld is

H = �

X

<i;j>

J

ij

S

i

S

j

�

X

i

h

i

S

i

: (1)
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The random �eld has the properties [h

i

]

av

= 0 and [h

2

i

]

av

= h

2

r

where [:::]

av

denotes an

average over the disorder. Most of the theoretical and simulation e�orts, though not all,

have focused on such ferromagnetic models. On the other hand, the most studied and best

characterized experimental realization of the RFIM, by far, is the dilute, anisotropic antifer-

romagnet in a uniform �eld applied along the spin ordering axis, which can be represented

by the Hamiltonian

H =

X

<i;j>

J

ij

�

i

�

j

S

i

S

j

�

X

i

H�

i

S

i

; (2)

where �

i

= 1 if site i is occupied and 0 if empty, and H is the uniform �eld. Locally, the

sublattice with the most spins tends to align with the applied �eld in competition with

long-range antiferromagnetic order in which one sublattice globally aligns with the �eld.

The applied uniform �eld and the e�ective random �eld generated by it are proportional

6

.

The random �eld is therefore easily controlled or even turned o� completely. This provides

the opportunity to do scaling studies not easily done in other systems. Importantly, samples

can be cooled in zero �eld before applying the random �eld (ZFC). Other systems, such

as those with structural phase transitions can only be cooled in the random �eld (FC).

Since, as we shall see, hysteresis plays an important role in the understanding of the RFIM

transition, the ZFC process is crucial. Of course, by virtue of critical behavior universality,

the systems studied need not correspond precisely to the Hamiltonians above but must

simply have the appropriate symmetries.

Fishman and Aharony

7

�rst noted that the dilute antiferromagnet in a uniform �eld is

a RFIM system and Cardy

6

showed that the critical behavior in the limit of small �elds

belongs to the same universality class as the uniform ferromagnet with random �elds. These

works opened up a tremendous opportunity to investigate the RFIM experimentally. An

understanding of the RFIM phenomena in the dilute antiferromagnet is steadily evolving

with experiments performed on very high quality anisotropic crystals. A major aim of this

review is to present an overview of the d = 3 RFIM transition that takes place in dilute an-

tiferromagnetic systems which is consistent with all of the published data (though certainly

not all the published interpretations of the data). The d = 3 phase diagram has proven

much richer than anticipated and this review necessarily encompasses high, intermediate

and low magnetic concentrations as well as large and small random �elds. The most recent

experiments by Slani�c, et al.

8

at high magnetic concentrations are promising as they ap-

pear to a�ord the opportunity to make real headway in the experimental characterization of

the RFIM critical behavior and in making connections to recent theoretical and simulation

results. Such work is still in progress, so only preliminary results can be discussed.

Theory and experiments on the RFIM have been closely tied throughout the period of

investigation from the Fishman and Aharony

7

work until the present, though there has not

always been agreement. The greatest progress in the experimental investigations has come

when a variety of techniques are employed and interpretations consistent with them are

made. Often mistakes have been made when only one technique is relied upon for interpre-

tation. A complication of studies using the dilute antiferromagnet is that random magnetic

vacancies constitute strong pinning sites for domain walls

9

. Such strong vacancy pinning,

while enriching the d = 3 antiferromagnetic phase diagram, is not present in the theoretically

2



well-studied ferromagnetic model. Random-�eld pinning, present in both antiferromagnets

and ferromagnets, seems to be much weaker. The correspondence between antiferromagnets

and the ferromagnetic models is best when the magnetic dilution is small, in which case

the antiferromagnetic order is stable up to the transition, T

c

(H). For concentrations near

x = 0:5, there is evidence that the long-range order breaks into static structure consisting

of large, intertwined and weakly interacting domains well below T

c

(H). This has prevented,

at these concentrations, a characterization of M

s

2

vs. T and the line shape below T

c

(H).

When the percolation threshold is approached (x � x

p

= 0:25) a de Almeida-Thouless

10

behavior appears for larger H and the system appears to behave similarly to a spin-glass.

In this review each of these three concentration regions is discussed.

For the case of d = 2 dilute antiferromagnets, the random-exchange Ising model (REIM)

transition is expected to be destroyed

1;11

as soon as H , which generates the random �eld, is

applied, and this has been observed

12;13

. The temperature regime well below the rounded

transition, however, is still being investigated theoretically

14

and experimentally

15

. Both

temperature regimes are brie
y reviewed.

2 Sample Considerations

The most studied dilute d = 3 antiferromagnet suitable for RFIM studies is Fe

x

Zn

1�x

F

2

.

Its large crystal-�eld anisotropy persists

16

as the magnetic spins are diluted and it is there-

fore an excellent Ising system for all ranges of magnetic concentration x. Crystals can be

grown for all x with extremely small concentration variations �x < 10

�3

and with superb

structural quality. The magnetic interactions are dominated by the second-nearest- neigh-

bor super-exchange between the body-center and body-corner ions. All other interactions

are negligible, except possibly near the percolation threshold concentration, where even tiny

frustrating interactions become important

17;18

. Another class of materials representing the

anisotropic random-�eld systems is Fe

x

Mg

1�x

Cl

2

. This system di�ers from Fe

x

Zn

1�x

F

2

in that it is layered. The layers are ferromagnetic and the interplanar antiferromagnetic

coupling is comparable in strength to the intraplane coupling, making this a good d = 3

Ising system. The smaller exchange in this system allows the large �eld region of the

phase diagram to be explored

19

. For x < 0:55, a strong second-nearest-neighbor competing

exchange in the Fe

x

Mg

1�x

Cl

2

system induces spin-glass behavior

20

and so random-�eld

studies are restricted to higher x. There is excellent agreement between the random-�eld

behavior of Fe

x

Mg

1�x

Cl

2

and that of Fe

x

Zn

1�x

F

2

. Some studies have also made use of

the highly anisotropic Co

x

Zn

1�x

F

2

system. A number of studies have been made in the

less anisotropic system Mn

x

Zn

1�x

F

2

. The anisotropy in Mn

x

Zn

1�x

F

2

, which is small for

x = 1:0, decreases further upon dilution. Nevertheless, the H = 0 REIM critical behavior of

Mn

x

Zn

1�x

F

2

21

is quite consistent with that of Fe

x

Zn

1�x

F

2

22

and all of the RFIM experi-

ments done on Mn

x

Zn

1�x

F

2

seem qualitatively consistent with those done in Fe

x

Zn

1�x

F

2

and Fe

x

Mg

1�x

Cl

2

. The system does allow large applied �elds relative to the anisotropy, al-

lowing studies of the spin-
op region

23;24

. For the d = 2 RFIM, Rb

2

Co

x

Mg

1�x

F

4

has been

studied and appears to be an ideal system

25

. It is very anisotropic and consists of layers

of magnetic ions with a single dominant intralayer exchange interaction and an interlayer

3



interaction which is smaller by several orders of magnitude.

Disagreements among the various interpretations of experimental data have arisen when

concentration gradients obscured the true random-�eld behavior of a sample and were not

fully appreciated in the data analyses. Although the gradient e�ects have been exten-

sively reviewed

26;27

, the problem is still relevant to interpretations of recent experiments,

as discussed below. Basically, one must realize that a concentration gradient will round

a transition and can a�ect critical behavior measurements drastically. It is best if the

gradients are unambiguously determined independently of the critical behavior measuring

techniques. The size of the gradient can then be incorporated into the interpretation of

the critical behavior data. Disagreements over interpretations of data in RFIM systems are

usually resolved once the e�ect of concentration gradients are properly taken into account.

3 Scaling Behavior Theory

Although the scaling behavior of the RFIM has been discussed extensively in previous re-

views, we emphasize the salient points again since many experiments are addressing the

RFIM critical behavior and, unfortunately, not all of the current experimental interpreta-

tions being proposed are consistent with scaling theory. Static critical behavior for temper-

atures very close to the second-order transition temperature T

c

can generally be described

by power law behaviors which become exact as the reduced temperature t = T=T

c

� 1! 0.

We brie
y list the ones most useful to us. The free energy has the asymptotic behavior

F � jtj

2��

, and the speci�c heat is correspondingly given by

C

p

= A

�

jtj

��

+ B ; (3)

where we include a constant background term which describes the peak height when � < 0.

For the case where �! 0 and A

+

=A

�

! 1, we use the symmetric logarithmic form

C

p

= A ln jtj+B (4)

instead. Several critical parameters can be obtained from neutron scattering

28

. The corre-

lation length for antiferromagnetic 
uctuations has the form

� = �

�1

= �

�

o

jtj

��

: (5)

The staggered susceptibility is

�

s

= �

�

o

jtj

�


: (6)

For random-�eld systems we have the disconnected staggered susceptibility

�

s

d

= �

o

d�

jtj

��


: (7)

The staggered magnetization, the order parameter for antiferromagnets, is given by

M

s

=M

o

jtj

�

; (8)

4



which is only nonzero for t < 0. In these expressions + and � are for t > 0 and < 0,

respectively. The exponents and the ratios for amplitudes above and below T

c

are universal

parameters common to all systems sharing the same symmetries. The asymptotic critical

exponents satisfy scaling relations such as


 + � + 2� = 2 : (9)

There are also hyperscaling relations that involve the dimension d such as

� + �d = 2 (10)

that hold for pure and REIM systems but are violated in the RFIM, in which case Eq. 10

is modi�ed

29;30

by the additional violation-of-hyperscaling exponent, �, with

�+ �(d� �) = 2 : (11)

As the RFIM transition is approached by varying H or T , one observes a crossover from

the zero-�eld universality class to the RFIM one. The crossover behavior can be described

by a crossover scaling function. For example, the free energy is given by

F = jtj

2��

f(th

�2=�

r

) ; (12)

where � is the crossover exponent, � is the zero-�eld exponent and h

r

is the random-

�eld strength. A consequence of crossover between di�erent universality class behaviors

is that measurements may not yield asymptotic universal parameters unless the data are

su�ciently close to T

c

. Rather, one obtains e�ective exponents. The scaling relations (not

the hyperscaling ones) between exponents are still approximately satis�ed by the e�ective

exponents

31

. Another consequence of the crossover function is a depression of the phase

transition temperature given by

T

c

(H) = T

N

� AH

2=�

� bH

2

; (13)

where b represents a small mean-�eld shift also present in the pure system. The H-T

phase boundary curvature is determined by �. Fishman and Aharony

7

showed that for the

crossover from pure to random-�eld d = 3 behavior, � = 
, with 
 = 1:25 obtained from

theory and experiment

32

. Although some of the early experiments

23;33;34

were incorrectly

interpreted as showing this, it was also argued

35

that � is much larger. The latter result now

appears to be universal, with � = 1:42+ 0:03 obtained for Fe

x

Zn

1�x

F

2

36

, � = 1:43� 0:03

for Mn

x

Zn

1�x

F

2

27

and � = 1:41 � 0:05 for Fe

x

Mg

1�x

Cl

2

37

. Aharony

38

predicted

that for a random-exchange to random-�eld crossover, � is several percent larger than 
.

Neutron scattering measurements

22

in Fe

0:46

Zn

0:54

F

2

yielding 
 = 1:31�0:03 con�rm this.

This was similarly veri�ed

21

in Mn

x

Zn

1�x

F

2

with the result 
 = 1:36� 0:08. The early

interpretations

23;33;34

that � = 1:25 were in
uenced by the concentration gradients in the

samples

26

and the resulting misidenti�cation of T

N

.

The scaling function has other consequences for random-�eld antiferromagnets. Fish-

man and Aharony

7

obtained

kT� = A

1

+A

2

jtj

1��

�A

3

jtj

2�

(14)
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for the static H = 0 uniform susceptibility for a system dominated by the pure critical

exponents �, � and 
 at H = 0. The experimental systems, however, are dominated by

random-exchange critical behavior at H = 0 and the correct relationship is therefore

38

kT� = A

1

+A

2

jtj

1��

� A

3

jtj

2����

; (15)

using the REIM exponent � and the REIM to RFIM crossover exponent �. For H > 0,

Kleemann, et al.

39

showed, by considering leading singularities in derivatives of the free

energy for H 6= 0, that the �eld dependence of the amplitude of the peaks in the speci�c

heat, (@M=@T )

H

and (@M=@H)

T

is governed by the exponents y = (2=�)(~� � �), y =

(2=�)(1 + ~�� � � �=2), and y = (2=�)(2 + ~�� � � �), respectively, where ~� is the RFIM

speci�c heat exponent. The exponents can be determined from speci�c heat

8

and Faraday

rotation

39

experiments on Fe

x

Zn

1�x

F

2

to be y � 0:1, y = 0:60 � 0:10, and y � 0:97,

respectively. For Fe

0:7

Mg

0:3

Cl

2

, y = 0:56 � 0:05

40

for (@M=@H)

T

. Since the exponents

� = 1:42 � 0:03 and � = �0:09 � 0:03 are known fairly accurately, we can invoke these

results as a strong indication from scaling that ~� � 0 in good agreement with direct speci�c

heat results discussed below. There is ample evidence that scaling works well in all of these

systems, despite recent arguments

41

to the contrary. Hence, at this time, experimental

interpretations should be constrained to agree with scaling theory.

4 The d = 3 RFIM Transition

The �rst evidence that a phase transition occurs in the d = 3 Ising model came from the

critical behavior of the speci�c heat measured using optical linear birefringence

35

(�n)

techniques, which minimize the e�ects of concentration gradients since the laser beam is

directed perpendicularly to the concentration gradient. The proportionality

42;43

between

d(�n)

dT

and the magnetic contribution (C

m

) to the pulsed speci�c heat (C

p

) data has been

shown explicitly

8;44

for Fe

0:46

Zn

0:54

F

2

and Fe

0:93

Zn

0:07

F

2

. In anisotropic systems the

Zeeman contribution to the birefringence is negligible at reasonable �elds

43

. In addition,

Faraday rotation

39

and susceptibility

46

measurements yield the speci�c heat critical behav-

ior. Recent claims to the contrary

41;45

have no theoretical basis

47

and depend on analyses

of experimental data which have been questioned

48

.

The speci�c heat critical behavior in the intermediate range, 0:4 < x < 0:8, has been

measured in Fe

x

Zn

1�x

F

2

8;49

and Fe

x

Mg

1�x

Cl

2

40

with enough precision to determine

that ZFC data are well described by a symmetric logarithmic divergence over a reasonable

range in t. At very small jtj, rounding is observed and is attributed to the tremendous

critical slowing down of the RFIM in dilute antiferromagnets, as will be discussed in the

following section. FC always yields behavior that is much more rounded because �nite-

size metastable clusters

46;50

are frozen in just above T

c

(H). The region over which the

logarithmic ZFC behavior and the dynamic rounding are observed increases with H as

expected from crossover scaling (Eq. 12) and dynamic scaling as discussed in the next

section.

Figure 1 shows recent

d(�n)

dT

and C

m

data for a high magnetic concentration sample

8

Fe

0:93

Zn

0:07

F

2

. We have subtracted the approximate large phonon contribution to C

p

, leav-

ing only C

m

, so that the correspondence of the two techniques is apparent. We accomplished

6



Figure 1:

d(�n)

AdT

vs. T , where A = 9:17�10

�6

K

�1

is the same proportionality constant found for pure FeF

2

,

and C

m

=R vs. T for Fe

0:93

Zn

0:07

F

2

. The speci�c heat has the phonon contribution subtracted as discussed

in the text. ZFC data are shown in the main �gures. The insets show the H = 7 T FC data as well as the

ZFC data for the

d(�n)

dT

case. The curves in the left �gure are the same as the curves in the �gure on the

right except that they are rounded by the larger, measured concentration gradient. For the speci�c heat

inset, the ZFC data are not shown, for clarity, but the dotted line is the same as the solid ZFC line in the

main �gure. Just as in experiments at lower concentrations, the birefringence and pulsed heat techniques

yield precisely the same behavior, including FC-ZFC hysteresis very close to T

c

(H). The critical behavior

for H > 0 is closely approximated by a symmetric, logarithmic divergence.

this by assuming the same proportionality

44

between C

m

and

d(�n)

dT

found for both FeF

2

and Fe

0:46

Zn

0:54

F

2

. The excess speci�c heat contribution found for the H = 0 was then

subtracted from all the C

p

data sets. The solid curves in the C

m

�gure are adapted from

those in the

d(�n)

dT

one by �rst numerically rounding the

d(�n)

dT

data by the known gradient,

drawing smooth curves through them, and then transferring the curves to the C

m

�gure

with no other adjustments. The C

m

peaks are not as sharp since the entire sample was

used, increasing the e�ects of concentration gradients relative to the

d(�n)

dT

data which are

sensitive only to the gradient along the laser beam. Clearly, the known gradient accounts

well for the di�erence in the C

m

and

d(�n)

dT

data. The insets for both sets of data show the

FC behavior at H = 7 T. The FC data are more rounded than the ZFC. The FC C

m

data

are shown in the inset on the right with the

d(�n)

dT

FC curve, rounded by the concentration

gradient in the same manner as the ZFC ones, shown as a solid curve. The FC curve corre-

sponds well with the C

m

data. The dotted curve corresponds to the ZFC and is the same as

the solid one in the main �gure. For clarity, we do not show the ZFC data in the inset. No

other adjustments have been made. Clearly, the hysteresis is much more di�cult to discern

in the speci�c heat data

48

, but this is consistent with the larger concentration gradient. The

hysteresis can only be observed in samples with extremely small gradients. This is certainly

one reason why some experiments on samples with appreciable concentration gradients fail

7



to exhibit hysteresis. In all respects we see that the

d(�n)

dT

and C

m

data yield the same

critical behavior just as was found previously

44

for Fe

0:46

Zn

0:54

F

2

. As discussed below,

Fe

0:93

Zn

0:07

F

2

yields neutron scattering line shapes that are fundamentally di�erent from

those obtained at lower magnetic concentrations in that they do not show hysteresis well

below T

c

(H). Yet, the speci�c heat appears remarkably similar to that of lower magnetic

concentrations. The symmetric, logarithmic (� = 0) behavior for ZFC contrasts with the

H = 0 data that are consistent with the expected asymmetric random-exchange

51

cusp.

For all concentrations there is a temperature, T

eq

(H), below which hysteresis between

the FC and ZFC procedures plays a role in the speci�c heat as well as most other ex-

periments. We emphasize that C

m

and

d(�n)

dT

data show precisely the same hysteresis,

contradicting recent claims

41

. Using a capacitance technique

52

on Fe

0:46

Zn

0:54

F

2

and

Fe

0:72

Zn

0:28

F

2

, the equilibrium boundary T

eq

(H) has been shown to lie just above T

c

(H),

scaling precisely in the same manner with � � 1:42. The nature of this boundary is still not

entirely clear, though it is sharp enough to be measured precisely. It could be related to the

extreme critical dynamics discussed in the next section or it could be related to a RFIM

spin-glass-like behavior

53;54

between T

eq

(H) and T

c

(H). Certainly one must be careful

about the data extremely close to T

c

(H) since the system could be out of equilibrium.

Hysteresis in the speci�c heat is not well observed in ac techniques

55

used on the

less anisotropic system Mn

x

Zn

1�x

F

2

at 6:6 Hz. The extremely rapid heating and cooling

method (10 K per minute) of measuring speci�c heat in Fe

x

Mg

1�x

Cl

2

also shows very little

hysteresis

34

, although early neutron scattering

56

and measurements in this system clearly

exhibit hysteresis. Perhaps the time dependent techniques obscure the di�erence between

FC and ZFC, though this is not yet clear. Recently, it was claimed that in Fe

0:5

Zn

0:5

F

2

no

hysteresis is observed in the speci�c heat

41

. Although there is no published description of the

procedures used, some conjectures can be made as to why the hysteresis was missed. Perhaps

the sample concentration gradient induced rounding of 0:3 K

41

obscures the transition at

the low �eld

48

. The phase boundary might have been exceeded at the high �eld

48;57

.

Finally, if the measurements were not su�ciently adiabatic, the hysteresis may be obscured

as they appear to be in other time dependent measurements

55;34

. The answer is simply

unclear at this time and the failure to observe hysteresis could be a combination of e�ects.

Whereas all the high resolution speci�c heat measurements done to date indicate a

symmetric, logarithmic divergence with no evidence for any accompanying background dis-

continuity

58

, Monte-Carlo simulations

59;60

indicate a cusp, with a large, negative exponent.

This discrepancy between the exponents from simulation and experiment is, as yet, unre-

solved and is certainly a major challenge to be addressed.

In contrast to the birefringence measurements that �rst showed evidence

61;35

of a d=3

transition, early neutron scattering measurements obtained with the FC process were in-

terpreted as indicating a destroyed transition

62

. Upon FC, no Bragg scattering is observed

for concentrations x < 0:8. Instead, a �nite-width shape approximated by a squared-

Lorentzian, as discussed below, appears. We now know that long-range antiferromagnetic

order is di�cult to establish upon FC at low concentraton, but that a phase transition is

nevertheless the basis of the underlying physics. Long-range order does occur for T < T

c

(H)

when the �eld is applied after ZFC and FC domains have been shown to be metastable

63

.

8



Quite di�erent phenomena are observed at high magnetic concentration. Recent scat-

tering measurements

8

using a crystal of Fe

0:93

Zn

0:07

F

2

indicate a ZFC transition that is

as sharp as allowed by the concentration gradient �x = 0:002. More importantly, there is

no evidence of nonequilibrium hysteresis except extremely close to T

c

(H), as in the speci�c

heat

8

. What is most remarkable is that the Fe

0:93

Zn

0:07

F

2

neutron scattering line shapes

show little hysteresis at low T . For x < 0:8, such hysteresis has always been observed and

has been a major obstacle to interpreting the critical scattering below T

c

(H). An important

distinction can be made between hysteresis seen in line shapes at lower concentration well

below T

c

(H) which most likely originates in the large number of vacancies, and the rounding

near T

c

(H) that appears even at high magnetic concentration. The latter may well have to

do with RFIM critical dynamics as is clearly the case with the speci�c heat behavior

49

.

The interpretation of the scattering results in RFIM studies is severely hampered by

the lack of adequately characterized line shapes provided by theory. As previously reviewed

in more detail

3;64

, mean-�eld theory yields an elastic scattering cross section of the form

S(q) = �(q) +M

s

2

�(q) =

A

q

2

+ �

2

+M

s

2

�(q); (16)

for a pure system and, with an additional squared-Lorentzian term,

S(q) = �(q) + �

d

(q) =

A

q

2

+ �

2

+

B

(q

2

+ �

2

)

2

+M

s

2

�(q); (17)

for a random-�eld system

65

. These expressions can be only approximate for d = 2 or

d = 3 in pure or random systems, as one can see from the required asymptotic behaviors

�(0) � �

2��

� jtj

�


and �

d

(0) �M

s

2

� �

4���

� jtj

��


. The correspondence between the

measured line shapes and the mean-�eld line shapes in pure systems is fairly good for

d = 3 since � � 0:04 is small, though evidence for deviations from mean-�eld behavior

have been observed

32

. Although Pelcovits and Aharony

66

predict signi�cant deviations

from the Lorentzian line shape for T < T

c

(H) in the d = 3 REIM, where � is also small, no

de�nitive evidence for this has yet been observed in experiments. For d = 2, the discrepancy

between the line shapes of the pure system and mean-�eld theory is more evident

67;32

since

� = 1=4. For random-�eld systems, � � 1=2 is large

3

and the mean-�eld terms in Eq. 17 are

expected to be far from accurate. The observed line shape in the random-�eld systems is in

many cases inconsistent with the Lorentzian in Eq. 16, as was �rst shown by Yoshizawa, et

al.

62

. However, the story is not as simple as adopting Eq. 17 since this expression is often

inconsistent with the data

68

, particularly below T

c

(H). Nevertheless, Eq. 17 is a start.

The �rst neutron scattering observations of the d = 3 RFIM phase transition

69

, made

using Fe

0:6

Zn

0:4

F

2

, showed that above the transition the ZFC line shapes are inconsistent

with the single Lorentzian term but can be �t adequately by the sum of Lorentzian and

squared-Lorentzian terms as in Eq. 17. Non-Lorentzian line shapes had been observed

previously

62

for the metastable domain state well below T

c

(H) after FC. From the �ts to

the critical behavior above T

eq

(H), the estimations � = 1:00�0:03, 
 = 1:75�0:20 and �
 =

3:5�0:3 are obtained

69

. An attempt at a better characterization, including for T < T

c

(H),

was made

68

with the very homogeneous crystal Fe

0:46

Zn

0:54

F

2

. Several scans are shown

9



Figure 2: Neutron scattering intensity, I(q) vs. q for Fe

0:46

Zn

0:54

F

2

and Fe

0:93

Zn

0:07

F

2

after ZFC. Above

T

c

(H), determined from the peak in the critical scattering, both samples exhibit Lorentzian plus squared-

Lorentzian line shapes. Below T

c

(H), the Fe

0:46

Zn

0:54

F

2

crystal shows a resolution limited lineshape which

conforms to neither a Lorentzian nor a squared-Lorentzian line shape in addition to the Bragg scattering

peak. The Bragg scattering decreases dramatically at this concentration as T

c

(H) is approached and shows a

large hysteresis upon temperature cycling below T

c

(H). This behavior is consistent with the system breaking

into large, intertwined, weakly interacting domains, a result of the very large number of vacancies at this

concentration. In contrast, the Fe

0:93

Zn

0:07

F

2

crystal exhibits Lorentzian line shapes below T

c

(H) with no

sign of domain formation. No hysteresis for jqj > 0 is observed well below T

c

(H), indicating equilibrium

behavior. The Bragg intensity remains large extremely close to T

c

(H), indicating that � is very small, in

agreement with simulations.

in Fig. 2. Although the ZFC scattering above T

c

(H) is indeed fairly well �t by Eq. 17, the

scattering line shapes below T

c

(H) are certainly not. Below T

c

(H) the measured scattering

pro�les are much too narrow, being essentially resolution limited for all T < T

c

(H) instead

of having a width that varies as �(T ). Furthermore, the intensity of the Bragg component is

surprisingly small near T

c

(H) and qualitatively it appears as if the Bragg peak transforms

into the non-Lorentzian, resolution-limited scattering contribution as T

c

(H) is approached

from below. Finally, a peak in the q = 0 scattering intensity is observed

68

at T

c

(H) upon

ZFC and the height of the peak grows approximately logarithmically with time, a result of

the extremely slow dynamics. Such a peak is di�cult to observe normally but is evident in

this case because the Bragg scattering, which usually swamps the critical 
uctuation peak,

is abnormally small just below T

c

(H).

Although it is clear that the scattering is peculiar and interesting, extinction e�ects

70

give pause to direct interpretations of the Bragg scattering intensities in the Fe

0:46

Zn

0:54

F

2

experiments. High quality crystals scatter neutrons that are precisely aligned for the Bragg

scattering condition in the �rst ten microns or so of material. As the scattering cross

section diminishes upon approaching T

c

(H), the scattering simply occurs over a larger

volume. Hence, the scattered intensity is saturated and does not exhibit the power law

10



behavior in Eq. 8. This di�cult problem has been overcome by examining

71

an epitaxial

72

Fe

0:52

Zn

0:48

F

2

�lm of thickness 3:4 �m, grown on a ZnF

2

substrate. The �lm is thin

enough to avoid extinction e�ects but thick enough (� 10

4

lattice spacings) for d = 3

critical behavior.

The neutron scattering results for the H = 0 Bragg intensity

71

of the �lm are consistent

with REIM behavior. Hence, the �lm is high enough

72

in quality to reliably re
ect the

d = 3 critical behavior. The scattering intensity for q > 0, coming solely from a Lorentzian

contribution, is too weak to be observed in the �lm. For H > 0 the scattering results are

highly unusual. The ZFC Bragg intensity vs. T has the opposite curvature to that observed

for H = 0, so the Bragg scattering intensity is very small quite far below T

c

(H). The loss

of the ZFC Bragg intensity is irreversible below T

c

(H). This behavior has been interpreted

as the system breaking into two intertwined domains with equal numbers of spins in a

similar pattern to that observed in FC simulations

73

at low T . The formation of domains

is observed to be irreversible below T

c

(H), a result that is consistent with the irreversibility

observed in magnetization and optical studies

74;49;37

. Inside the domains the spins are well

ordered. The domain walls at this concentration (x � 0:5) are able to pass predominantly

through the numerous vacancies, costing the system very little energy. It is clear that the

Imry-Ma domain wall energy arguments

1

fail here since the energy needed to create such

a domain wall is insigni�cant compared to the Zeemann energy decrease. Furthermore, the

domains are only weakly interacting and each contributes to the phase transition at T

c

(H).

Since the domains form well below T

c

(H), neutron scattering measurements are unable at

this concentration to determine the critical behavior of the order parameter. Another piece

of evidence indicating that the hysteresis for T

c

(H) comes from domain formation is found

in the experimental results of x-ray scattering studies

75

at the surface of Mn

0:75

Zn

0:25

F

2

.

In the presence of surface defects, no hysteresis is observed, most likely a result of the defects

preventing the formation of the two intertwining domains. When an identical sample was

polished, removing the majority of defects, the hysteresis reappeared.

In both the �lm (Fe

0:52

Zn

0:48

F

2

) and bulk (Fe

0:46

Zn

0:54

F

2

) studies, we �nd a large

resolution-limited scattering line shape below the transition that is not well �t by either a

Lorentzian or squared-Lorentzian term. It is most likely that this non-Lorentzian scattering

pro�le is a signature of domain structure that forms below T

c

(H) even upon heating after

ZFC. With this structure present it is very di�cult to determine the critical behavior of

the RFIM below the transition. Local probes like NMR

76

, M�ossbauer or �SR in principle

could yield the order parameter critical behavior, but prove to be complicated because of

the spatial variations within the system. This motivated an investigation at a much higher

concentration, where the vacancy concentration is small enough that domain walls cannot

easily avoid a large energy cost of formation. Since hysteresis at low temperatures is seen in

the work

77

on Mn

0:75

Zn

0:25

F

2

, it is clear that one must go to even higher concentrations.

Preliminary measurements

8

using the Fe

0:93

Zn

0:07

F

2

crystal seem to con�rm the idea; the

hysteresis in the scattering pro�le at low temperatures is eliminated.

The abrupt change in line shape of Fe

0:93

Zn

0:07

F

2

at T

c

(H) is striking. Figure 2 shows

scans taken just above and just below T

c

(H) at H = 7 T. Just 0.13K below T

c

(H) the line

shape is incompatible with any signi�cant squared-Lorentzian term. A Lorentzian term �ts

11



Figure 3: � vs. T and � vs. T for Fe

0:93

Zn

0:07

F

2

for H = 0 and 7 T, obtained from preliminary analysis

of the neutron scattering line pro�les for jqj > 0. For H = 7 T and T > T

c

(H), the jqj > 0 scattering is �t

to a Lorentzian plus squared-Lorentzian lineshape. A Lorentzian was used in all other cases. For H = 7 T,

the open triangles are for ZFC and the �lled ones are for FC. The lack of hysteresis indicates equilibrium

behavior. The solid curves are �ts to the data. However, for H = 7 T and T < T

c

(H), no power law

describes the data well, so no curve is shown for this case.

fairly well. The absence of the non-Lorentzian component is most likely a signature of the

stability of the long-range order right up to T

c

(H). Above T

c

(H), on the other hand, the

line shapes are much more compatible with a �t to a Lorentzian plus squared-Lorentzian as

in Eq. 17. The abrupt disappearance of the Bragg peak at T

c

(H), indicating a very small

value for �, contrasts greatly the behavior observed at lower concentrations in Fe

x

Zn

1�x

F

2

.

A small value of � is consistent with theory and simulation results

59;60;78

. The only previous

experimental measurement

79

of � is from dilation experiments on the lower concentration

sample Fe

0:46

Zn

0:54

F

2

which indicates � � 1=8. This suggests that the small exponent

value holds for lower concentrations even though the neutron scattering Bragg intensity

cannot show it. The small value of � is perhaps suggestive of a �rst-order transition, but

no latent heat is observed in the speci�c heat in the experiments or simulations

8;44;78;80

.

At the lower magnetic concentrations, severe hysteresis is observed in the line shapes

below T

c

(H). In the case of Fe

0:93

Zn

0:07

F

2

, however, the line shapes for q > 0 do not

exhibit hysteresis except for the region near T

c

(H) where critical dynamics dominate. The

Bragg intensity does show some hysteresis, being somewhat larger upon FC, but this is an

extinction e�ect

70

re
ecting the fact that long-range order on length scales well beyond the

instrumental resolution is not established upon FC, most likely a result of RFIM dynamics

very close to T

c

(H). The temperature dependence of the Bragg intensity is essentially the

same for the Bragg intensity upon ZFC and FC well below T

c

(H).

Evidently, if we can extract the critical behavior in the Fe

0:93

Zn

0:07

F

2

sample, it should

12



represent the equilibrium behavior since it is history independent. Unfortunately, the lack

of a theoretical scattering line shape that goes beyond the misleading mean-�eld theory of

Eq. 17 has severely limited the extraction of critical parameters below T

c

(H). Experimental

work in this area is ongoing with progress anticipated, but theoretical work is also much

needed in the near future. Above the transition the �ts to Eq. 17 seem to work fairly well

and one can extract the exponents, albeit with trepidation regarding exact results. The

results for � and � vs. T are shown in Fig. 3 along with �ts represented by the solid

curves. Fits were made for all of the H = 0 data and for T > T

c

(H) with the H = 7 T

data. No suitable �t to a power law is obtained for T < T

c

(H) and no curves are shown.

Preliminary �ts

8

for T > T

c

(H) yield � = 0:93� 0:03, 
 = 1:71� 0:06 and �
 = 3:0� 0:1

for 10

�3

< t < 10

�2

. These values are in reasonable agreement with earlier experimental

results

69

at x = 0:6 mentioned above but are in disagreement with other estimations where

the transition appears distinctly rounded

81

from concentration gradients. (Larger values

for � have been obtained in other studies, but only because T

c

(H) has been taken to be well

below the minimum in � in samples with relatively large gradient induced rounding.) There

is reasonably good agreement between the exponents obtained from neutron scattering in

Fe

0:93

Zn

0:07

F

2

and those obtained from Monte Carlo simulations. For example, Rieger

60

obtains � = 1:1 � 0:2, 
 = 1:7 � 0:2, �
 = 3:3 � 0:6, and � = 0:00 � 0:05 for a Gaussian

distribution of random �elds. The scattering results are also reasonably consistent with

recent high temperature expansion

82

results for 
 and �
.

Keeping in mind the uncertainty concerning the scattering line shape appropriate for

analyzing the Fe

0:93

Zn

0:07

F

2

data, the preliminary scattering exponents above T

c

(H),


 = 1:71 and and from the speci�c heat, � � 0, satisfy the simple scaling relation in

Eq. 9 if � is small as expected from theory. In stark contrast, a typical result from Monte

Carlo simulations is that � is large and negative, for example � = �0:5 � 0:2

60

. Nev-

ertheless, the speci�c heat exponent is the most consistent experimental exponent. Note

that the measured amplitude ratio A

+

=A

�

is very close to unity which is consistent with a

logarithmic divergence. Also, as demonstrated in section 3, amplitude scaling relations for

dilute antiferromagnets strongly indicate � � 0.

We can use Eq. 11 and the measured exponent � = 0:93 for T > T

c

(H) to estimate

the violation of hyperscaling exponent � = 0:85. Using the relations 
 = �(2 � �) and

�
 = �(4 � ��) with the values from scattering 
 = 1:71 and �
 = 3:0, we can estimate

� = 0:16 and �� = 0:77. These values are smaller than theoretical estimates, but they are

very preliminary and further measurements and analysis will certainly re�ne them in the

near future. The point to be made is that we are �nally almost at the stage where serious

comparison with theory can be made, though we are greatly hampered by not knowing the

correct line shape.

Finally, we should brie
y mention a very recent suggestion by Birgeneau, et al.

41;75

that

the unusual curvature of the Bragg intensity versus T is actually a rounding of the phase

transition at intermediate concentrations - the \trompe l'oeil" phenomenological model, as

they have labelled it. It was introduced in an attempt to describe the scattering, mag-

netization and speci�c heat behavior of the d = 3 RFIM phase transition in the lower

concentration antiferromagnets Fe

0:5

Zn

0:5

F

2

and Mn

0:75

Zn

0:25

F

2

. The interpretation of

13
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Figure 4: �

0

vs. T at f = 1 Hz for Fe

0:47

Zn

0:53

F

2

for applied �elds H = 0:8, 1:6, 2:4, 3:2 and 4 MA/m.

Open circles are ZFC data and �lled circles are FC. The main contribution to the peak is from Gri�ths-like

clusters which form above T

c

(H). The smaller peak, which is resolved only at larger �elds and only upon

FC, is at the actual phase transition. From the dependence of the small ZFC peak height vs. the frequency,

the dynamics can be ascertained. The behavior is consistent with a power law with a very large dynamic

exponent or with activated dynamics. The inset shows a �t to the broad peak at H = 3:2 MA/m using a

phenomenological Gri�ths-cluster model.

the data in this model con
icts sharply with the interpretations presented in this review

48

,

since it clearly violates scaling for H > 0, which was developed by Kleemann, et al.

39

and

Fishman and Aharony

7

and is described in section 3. The authors take this as evidence

that the scaling theory is incorrect. The interpretation requires that the peak in (@M=@T )

H

coincide with the peak in (@M

s

2

=@T )

H

and, to accomodate this, the (@M

s

2

=@T )

H

data are

adjusted within the thermometry uncertainties. The shifts of the data weaken the motiva-

tion for the new model and the argument that scaling fails. The proposed model requires

that the uniform magnetization couple strongly to the antiferromagnetic long-range order

and this has not yet found theoretical motivation

47

. The model also depends on the spe-

ci�c heat in Fe

0:5

Zn

0:5

F

2

showing no hysteresis, but such hysteresis has been observed in

pulsed heat experiments using Fe

0:46

Zn

0:54

F

2

44

and Fe

0:93

Zn

0:07

F

2

8

crystals with very

small concentration gradients.

5 Critical Dynamics of the d = 3 RFIM Transition

The critical dynamics of the d = 3 RFIM transition are extraordinarily slow. Many of

the experiments in Fe

x

Zn

1�x

F

2

for H > 0 that would normally be considered static mea-

surements have shown behavior with approximately logarithmic time dependence. These

include neutron critical scattering

68

and capacitance techniques

52

. Spin-echo neutron scat-

tering techniques show

83

that very small �elds su�ce to freeze the system over the entire

14



critical region jtj < 0:1 in the nanosecond time regime. The most direct measurements

of the RFIM critical dynamics are of the peak height of the ac susceptibility. The �rst

susceptibility measurements on a RFIM antiferromagnet were performed on GdAlO

3

: La

by Rohrer

84

. Although at the time it was thought that the very rounded transition was

evidence of the destruction of the d = 3 RFIM transition, it is now understood that the

rounding is caused by slow dynamics. King, et al.

85

measured the peak height in the ac

susceptibility of Fe

0:46

Zn

0:54

F

2

as a function of frequency and showed that the behavior is

consistent with either a power law behavior

�

0

(!) � jtj

��

F (!jtj

�z

) ; (18)

where z� � 14 has an unusually large value, or with activated dynamics with

�

0

(!) � jtj

��

G(ln!

�

) ; (19)

where � is the violation-of-hyperscaling exponent (Eq. 11), as predicted by Villain

29

and

Fisher

30

. Later Nash, et al.

86

extended the measurements on the same sample to a very

large frequency range of 5�10

�3

� !=2� � 10

5

Hz and showed that activated dynamics are

favored by the data with � = 1:05�0:2. This is in accord with the violation of hyperscaling

relation (d � �)� = 2 � � using the measured values of � � 1 and � � 0, though it has

been suggested that corrections to scaling should be considered

87

. However, the picture

changed substantially when, recently, Binek, Kuttler and Kleemann

46

demonstrated that

in Fe

0:47

Zn

0:53

F

2

the peak in the ac susceptibility studied previously is not that of the

phase transition itself but rather is due primarily to the dynamics of Gri�ths-like spatial


uctuations

88

above T

c

(H). It was shown that the true critical peak corresponding to the

phase transition is but a small peak that is not resolved at low �elds and was therefore

missed in earlier studies, as shown in Fig. 4. The shape of the peak is consistent with

the exponent � � 0 obtained in other experiments. High resolution measurements for a

frequency range 3�10

�1

� ! � 3�10

3

Hz again show that the peak is adequately described

by either the power law with an unusually large exponent, z� � 14, or with activated

dynamics. The critical peak, visible only upon ZFC, is surprisingly weak, indicating that

only a small portion of the spins are involved in the phase transition. This is consistent

with the very small peak observed in speci�c heat experiments at this concentration

44

.

The larger peak has been related

46

to Gri�ths-like instabilities in the temperature range

between T

c

(H) and T

N

, as discussed in the next section. Further re�nement of the theory for

the ac susceptibility peaks and investigation of other samples, for example Fe

0:93

Zn

0:07

F

2

,

may eventually settle the question of which dynamic model best �ts the d = 3 RFIM

in dilute antiferromagnets. The unusual RFIM dynamics have also been observed

89

in

Fe

0:7

Mg

0:3

Cl

2

using Faraday rotation techniques, where a symmetric logarithmic peak is

seen with rounding. A �t of the peak height to a power law behavior yields z� = 8:3.

6 The d = 2 Destroyed RFIM Transition

In contrast to the d = 3 case, it is clear from theory

1;11

that the d = 2 phase transi-

tion is destroyed by the random �eld. Experimentally this was demonstrated de�nitively

15



Figure 5: d(�n)=dT vs. T and the q = 0 peak intensity vs. T for the d = 2 RFIM system Rb

2

Co

0:85

Mg

0:15

F

4

.

The birefringence data show that the application of the random �eld destroys the transition. The data show

no hysteresis near T

c

(H), which indicates equilibrium behavior. The neutron scattering peak intensities are

obtained after ZFC and FC. At low temperatures the long-range antiferromagnetic order Bragg component

is stable. As T is increase, the long-range order becomes unstable and decays, well below the temperature

region of the destroyed phase transition. No long-range order is observed upon FC.

in Rb

2

Co

x

Mg

1�x

F

4

by the birefringence experiments of Ferreira, et al.

12

and (@M=@T )

H

experiments of Ikeda

13

.

d(�n)

dT

is proportional to the magnetic speci�c heat

43

and is particu-

larly important for low dimensional systems where the phonon speci�c heat is considerable.

The transition for H = 0 is well described experimentally by a symmetric logarithmic di-

vergence. However, even relatively small applied �elds round the transition, as is evident

in Fig. 5. This behavior contrasts greatly with d = 3 rounding observed upon FC since

the d = 2 crystal is in equilibrium above and below the H = 0 transition and no hystere-

sis is observed upon FC and ZFC. As the �eld increases, the rounding also increases in a

way consistent with the random-�eld scaling function (Eq. 12) with a crossover exponent

� = 1:75, which is approximately equal to the zero-�eld staggered susceptibility exponent

90

as expected.

Whereas the behavior near T

N

is in excellent accord with theory, the physics of d = 2 di-

lute antiferromagnets at low temperatures may not be equivalent to that of the ferromagnet

with random �elds

91;92

. The low T behavior is discussed in the next section.

The neutron scattering line shapes were studied when the sample was FC to temper-

atures well below the destroyed phase transition

93

where nonequilibrium behavior domi-

nates. The Lorentzian plus squared-Lorentzian line shape of Eq. 17 works quite well as does

a Lorentzian to a power of approximately 3=2. Although no comprehensive study has been

made of the line shapes near T

c

(H), preliminary indications are that the squared-Lorentzian

scattering term is relatively unimportant in Rb

2

Co

0:85

Mg

0:15

F

4

in this equilibrium region

94

.

This con
icts with the mean-�eld theory that predicts that the squared-Lorentzian should

be just as important for d = 2 and d = 3 near T

c

(H) and suggests that the mean-�eld

arguments for the squared-Lorentzian are not particularly relevant. This problem deserves

further study.
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7 Low Temperature Dynamics in d = 3 and d = 2

The dynamics of the RFIM below T

c

(H) in dilute antiferromagnets have been explored using

Squid magnetometry in Fe

0:46

Zn

0:54

F

2

by Lederman, et al.

95

After inducing domains using

the FC procedure, the relaxation of the metastable domain walls has been measured as a

function of time. The excess magnetization from the domain walls scales as the inverse

of the domain size

74

. The dynamics for a variety of �elds and temperatures have been

characterized. Below T

2

(H), which is approximately equal to the equilibrium line T

eq

(H),

and above the another line T

1

(H), the time dependence of the domain wall size R(t) is

consistent with the expression introduced by Villain

96

, R(t) � H

��

H

ln(t=�), where � is

a spin-
ip time. This indicates that the dynamics are governed by the pinning from the

random-�eld 
uctuations. Below T

1

(H) at lower �elds, the random-�eld pinning seems to

be insigni�cant relative to the pinning from vacancies, which are known to freeze in domain

structure even at zero �eld

49;73;9

for d = 3. At very low T for all �elds the Ising character

of the spins is su�cient to freeze the domain structure. It is not yet clear how this picture

might change with variation in the magnetic concentration. The time dependence observed

by Lederman, et al. is consistent with recent domain growth near T

c

(H) observed by Feng,

et al.

97

in Fe

0:5

Zn

0:5

F

2

in a very large

57

�eld H = 5:5T . The line shape width decreases

with time near T

c

(H) but not at low temperatures. The smaller �eld behavior has not been

probed. RFIM dynamics have also been observed using Monte Carlo techniques

98

.

The low T dynamics of the d = 2 RFIM dilute antiferromagnet Rb

2

Co

0:85

Mg

0:15

F

4

were

probed using neutron scattering techniques

99

. No Bragg peak develops upon cooling with

H > 0 since the equilibrium phase transition is destroyed

12

. Instead, a non-Lorentzian-like

scattering line shape develops

62

well below the rounded transition. On the other hand, if

the system is ZFC, long-range order is observed to be stable at low T for H > 0. Upon

heating, a temperature region is reached where the Bragg scattering peak decays. This

region, shown in Fig. 5, is well below the destroyed phase transition as seen by comparing

with the birefringence data

12

, also in Fig. 5. The time dependence of the decay of the

Bragg intensity at the steepest slope in the Bragg intensity, T

F

, versus T is observed to be

approximately logarithmic. Furthermore, the scaling behavior T

N

� T

F

� H

2=�

is observed

with � = 1:74� 0:02, in good agreement with the random-�eld crossover exponent

12

� �

1:75. Hence, the instability of the long-range order is certainly connected with the random-

�eld behavior. Just as in the case of d = 3, once the domains are introduced into the

system below T

N

and the �eld is turned o�, the domains remain for T < T

N

even though

the ground state is long-range order.

The dynamics of domain formation at low temperatures have been studied very close

to the percolation threshold in Rb

2

Co

0:60

Mg

0:40

F

4

by Ikeda, et al.

100

using neutron and

magnetization techniques. Currently, the behavior is being investigated

15

at higher con-

centration in Rb

2

Co

0:85

Mg

0:15

F

4

.

8 Gri�ths-like Phase in Dilute Antiferromagnets

Gri�ths

101

showed that the magnetization in dilute magnets is nonanalytic in H at H = 0

below the transition temperature of the corresponding pure system. This is a consequence of

17



the randomness of the local magnetic concentration. Evidence for dilution-induced Gri�ths

instabilities has been observed

50

by studying the deviations from the Curie-Weiss behav-

ior of �

0

which appears at the pure N�eel temperature and extends down to the transition

temperature in Fe

0:47

Zn

0:53

F

2

and K

2

Cu

0:8

Zn

0:2

F

2

. A similar, but much stronger e�ect

is observed in Fe

0:47

Zn

0:53

F

2

once random �elds are introduced. Binek and Kleemann

50;46

were able to describe the �eld-induced Gri�ths-like peak in �

0

, seen as the broad peak in

Fig. 4, using a phenomenological Lorentzian density distribution of local critical tempera-

tures between T

c

(0) = T

N

and T

c

(H) with a corresponding power law �

0

behavior at each

temperature. These phenomena have only recently been investigated

15

in d = 2 systems.

9 The d = 3 RFIM at Large Magnetic Dilution and Large Fields

New physics emerges once the percolation threshold x � 0:24 in Fe

x

Zn

1�x

F

2

is approached.

The system behaves much like a spin-glass

102;103

, as was �rst discovered by Montenegro,

et al.

104�107

. This behavior takes place even though the frustrating exchange interactions

in Fe

x

Zn

1�x

F

2

are very small

16

. Near the percolation threshold, even tiny frustrating

interactions are predicted to become important

17

. For Ising systems, it is also expected

that the dynamics even in zero �eld should be extremely slow

108

. Both of these may

contribute to the spin-glass-like behavior, although computer simulations seem to indicate

that the small frustrating interactions are su�cient

17;18

. Very close to the percolation

threshold, for x = 0:25 and x = 0:27, no Bragg peak, and hence no antiferromagnetic

ordering, is observed in zero �eld with neutron scattering

106

. (Interestingly, this does not

seem to have been observed in the related anisotropic system

109

Co

0:26

Zn

0:74

F

2

or in the

weakly anisotropic system

110

Mn

x

Zn

1�x

F

2

.) The antiferromagnetic correlation length �

remains small and constant for T below approximately 10 K (T

N

= 78:4 K for pure FeF

2

).

M�ossbauer measurements indicate a competition between antiferromagnet and spin-glass-

like order

111

. The temperature below which � remains constant is just the endpoint of the

de Almeida-Thouless line T

eq

(H). The T

c

(H) curvature is described well by a crossover

exponent � = 3:4, the same exponent measured in canonical spin-glasses

102

. For a higher

concentration, x = 0:31, a more complicated phase diagram is observed

104

. The low-

�eld behavior is the same as observed for higher concentrations, i.e. the low-�eld phase is

antiferromagnetic and � = 1:42. As the �eld increases, the curvature changes to � = 3:4

and no antiferromagnetic order is observed below T

eq

(H). The large �eld induces the

spin-glass-like behavior away from percolation. As we move to even higher concentrations,

x = 0:5, very high �elds are needed to probe the region above the antiferromagnetic phase,

as shown by Lima, et al.

57

employing high-�eld magnetization measurements. Computer

simulations

18

indicate that below x � 0:6, weak frustration a�ects the ordered state of the

REIM in dilute antiferromagnets.

In the less anisotropic system Mn

0:35

Zn

0:65

F

2

, somewhat similar behavior to that in

Fe

0:31

Zn

0:69

F

2

is observed

112

in magnetization and ac susceptibility studies. There is some

indication that the phase diagrams may di�er in some respects and this is currently under

investigation. A de Almeida-Thouless line with � = 3:4 is observed for Mn

0:35

Zn

0:65

F

2

.

A spin-glass-like phase has also been observed above the mixed phase in Fe

x

Mg

1�x

Cl

2

18



for relatively large magnetic concentrations

113

. Slow dynamics are observed for the metastable

domain structure within the mixed antiferromagnetic-paramagnetic phase

19

. The memory

of domain structure is preserved upon decreasing the �eld to zero and even upon �eld

reversal. The memory e�ect is also observed after entering the spin-glass-like phase.

10 First-order to Second-order Transition in Fe

x

Mg

1�x

Cl

2

Recently the metamagnetic transition in Fe

x

Mg

1�x

Cl

2

for has been studied optically and

with computer simulations

114

. Rounding of the metamagnetic transition is interpreted as

the driving of the transition from �rst-order to second-order by random �elds and random-

�eld-induced domain structure. The domain structure is optically observed to be greatly

altered by the dilution-induced random �elds. This is in accord with predictions that

quenched impurities

115

and random �elds

116

can drive a phase transition from �rst-order

to second-order. The concentration at which the metamagnetic transition becomes second-

order is estimated to be x = 0:6. For su�cient dilution the �rst-order nature of the transi-

tion is lost when the avalanche of domain 
ipping no longer involves in�nite length scales.

Universal behavior is predicted for this nonequilibrium transition

117

.

11 Other RFIM Systems

Although a great deal of the experiments shedding light on the RFIM have been done

on dilute antiferromagnets, other systems have been studied as well. Kleemann

118

has

reviewed random-�eld domain states in ferroelectric and structural phase transitions. The

critical behavior of the RFIM structural phase transition in DyAs

x

V

1�x

O

4

has been studied

extensively

119

and compared to the dilute antiferromagnet. Neutron and light scattering

experiments have been done on binary mixtures in silica gels

120

. Certainly more RFIM

realizations will be studied in the future and will signi�cantly add to our understanding as

well as incorporate aspects of the dilute antiferromagnet results.

12 Conclusions

There is good reason to be optimistic about achieving a good characterization of d = 3

RFIM critical behavior in the near future. Experiments are nearly at the point where se-

rious comparisons between theory and experiment can be made. This is possible since the

high concentration crystals show no evidence for the formation of domain structure or for

hysteresis in the line shapes well below the transition, two aspects of the experiments at

lower concentration that have been severe impediments. It would be interesting to investi-

gate if the remarkable di�erence in the behavior at high and low magnetic concentration is a

result of a concentration critical point below which the long-range order becomes unstable.

One outstanding problem is the lack of a theoretically derived line shape to use in analyzing

data; the mean-�eld arguments are clearly inadequate. When such a theory is developed,

more reliable critical exponents and amplitude ratios will be derived from the scattering

data.

19



Two kinds of hysteresis can now be distinguished for d = 3. At low magnetic concen-

trations, vacancies cause irreversibilities and domain formation which are most evident in

scattering experiments. At all concentrations where transitions take place, there appears

to be hysteresis, observable in all experiments, that may be attributable to random-�eld

critical dynamics. For d = 2, hysteresis occurs only at low temperatures, well below the

rounded transition. The dynamics of domain formation in this region are still being studied.

Gri�ths-like domain structure dominates the ac suseptibility in the d = 3 random-�eld

transition in Fe

0:46

Zn

0:54

F

2

. It remains a task to determine whether the small critical peak,

recently discovered, yields power-law or activated dynamics.

Near the percolation threshold, it appears that the d = 3 Ising system Fe

x

Zn

1�x

F

2

behaves very much like a spin-glass despite having only small frustrating interactions.

The behavior in the more isotropic Mn

x

Zn

1�x

F

2

is being studied to elucidate the role

of anisotropy in the spin-glass-like behavior. In related studies, intermediate concentration

crystals of Fe

x

Zn

1�x

F

2

are being studied in the high-�eld limit.

Recent experiments have addressed the random-�eld e�ects on �rst-order transitions

in Fe

x

Mg

1�x

Cl

2

. The �rst-order transition appears to be driven to be second-order with

su�ciently strong random �elds, in agreement with theory.

A reasonable understanding of the random-�eld Ising model as realized in dilute anti-

ferromagnets is emerging, though there is considerable work yet to be done. All aspects

of the rich behavior of these dilute antiferromagnets are important to characterize partly

for their intrinsically interesting properties and partly because other materials may show

one or more of the characteristics. The antiferromagnets are the best studied and probably

the most easily understood systems. In trying to understand the behavior in more com-

plex systems, one will have to keep in mind the array of possible behaviors. Certainly, the

random-�eld physics will be incorporated into the descriptions of many important materials

in the future.
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