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We review recent theoretical progress on glassy dynamics, with special emphasis on the importance

and universality of the aging regime, which is relevant to many experimental situations. The three

main subjects which we address are: (i) Phenomenological models of aging (coarsening, trap mod-

els), (ii) Analytical results for the low-temperature dynamics of mean-�eld models (corresponding

to the mode-coupling equations); and (iii) Simple non-disordered models with glassy dynamics.

We discuss the interrelation between these approaches, and also with previous work in the �eld.

Several open problems are underlined { in particular the precise relation between mean-�eld like

(or mode-coupling) descriptions and �nite dimensional problems.
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1 Introduction

Glassy systems are characterized by the fact that their relaxation time becomes exceedingly

long for low temperatures, so long that these systems are never in equilibrium on laboratory

(or even geological) time scales. Notwithstanding, most theories of spin glasses and other

disordered systems have �rst aimed at describing the putative equilibrium state of these

systems.

1�6

In doing so, many di�culties and surprises have emerged { most notably the

intricate structure of the Parisi solution of the Sherrington-Kirkpatrick (sk)

2

mean-�eld

model for spin-glasses

7

. Despite some early attempts

8;9

, phenomenological and analytical

descriptions of the non-equilibrium phenomena in disordered systems have only recently

appeared, which we shall review below. These dynamical approaches have been developed

mostly because of the accumulating body of experimental data on aging

10�15

, which is a

striking experimental consequence of the fact that these systems are out of equilibrium even

on macroscopic time scales. This aging regime is not the most general out of equilibrium

situation: a certain degree of universality emerges in the non-equilibrium properties. While

usual equilibrium dynamics is stationary, i.e. invariant under time translations, the aging

regime presents a kind of `covariance': after transients have decayed, the dynamical evo-

lution of an old system of age t

w

is described by the same equations as that of a younger

system of age t

w

=2, up to a rescaling of time.

The change of focus from equilibrium to non equilibrium situations also has the in-

teresting consequence of unveiling strong analogies between disordered systems such as

spin-glasses, and other types of glasses where disorder is a priori absent, such as fragile

glasses. These analogies are both phenomenological and formal: many experimental facts

are in close correspondance (for example, aging phenomena were �rst studied in detail by

Struick on polymer glasses

10

), but also, the structure of the mean-�eld equations used to

describe non-equilibrium spin-glasses are almost identical to the Mode Coupling Theory

(mct) of supercooled liquids

16;17

. There is thus a strong feeling that the two types of

systems should be deeply connected

18�20

, and there have been several attempts in the past

few years to establish some precise bridges, which we shall review in this paper.

The scope of the present paper is mainly descriptive: we focus on general ideas and

concepts rather than on more technical aspects. We refer the reader to the relevant papers

for more details.

1.1 Experiments: History dependence and Aging

The simplest way to see that spin-glasses below the phase transition temperature T

g

are

not in equilibrium even after times of the order of hours (or more) is the following: the

sample is quenched rapidly (under zero magnetic �eld) from high temperatures T � T

g

to

the working temperature T

1

< T

g

which is reached, by convention, at time t = 0. Then a

very small oscillating �eld is applied to measure the a.c. susceptibility � of the sample at

a certain frequency !. What is observed is a slow continuous decrease of the amplitude of

� as a function of the time t

w

elapsed since the sample reached the temperature T

1

, which

is called an aging e�ect.

11�15

In other words, � is a function of both frequency and time:

�(!; t

w

). The response of the system to a perturbation thus depends on the thermal history.

3
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Figure 1: The amplitude of the out of phase magnetic susceptibility �

00

(!; t

w

) vs !t

w

for the insulating

spin-glass CdCr

1:7

In

0:3

S

4

(from Ref. [14]). The frequencies are ! = 0:01; 0:03; 0:1; 1: Hz and t

w

is the total

time elapsed after the quench. In the inset, a more re�ned scaling for �

00

(!; t

w

) as discussed in Ref.[14].

To a good approximation, the shape of �(!; t

w

) can be parametrized as follows (see

Fig.1):

�(!; t

w

) = A (!t

w

)

�b

+ �

st

(!) (!t

w

> 1) (1)

where A is a temperature dependent amplitude and b an exponent that moves in the range

0:1! 0:4. The important points of the above parametrization are:

� The response function is the sum of a stationary part �

st

(!) which is independent

of the age of the system t

w

, and of an aging (or non-stationary) contribution, which

decreases with time. �

st

(!) behaves as !

a

with a small exponent a (sometimes called

�)

12;13

, or perhaps as log!. For systems in equilibrium, the time dependent (aging)

contribution disappears.

� The aging contribution can be described with a function of the scaling variable

13;14

!t

w

. In general, the susceptibility of a system with a single relaxation time � is a

function of !� . Hence, the above scaling form means that the e�ective relaxation time

of the system is of the order of its age t

w

itself. (See

14

for a discussion of the inset in

Fig. 1 and a more detailed discussion of an alternative description of the �

00

ag

data.)

Another set of experiments which basically carry the same information is those of the

so-called `Thermo-Remanent Magnetisation' (TRM) relaxation

13;14

. The system is cooled

under a small magnetic �eld H , which is left from t = 0 (the time of the quench) to t = t

w

,

and then suddenly switched o�. The subsequent relaxation of the magnetisation M can be

decomposed as

21;14

M(t

w

+ �; t

w

) =M

st

(�) +M

ag

(t

w

+ �; t

w

) M

st

(�) � lim

t

w

!1

M(t

w

+ �; t

w

) ; (2)

4
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Figure 2: The aging part of the thermoremanent magnetization M

ag

(t

w

+ �; t

w

) (normalized by the zero

�eld cooled value M

fc

) vs. �=t

w

for AgMn

2:6

in a log

10

scale (from Ref. [14]). The sample was cooled in a

0:1 Oe �eld from above the glass transition T

g

= 10:4K to a subcritical temperature T = 9K. It waited for

t

w

= 300; 1000; 3000; 10000; 30000 sec. under the �eld that was suddenly switched o� at t

w

. The decaying

magnetization was recorded during all subsequent times � + t

w

.

where again, there is a `fast'

b

stationary contribution M

st

(�) which is independent of t

w

,

and an aging partM

ag

(t

w

+�; t

w

) which to a good approximation (see Fig. 2 and Section 3)

is a function of the ratio �=(� + t

w

). This again suggests that the e�ective relaxation time

of the system is of the order of its age. Actually, within the linear response approximation,

�(!; t

w

) and M(t

w

+ �; t

w

) are essentially Fourier transform of each other. More precisely,

introducing the response function R(t; t

0

), one has

M(t

w

+�; t

w

) = H

Z

t

w

0

dt

0

R(t

w

+�; t

0

) ; �(!; t

w

) =

Z

t

w

0

dt

0

R(t

w

; t

0

)e

i!(t

0

�t

w

)

: (3)

TRM relaxation in spin-glasses

13

and stress relaxation

10;22

, electric polarisation

23;24

or

speci�c heat

25

relaxation in many very di�erent glassy materials show { rather remarkably

{ similar features, with a fast initial drop at small times � , followed by a slow decrease of

the signal on time scales of the order of the waiting time t

w

. The same picture also pertains

{ on much smaller time scales { to numerical simulations of the response function of the

three-

26;27

and four- dimensional

28

Edwards-Anderson and in mean-�eld

29�31

spin-glass

models.

Since the response function depends on some aspects of the thermal history, it is inter-

esting to consider more complicated experimental protocoles such as di�erent cooling rates

from high temperatures to T

1

, temperature cycles

32;33

between two temperatures T

1

and

T

2

, or even �eld-cycling

34

. The detailed discussion of these situations is beyond the scope

of the present paper. However, it is interesting to notice that while the a.c. susceptibility

b

It is fast in the sense that experimentally, the major part of M

st

(�) has decayed to zero after the �rst

second. However, M

st

(�) only decays as (t

0

=�)

a

with a small: see after Eq. (1) above.
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�(!; t

w

) depends extremely weakly on the cooling rate in spin-glasses, there are experimen-

tal systems (e.g. dipolar glasses

24

) for which this dependence is large. We shall come back

to this point in Section 2.2.

Finally, let us mention that aging can also be seen in correlation functions (rather than

response functions). In equilibrium, these two quantities are related by the well-known

Fluctuation-Dissipation Theorem (fdt), which is, as we shall discuss in Section 1.3, not

necessarily valid in out of equilibrium situations: in general, correlation and response do

not contain the same information.

From an experimental point of view, correlations are obtained from time dependent

noise spectrum measurements

35;36

S(!; t

w

), which are rather more di�cult than response

measurements

c

. From a numerical point of view, however, it is very easy to compute

the time dependent correlation function C(t

w

+ �; t

w

), which for a spin system is de�ned

as C(t

w

+ �; t

w

) =

1

N

P

i

S

i

(t

w

+ �)S

i

(t

w

). The behaviour of C(t

w

+ �; t

w

), obtained on

relatively short time scales from simulations for �nite dimensional

26�28

and mean-�eld

29�31

spin-glass models, reveals aging below the spin-glass transition (for reviews, see

37;38

), again

qualitatively described by a shape similar to Eq. (2), with M 's replaced by C's.

1.2 Think in the two times plane : time sectors.

Out of equilibrium situations have long been considered as untrustworthy. What the exper-

iments tell us (and what the theories below will con�rm) is that provided one abandons the

idea that the correlation or response functions should be `time translational invariant' (tti),

one can make sense of the experimental data by explicitly keeping the dependence on the

two times: C(t

w

+ �; t

w

) 6= C(�). Equivalently, the Fourier transform of these quantitites

will not be functions of the frequency ! only, but of both ! and the time since the quench

t

w

.

More precisely, for any physical system there are a priori two other time scales, one of

them is microscopic (and will be noted t

o

) and determines for example, the single spin-
ip

time. The other time scale is the equilibration time t

erg

, which, for a �nite size system, will

always be �nite (albeit often astronomical). The regime in which one expects to observe

some `universal' features (independent, for example, of the details of microscopic dynamics)

is the regime where:

t

o

� t

w

+ � � t

erg

and t

o

� t

w

� t

erg

: (4)

This does not require any particular relation between � and t

w

. For t

erg

= 1, one may in

general expect (and one indeed �nds in some models) that the functional form of { say {

the correlation depends on the way t

w

+ � and t

w

are taken to in�nity.

The simplest example to see this is the case of ferromagnetic domain growth. After a

quench from high temperatures to a non-zero temperature below the Curie point, a pattern

of domains of positive and negative magnetizations starts coarsening. The typical domain

size �(t

w

) at time t

w

diverges as a power law (or possibly more slowly in the presence of

c

This requires to perform many independent quenches where the magnetic noise is recorded for di�erent

ages t

w

and then averaged over the di�erent quenches.

6



impurities { see Section 2.2). The ergodic time t

erg

is then the time at which the size of

the domains is that of the sample. We shall consider the thermodynamic limit in which

t

erg

= 1. Within an approximate (large n) theory of coarsening, the correlation function

for large times is indeed found to be

39

C(t

w

+ �; t

w

) = C

st

(�) + C

ag

�

�(t

w

)

�(t

w

+ �)

�

: (5)

The �rst term describes the fast relaxation of the spins within each domain, and has

the same form as it would have in equilibrium, when there is only one in�nite domain. Its

limit

d

:

q

ea

� lim

�!1

lim

t

w

!1

C(t

w

+ �; t

w

) (6)

is an example for this simple model of the Edwards-Anderson parameter, a quantity that

plays an important role in glassy dynamics (in this case it is simply the magnetization

squared). The second term of Eq. (5) describes the relaxation of the system due to the

motion of domain walls and it manifestly depends on the waiting time.

As t

w

goes to in�nity, one will be probing two distinct regimes, depending on whether one

takes t

w

! 1 with � �nite (`stationary' regime) or �; t

w

! 1 with

�(t

w

)=�(t

w

+ �) < 1 (`aging' or coarsening regime). In terms of the correlation function, the

stationary and aging regimes are simply de�ned as the regimes of (large) times in which

C(t

w

+ �; t

w

) > q

ea

and C(t

w

+ �; t

w

) < q

ea

, respectively.

These considerations can be translated in Fourier space as follows. De�ning

^

C(!; t

w

) =

Z

t

w

0

d� C(t

w

; t

w

� �) e

i!�

; (7)

one �nds that

^

C(!; t

w

) does not only depend upon ! (as it would in equilibrium situations)

but also upon t

w

. For example, for the correlation of the form (5), one obtains, in the limit

!t

w

� 1:

^

C(!; t

w

) =

^

C

st

(!) +

1

!

C

�

�(t

w

)!

�

0

(t

w

)

�

(8)

where C is a certain function related to C

ag

. In the simplest case in which � grows as a

power law, one �nds �(t

w

)!=�

0

(t

w

) = !t

w

.

More generally, one can envisage the possibility that di�erent physical mechanisms act

on di�erent large-time sectors, de�ned as

�

t

0

= O(1) ;

h

1

(t

w

)

h

1

(t

w

+ �)

= O(1) ;

h

2

(t

w

)

h

2

(t

w

+ �)

= O(1) ; etc. (9)

where the di�erent functions h

i

(no longer necessarily related to domain sizes) are monotonously

increasing functions which grow di�erently, in such a way that:

0 <

h

i

(t

w

)

h

i

(t

w

+ �)

< 1 )

h

j

(t

w

)

h

j

(t

w

+ �)

= 1 for i < j (10)

d

Note the crucial ordering of the two limits.

7



Notice that these time sectors correspond to asymptotically distinct relative `epochs' in the

sense that if t

1

; t

2

belong to the domain de�ned by h

i

and t

2

; t

3

to the one de�ned by h

j

with j > i, then t

1

; t

3

also belong to the sector by h

j

.

The correlation function can be, for example, the sum of terms of the type (5), each

with a di�erent scaling function h

i

replacing �. Because the di�erent scalings vary in time-

sectors that do not overlap, such a function cannot be reexpressed in terms of a simpler

scaling form valid for all large times.

A simple example for the h

i

(t) is

h

i

(t) = exp

 

t

1��

i

(1� �

i

)t

1��

i

o

!

(11)

with 0 � �

i

� 1. In this case the i

th

scaling form corresponds to � � t

1��

i

o

t

�

i

w

. In particular,

� = 0 yields the time-translational invariant form and � = 1 the �=t

w

scaling variable which

is independent of the microscopic time t

0

.

The main message of this Section is that once one abandons time-translational invari-

ance, as one should in systems that never equilibrate, the two-time correlation (or response)

function in the long-times limit may have a rich structure including multiple-scaling forms

like (9). It will turn out that a rather general classi�cation of the asymptotic behaviour in

the two-time plane can be made using only the monotonicity property of the correlation

and simple group theory (see Section 3.4).

The simple example of coarsening also illustrates the fact that in order to decide whether

a system can be considered to be in equilibrium, one-time quantities (such as the energy,

magnetization, etc) can be misleading. Indeed, at any �nite time the excess energy density of

a coarsening ferromagnet is proportional to the total domain surface divided by the volume,

a quantity which soon becomes very small. If one were to judge the degree of equilibration

by only measuring the excess energy density, one would wrongly conclude that the system

equilibrates rather rapidly. On the other hand, two time quantities (such as the correlation

function) reveal very clearly that the system is still out of equilibrium even at long times.

1.3 Fluctuation-Dissipation Relations

As was mentioned before, in a system at equilibrium, the response to an external magnetic

�eld and the autocorrelation functions are related through the 
uctuation-dissipation theo-

rem (fdt). This is true in general for the response to a �eld h conjugate to any observable

O and the corresponding autocorrelation C

o

(t

w

+�; t

w

) � hO(t

w

+�)O(t

w

)i. In equilibrium:

R

o

(t

w

+ �; t

w

) �

�hO(t

w

+ �)i

�h(t

w

)

�

�

�

�

h=0

= R

o;eq

(�) = �

1

T

@C

o;eq

(�)

@�

(12)

or, introducing the integrated response ~�

o

(t

w

+ �; t

w

) =

R

t

w

+�

t

w

R

o

(t

w

+ �; t

0

)dt

0

:

~�

o

(t

w

+ �; t

w

) = ~�

O;eq

(�) =

1

T

(C

O;eq

(0)� C

O;eq

(�)) : (13)

8



If O is the energy, one obtains the relation between energy 
uctuations and speci�c heat,

if O is the magnetization, one �nds a relation between the (time dependent) �eld induced

magnetisation and the magnetic noise correlations, etc.

In order to study the relation between `
uctuations' and `dissipation' in out-of-equilibrium

systems, one has to think in terms of two-time correlation and response functions. Let us

then consider a given t

w

and make a parametric plot of ~�

o

(� + t

w

; t

w

) vs. C

o

(� + t

w

; t

w

)

when � varies. One then takes a larger t

w

and repeats the plot, and so on. If the system

equilibrates after a �nite time t

erg

, one obtains, when t

w

� t

erg

, a limiting ~�

o

vs. C

o

curve

which is a straight line with slope �1=T : this is the fdt.

Consider instead what happens in the example of domain growth in an in�nite size

system. Within a large n treatment of the problem

40

, one obtains for the � vs. C curves a

family of curves shown in Fig. 3. For large t

w

, the curves approach a broken line: one with

slope �1=T for values of the correlation larger than q

ea

(i.e. for times in the stationary

regime de�ned in the previous Section), and one with zero slope for values of the correlation

smaller than q

ea

(the aging regime). This simple example illustrates that (despite the fact

that the dynamics is very slow when t

w

! 1) the system cannot be thought of as in a

`quasi-equilibrium' state, for which concepts from equilibrium are more or less valid: there

is always a regime in which fdt is strongly violated. (It would be interesting to con�rm

these results within more realistic models of coarsening, and also, obviously, experimentally

and numerically.) We also see that the Edwards-Anderson parameter plays a role for the

response functions.

Similar results are found analytically in the mean-�eld spin-glass systems which we shall

review below (see Fig. 4 and Section 3). The main di�erence is that the aging part of the

curve (i.e. C < q

ea

) has a non-zero slope.

41�45

This is quite important, since it means that

the integral of the response function over the aging regime gives a non-zero contribution.

In the more realistic 3D Edwards-Anderson model, the form of the ~� vs. C curves

which are obtained numerically (at least for the computer times accessible at present) are

actually remarkably similar

46

to the mean-�eld prediction for the corresponding mean-�eld

model

43

. The same is true of some very recent numerical simulations of binary soft-sphere

mixtures

47

.

The violation of fdt can be parametrized by introducing a violation factor X

o

(t; t

0

)

de�ned as

R

o

(t; t

0

) �

X

o

(t; t

0

)

T

@C

o

(t; t

0

)

@t

0

: (14)

Note that we are di�erentiating with respect to the smallest time t

0

. In analytic studies of

mean-�eld systems, one can furthermore show that for large times X

o

depends on t; t

0

only

through the value of the correlation function: X

o

(t; t

0

) = X [C

o

(t; t

0

)]. In particular, when

C

o

> q

EA;o

, X

o

= 1, and the fdt is recovered.

It turns out

48

that the `e�ective temperature'

T

eff

o

(t

w

+ �; t

w

) �

T

X

o

(t

w

+ �; t

w

)

(15)

is precisely the temperature which would be read on a thermometer with response time � (or

frequency ! � 1=�) when connected to the observable O at time t

w

. A `fast' thermometer

9
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Figure 3: The susceptibility ~�(t

w

+�; t

w

) �

R

t

w

+�

t

w

dsR(t

w

+�; s) vs the correlation C(t

w

+�; t

w

) for domain

growth in a n-component vector ferromagnet at T < T

g

, obtained from an analytical treatment of the large

n limit. (From Ref.[48].)

of response time � � t

w

will then probe the stationary regime for which X

o

= 1 and thus

measure the heat-bath temperature. This is the reason why glasses, although still out of

equilibrium after many hours, feel as cold as the room they are in.

1.4 Edwards-Anderson parameter, weak-ergodicity breaking and clonation

The situation we have described in the last two subsections is one in which equilibrium is

not achieved, in the sense that con�gurations are not visited with a probability given by the

Gibbs-Boltzmann weight. However, this is not the main point: none of the above results

can be explained within a strong ergodicity breaking scenario where the system falls into a

very long-lived metastable state, and achieves fast equilibration within such restricted sector

of phase-space. A mixture of hydrogen and oxygen, or a crystal of diamond are systems

which are metastable, but for all dynamical purposes in equilibrium. As Feynman puts it:

`Equilibrium is when all fast things have happened, and slow things not yet'. The out of

equilibrium situations which are of interest to us are those where, in a sense, `things keep

happening on all time scales'.

More precisely, in a spin-glass (or a coarsening problem) in the low temperature phase

the spins do, on average, remember for some time their orientation, which leads to a non-

zero Edwards-Anderson parameter q

ea

= lim

�!1

lim

t

w

!1

C(t

w

+ �; t

w

). However, if the

waiting time is �nite, the system is able to escape arbitrarily far from the con�guration it

had reached at t

w

, leading to

lim

t

w

!1

lim

�!1

C(t

w

+ �; t

w

) = 0 (16)

10



0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1

~�(t

w

+ �; t

w

)

C(t

w

+ �; t

w

)

Figure 4: The susceptibility ~� vs the correlation C for the `discontinuous' mean-�eld spin glass model of

Section 3 (p = 3) at T < T

g

. In this case the fdt violation for C < q

ea

� 0:76 is given by �X=T , with

X = (1� q

EA

)=q

EA

� 0:76. More complicated situations are described in Section 3. (From Ref.[48].)

even in the low temperature phase where q

ea

> 0. This situation was called `weak-ergodicity

breaking' in Refs.[

49;41;43

].

It is important to note that the fact that a system undergoes weak (as opposed to

strong) ergodicity breaking for in�nite times does not mean that stable states do not exist

in phase-space. The dynamical behaviour depends on the choice of initial conditions. The

example of ferromagnetic coarsening is again eloquent in this respect. There exist two true

equilibrium states, and the relaxation from an initial condition close to one of them (e.g. all

spins up) is fast and shows no aging. But in the relaxation from a random initial condition

(e.g. a typical con�guration at a temperature above T

c

), the system remains forever (in the

thermodynamic limit) undecided as to which state it will go to.

Another interesting question is the following: suppose that at time t

w

one `duplicates'

the spin system and evolves subsequently the two copies using two independent thermal

baths. (This process was called `clonation' in Ref.[

30

].) Will the two copies stay `close

together' or conversely will they evolve independently, forgetting their common breed? This

is measured by the `overlap' function Q(t

w

+ �; t

w

+ �) de�ned as

50

Q(t

w

+ �; t

w

+ �) =

1

N

N

X

i=1

S

(1)

i

(t

w

+ �)S

(2)

i

(t

w

+ �) S

(1)

i

(t

w

) � S

(2)

i

(t

w

) ; (17)

where the superscripts

(1;2)

refer to the two copies. We shall see below that the limit

lim

t

w

!1

lim

�!1

Q(t

w

+ �; t

w

+ �) = Q

1

(18)

11



can be zero or non zero, even if q

ea

is non zero. This may serve to distinguish di�erent

types of aging dynamics

51;40;30;31

.

If the limit is taken in reversed order (i.e., t

w

!1 �rst), the overlap function contains

the same information as the correlation function. More precisely

51

:

lim

t

w

!1

Q(t

w

+ �; t

w

+ �) � C

st

(2�) : (19)

2 Phenomenological models of aging

In order to account for the above experimental results, one has as usual the choice between

some physically motivated, but phenomenological, pictures or some rather more precise mi-

croscopic models, in a limit in which they are analytically tractable. Both approaches are

actually complementary, and shed light on each others' limitations. We shall start by re-

viewing the phenomenological pictures of aging, based either on domain growth arguments,

or on models of random walks in phase space.

2.1 Coarsening in non disordered systems

As we noted in the previous Section, the simplest model where aging occurs is the ferro-

magnetic Ising model suddenly quenched below its Curie point temperature. The initial

con�guration is random, and it orders progressively through domain growth. Depend-

ing on the class of microscopic dynamics

39

, the typical size � of the domains grows as

t

1=2

(`non-conserved' case) or t

1=3

(`conserved' case). The `age' of the system is thus

directly encoded in the spatial correlation functions. The two-time correlation function

C(t

w

+ �; t

w

) =

1

N

P

i

S

i

(t

w

+ �)S

i

(t

w

) can be calculated exactly in some cases (e.g. the

Ising model in one dimension, or the large-n `spherical' model), or using some approxima-

tions (for a review see Ref.[

39

]). One �nds an expression as Eq.(5)

C(t

w

+ �; t

w

) = C

st

(�) + C

ag

�

�(t

w

)

�(t

w

+ �)

�

(20)

where C

ag

decays as a (non trivial) power-law for large arguments. C

ag

(1+u) is in general

also singular around u = 0, its behaviour is characterised by an exponent

45

b and, in the

`non-conserved case', one can argue that

52;53

, C

ag

(1)�C

ag

(1+ u) /

p

u. Correspondingly,

the aging part of the a.c. susceptibility decays as in Eq. (1), with b = 1=2.

The overlap function Q(t

w

+ �; t

w

+ �) can also be estimated in this simple coarsening

situation. Within standard approximate treatments of coarsening

40;51

, one �nds that the

quantity Q

1

de�ned in Eq.(18) is non zero, meaning that the two copies follow each others'

footsteps (within �nite times) in their evolution towards equilibrium. Note also that within

the large n approximation, the fdt violating factor X goes to zero at in�nite times, as

�

�1

. It would be interesting to know whether this is a more general property of coarsening

dynamics.

It is interesting to remark that in the presence of a small external magnetic �eld H ,

aging is `interrupted' after a �nite time t

erg

(H), since one of the two phases is favoured

12



by the �eld. For example, in the case of the spherical model, one �nds

54

t

erg

(H) / H

�2

.

This behaviour is expected on general grounds: it corresponds to the time beyond which

the curvature induced driving force is superseded by the �eld induced driving force.

2.2 Coarsening in disordered systems I: Random ferromagnet or random �eld

Let us now consider the case of a disordered ferromagnet in dimension larger than 2, where

random local magnetic �elds or random local couplings are present. If the disorder is suf-

�ciently weak (for example, if a small fraction of the ferromagnetic bonds are removed),

the ground state of the system still has long-range ferromagnetic order, and the description

in terms of the growth of ordered domains is valid. However, due to the presence of dis-

order, the domain walls will tend to be pinned by local inhomogeneities. The problem of

domain walls in disordered environments has been the focus of intense study in the recent

years

55

. In many aspects, this problem is close to the spin-glass problem, with a large

number of metastable states (although of course the `spin-glass' nature of the problem only

concerns the small fraction of spins which belong to the domain walls). The dynamics of

a given section of a domain wall proceeds by thermally activated hops between di�erent

favourable con�gurations. Ordered domains thus grow on average, but at a much reduced

rate compared to the pure ferromagnet described above.

A generally accepted description is as follows

56

: the typical pinning energy scale of

a domain wall of linear size R grows as �R

�

, where � is an exponent which depends on

the problem (random �eld/random bond) and the dimension of space. A simple scaling

argument

e

then suggests that the time needed for a domain to reach a certain size R is

given by

�(R) / t

o

exp

 

�R

�

kT

!

: (21)

After a certain time t, the typical size of the domains is thus expected to be given by

�(t) /

0

@

kT log

�

t

t

o

�

�

1

A

1

�

; (22)

provided the corresponding pinning energy ��(t)

�

is large compared to kT . (In the other

limit, the pinning energy is negligible, and one recovers the growth law which we discussed in

the previous paragraph.) This logarithmic growth of domain sizes has been rather carefully

checked numerically

59

in D = 3 (T 6= 0).

Apart from the fact that domains grow very slowly, one expects that the picture prevail-

ing in the pure ferromagnetic case is not drastically modi�ed. In other words, the correlation

function should still be given by Eq. (5), but with a logarithmically growing �(t). This

was con�rmed numerically on the Ising model with random �elds, for D = 1

53

and D = 3

60

. In D = 1, the motion of a `domain wall' (a point) is given by Sinai's di�usion law, i.e.

e

This argument assumes that barrier heights between metastable states behave (as a function of R)

similarly to the pinning energy of each state

57;58

13



�(t) / log

2

(t) (at least for times smaller than a certain temperature dependent t

erg

, which

diverges when T ! 0). The aging part of the two-time correlation function can indeed be

satisfactorily rescaled when plotted versus �(t

w

)=�(t

w

+ �).

It is important to notice that the above scenario, where the system tries to reach a well

de�ned (temperature independent) state, but is slowed down due to pinning by impurities,

leads to large cooling rate e�ects. This is because the crossover energy ��(t)

�

' kT will

be reached at later times if the cooling rate is slower

60

. The size of the domains when the

working temperature T

1

is reached will thus be larger, the smaller the cooling rate, and this

will a�ect many physical observables, such as the energy.

Let us �nally point out that disorder is actually not necessary to obtain logarithmic in

time (rather than power-law) growth of the domain size. This was �rst shown in Ref.[

61

] for

a pure Ising model with next-nearest neighbour couplings. Actually, if the domain walls are

below their roughening temperature, the dynamics proceeds via the nucleation of terraces

62

,

and also leads to logarithmic domain growth.

2.3 Coarsening in disordered systems II: Spin glasses and droplets

It is not obvious whether the above coarsening description also applies to spin glasses,

because of the non-conventional nature of their order parameter. However, Fisher and Huse

63

have argued that for spin-glasses in �nite dimension and for any given temperature below

the spin-glass transition, there are only two `pure states' (spin-reversed from each other)

which have to be considered, which can conventionally be called `up' and `down', very

much like in the Mattis model

64

. This assumption gives some physical content to a scaling

description of the spin glass phase, �rst advocated in

65;66

. It allowed several authors

63;67;68

to develop a rather complete phenomenological picture of spin-glasses in low dimensions,

where the spin-glass is considered as a `disguised ferromagnet' (with however the important

di�erence that the two pure states are not stable when the temperature is changed { see

below). This is at variance with the mean-�eld picture emerging from Parisi's solution

7

of

the Sherrington-Kirkpatrick model

2

, where many (non trivially related) pure states coexist

4;69

If this `two-state' picture is retained, the dynamics of the system can again be described

in terms of growing and coalescing compact domains

67

, which have also been called `droplets'

63

in this context. The presence of disorder presumably pins the domain walls, leading again

to a logarithmic growth of the droplets, and thus to a two-time correlation very similar to

the random-bond or random �eld case described above. In particular, the aging part of the

correlation function should be a function of

f

�(t

w

)=�(t

w

+ �).

One striking property of experimental spin-glasses, however, is the very weak depen-

dence of its physical properties on the cooling rate

70

. For example, the asymptotic value

of the a.c. susceptibility, �(!; t

w

! 1), is nearly independent of the cooling rate. This is

at �rst sight surprising in a scenario of activated domain growth, as we emphasized above.

But if one argues that the spin-glass phase is `chaotic'

66;63;67

, i.e. that the two pure states

towards which the system evolves are extremely fragile to temperature changes, it becomes

f

Fisher and Huse actually postulated that the scaling variable would rather read �(�)=�(t

w

).

14



obvious that the dynamics of the system at temperatures greater than T

1

is useless to bring

the system closer to its equilibrium at the working temperature T

1

. In a �rst approxima-

tion, the con�guration reached by the system at temperature T

1

+ �T is as remote from the

`true' equilibrium state at temperature T

1

than a high temperature con�guration. Hence

the cooling rate may indeed have a negligible e�ect.

How does the two-state picture compare with aging experiments or numerical simula-

tions, in the case of a 3�d Ising spin-glass? The detailed discussion of this point is beyond

the scope of the present paper and the conclusions still controversial

34;15;71;38

, in particular

the existence of a transition in a magnetic �eld

72�75

. One should however mention the

following results:

�� Both experimentally and numerically, the aging part of the correlation and re-

sponse functions follow a scaling which is systematically closer to �=t

w

than the expected

�(t

w

)=�(t

w

+ �) (or even �(�)=�(t

w

)) if the barrier heights scaled as R

�

, e.g. �(t

w

) =

log(t

w

=t

o

)

1=�

. The point is that such a scaling would place the curves of Fig. 2 in the

reversed order: the young ones would be below the old ones in a �=t

w

plot.

However, as suggested by Rieger

37

, the two state picture with barrier heights scaling as

� logR (i.e. � ! 0) would lead to an algebraic domain growth law (as postulated by Koper

and Hilhorst

67

): �(t) / t

�

with � = kT=�

27;38

, and thus in turn to a �=t

w

scaling.

�� A direct numerical indication of a growing length scale was searched for in

76;27

. A

possibility is to study the following correlation function

G(~r; t) =

1

N

X

i

hS

(1)

i

(t)S

(2)

i

(t)S

(1)

i+~r

(t)S

(2)

i+~r

(t)i ; (23)

where S

(1)

i

and S

(1)

i

which has the following intuitive meaning: knowing that the copies 1

and 2 are in the same state at site i (resp. opposite states), what is the probability that they

are still in the same state (resp. still in opposite states) a distance ~r apart ? Numerically,

G(~r; t) is seen (in 3 dimensions) to be of the form

77

:

G(~r; t) =

1

r

�

g

�

r

�(t)

�

�(t) / t

�

(24)

which indeed suggests the presence of a growing scale �(t) in the dynamics. The conventional

droplet picture predicts (apart from a logarithmic, rather than power-law, growth of �(t))

that � = 0, since the equilibrium state should be unique up to a global sign change, whereas

simulations by Marinari et al.

77;38

suggest that � > 0, just as in the equilibrium situation

obtained with replica �eld theory

78

in dimensions smaller than 6.

�� The temperature cycling experiments

13

where the system is cooled to temperature

T

1

< T

g

, then to temperature T

2

< T

1

, and �nally back to temperature T

1

, show a very

striking conjunction of `rejuvenation' (when the temperature is decreased) and memory

(when the system is heated back). The coexistence of these two e�ects is rather awkward

to interpret within the droplet picture

13;79

. In the same spirit, Weissmann et al.

36

have

argued that the `second noise spectrum' of spin-glasses does not conform with what could

be expected from a simple `two-state' picture.
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In summary: even if the `disguised ferromagnet' picture did provide a correct description

of the equilibrium properties of low-dimensional spin-glasses, it is not obvious that this

description is su�cient to account for the out-of-equilibrium properties. One reason is

that { precisely because of the chaotic nature of the equilibrium phases { the system will

not only nucleate domains of the nominal equilibrium state, but probably also `phases'

corresponding to nearby temperatures, which will thus contribute to the non-stationary

part of the dynamics.

2.4 Stranded in phase space: the `trap' model

`Phase-space' models are another very useful class of phenomenological models for the

dynamics of complex systems, and have been advocated by very many authors over the

years

80;85

. The dynamics of the whole system is summarized in the motion of a single point

evolving within a complicated energy landscape in con�guration space. From a general point

of view, one expects this energy landscape to be made of `valleys', or `traps' (within which

all con�gurations are mutually accessible in a short time) separated by `barriers', which the

system can only overcome by thermal activation. A coarse-grained representation of the

problem can thus be given in terms of states �; �; 
::: between which the system wanders.

The dynamics of the system is thus described by a master equation for the probability to

�nd the system in the state �:

@P

�

@t

= �

X

�

W

�!�

P

�

+

X

�

W

�!�

P

�

: (25)

The choice of the hopping ratesW

�!�

then encodes the statistics of the barrier heights and

the geometry of the phase space. It is rather arbitrary apart from the constraint of detailed

balance. For example, one can organize the `traps' on a hierarchical tree, and choose W

�!�

to only depend on the distance between � and � along the tree. This has led to several

`ultrametric' di�usion models

80

, with many interesting results, including, in some cases,

aging e�ects.

87�89

� The one-level tree.

The simplest of these models,

49

for which the appearance of aging has a particularly

clear interpretation, is when the hopping rate only depends on the starting state: W

�!�

=

(N�

�

)

�1

, whereN is the total number of states. (The �nal state � is thus independent of the

initial state; the process starts anew at each jump.) This corresponds to the picture drawn

on the left of Fig. 5. The trapping times �

�

are of the form t

o

exp(B

�

=(kT )), where B

�

is

the energy barrier `surrounding' state �. Within this description, the equilibrium measure

P

eq

�

(if it exists) is simply proportional to �

�

. In order to reproduce the correct Bolzmann

equilibrium, one should thus identify B

�

with the free-energy of the state

g

f

�

. Mean-�eld

g

The relation between barrier heights and energy depths is however not obvious in general; for recent

work on this subject, see Ref. [

57

]

16



models of spin-glasses

90

or replica treatment of randomly pinned manifold suggest that the

distribution of the metastable states' free energies f

�

is exponential

90;4;91;92

�(f

�

) / exp

�

�

xjf

�

j

kT

�

(26)

with a certain parameter x � 1 in the glassy phase, x = T=T

g

in the Random Energy

Model

93;94

. The appearance of this exponential tail for `deep' states can be understood on

general grounds, and is related to the so-called `extreme value statistics' (for a more precise

discussion, see Refs. [

95;96

]). The corresponding distribution of trapping times

h

is then

easily found to be

�(�)d� = �(f)df �! �(�) /

��t

o

t

x

o

�

1+x

: (27)

Let us now introduce the quantity �(t

w

+ �; t

w

) de�ned as the probability that the system

has not changed trap between time t

w

and time t

w

+ � . This quantity is found to be

very di�erent depending on whether x is larger or smaller than 1. In the former case,

lim

t

w

!1

�(t

w

+�; t

w

) is well de�ned, and found to be proportional to (t

o

=�)

x�1

. For x < 1,

however, one �nds that �(t

w

+ �; t

w

) `ages', and is given by:

�(t

w

+ �; t

w

) =

sin(�x)

�

Z

1

�

�+t

w

du(1� u)

x�1

u

�x

(t

w

� t

o

) : (28)

In physical terms, this means that after a waiting time t

w

, the only states which have

an appreciable probability are those with a trapping time of the order of t

w

itself. This

re
ects the fact that the distribution of trapping times �(�) becomes so broad when x <

1 (the average trapping time becomes in�nite), that the sum of all the trapping events

�

1

+ �

2

+ :::+ �

N

is always dominated by its largest term, which is thus of the order of the

experimental time itself

49

. This dominance of a few very important events is a characteristic

feature of L�evy statistics

98

. On the other hand, when x > 1, the trapping times are all of

order t

o

.

Let us now de�ne the overlap q

��

between states as q

��

= q

ea

and q

�6=�

= q

0

(more

general choices will be discussed below). The self-overlap q

ea

is smaller than 1 in general;

this re
ects the fact that many microscopic con�gurations are mutually accessible within

times of order t

o

; this contributes to the equilibrium part of the correlation function which

the one-tree level cannot describe. The spin-spin correlation function, averaged over the

disorder

i

is thus given by

C

ag

(t

w

+ �; t

w

) = q

ea

�(t

w

+ �; t

w

) + q

0

(1��(t

w

+ �; t

w

)) : (29)

Note in particular that lim

�!1

lim

t

w

!1

C

ag

(t

w

+ �; t

w

) = q

ea

when x < 1, but that

lim

t!1

lim

t

w

!1

C

ag

(t

w

+ �; t

w

) = q

0

for x > 1. Within this model, x = 1 thus corresponds

to a true glass transition.

h

Generalisation to other distributions of f

�

has been considered in Ref.[

97

]

i

i.e. over the distribution of f

�

. Note that in this model, the correlation function is not self-averaging,

precisely for the same reason as for the static overlap distribution P (q) in mean-�eld spin-glasses

69
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Figure 5: Schematic phase-space landscape of a one level tree and of a multi-level tree.

Equation (28) leads to the following asymptotic behaviour for C

ag

(t

w

+ �; t

w

)

79

:

C

ag

(t

w

+ �; t

w

) ' q

ea

�

sin(�x)(q

ea

� q

0

)

�(1� x)

�

�

t

w

�

1�x

(� � t

w

) (30)

' q

0

+

sin(�x)(q

ea

� q

0

)

�x

�

t

w

�

�

x

(� � t

w

) (31)

Hence, both the `short time' (t

o

� � � t

w

) and `long time' regimes are described by

power-laws, much like in the simple coarsening models described in Sections 2.2 and 2.3.

The above model can be endowed with magnetic properties by assigning to each state

a certain magnetisation m

�

, and modifying the hopping rates in the presence of a �eld to

recover the correct equilibrium weights

79

. One then �nds that the generalised form of the

fdt (Eq. (14)) holds, with:

X(t

w

+ �; t

w

) = 1� � + �

t

w

t

w

+ �

(32)

where � is a free parameter of the model, restricted to the interval [0; 1]. For � = 0, the

thermoremanent magnetisation is simply proportional to C(t

w

+ �; t

w

).

Experiments on the thermoremanent magnetisation or the a.c. susceptibility show that

both the `short time' and `long time' regimes can be �tted by power-laws (see Fig. 7 in

Ref.[

14

]). The exponent x which comes out of these two �ts is however di�erent: x = 1�b '

0:6� 0:9 (depending on temperature) from the � � t

w

region, and x ' 0:1� 0:3 from the

� � t

w

region

79;14

.

One can also de�ne the overlap function Q(t

w

+ �; t

w

+ �) within such a model, and

show that it is simply related to C through Q(t

w

+ �; t

w

+ �) = C(t

w

+ 2�; t

w

). One thus

�nds, in particular, Q

1

= q

0

: two copies of the same system decorrelate completely from

each other

51

. Note however that this would not be true if the `traps' were organized along

a low dimensional `path' in phase space.
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� The multi-level tree.

An interesting generalisation of this `one-level' trap model is to consider a hierarchical

organisation of traps within traps, and to relate the overlap q

��

between two states to their

distance along the tree (see the �gure on the right of Fig. 5). The hopping rate W

�!�

is

still taken to be independent of the �nal state for a given distance along the tree, or for a

given overlap q = q

�;�

W

�!�

/

1

�

�;q

: (33)

As reviewed in Refs [

4;91;99

], the interpretation of the static full replica symmetry breaking

solution suggests that the distribution of free-energies of the states at a certain level of the

tree is still exponential, but with a parameter x which now depends on the overlap between

these states (and is the inverse of the Parisi function q(x))

�

q

(f) / exp

 

�

x(q)(

~

f � f)

kT

!

; (34)

where

~

f is the free-energy of the `ancestor' state, itself distributed exponentially with a

parameter x(q � dq), etc. Assuming again that the barrier between the states is related to

the free-energy depth as pictured in Fig. 5, one is led to surmise that the trapping time

�

�;q

is still distributed as a power-law, but with a q dependent exponent:

�

q

(�) /

��t

o

t

x(q)

o

�

1+x(q)

: (35)

Note that x(q) is an increasing function of q, which means that the smaller the overlap

between states, the broader the distribution of time scales. In other words, `fast' processes

are deep down the tree. The correlation function is now determined from

j

C(t

w

+�; t

w

) =

M

X

j=0

q

j

[�

j

(t

w

+�; t

w

)��

j+1

(t

w

+�; t

w

)] =

M

X

j=0

[q

j

�q

j�1

]�

j

(t

w

+�; t

w

) ; (36)

where j labels the level of the tree from top to bottom, and �

j

(t

w

+ �; t

w

) is the probability

that no jump beyond the j

th

level of the tree has occured between t

w

and t

w

+ � . All the

levels j > M

�

such that x(q

j

) is larger than 1 are equilibrated on microscopic (� t

o

) times.

This means that the corresponding �

j

are zero as soon as � � t

o

. This part of the tree thus

contributes to the stationary dynamics, while the levels j � M

�

contribute to the aging

part

C(t

w

+ �; t

w

) =

M

�

X

j=0

q

j

[�

j

(t

w

+ �; t

w

)��

j+1

(t

w

+ �; t

w

)] + C

st

(�) : (37)

It is easy to show

79

that the short time (� � t

w

) decay of the aging part of C(t

w

+ �; t

w

)

behaves as in Eq. (30), with x ! x(q

M

�

), while the long time (� � t

w

) decay is decribed

j

With the convention �

M+1

� 0, and q

�1

= 0.
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by Eq. (31) with x ! x(q

0

). Not surprisingly, the short time decay is mostly sensitive to

the fastest part of the tree j = M

�

, while the long time decay is governed by the slowest

processes j = 0. Note that the experimental data is indeed such that the long time x(q

0

) is

smaller than the short time exponent x(q

M

�

).

The presence of levels such that x ' 1 is very interesting from the point of view of

`1=f '-noise, for the following reason. If x > 1, the corresponding contribution to the a.c.

susceptibility is stationary and behaves as �

00

st

(!) / (!t

o

)

x�1

. The noise spectrum is thus

given by

S(!) =

2T

�

�

00

(!)

!

/ !

x�2

: (38)

So the leading contribution to the low frequency noise coming from these equilibrated

processes with x > 1 comes from x ' 1 and scales as 1=!. On the other hand, if x < 1, the

contribution to the a.c. susceptibility is aging and behaves as �

00

(!; t

w

) / (!t

w

)

x�1

. This

contribution is thus decaying with time, but more and more slowly as x approaches 1 from

below. Among these aging modes, those which are the slowest to disappear correspond

to x = 1

�

, leading again to a 1=! dependance. Within this picture, 1=f noise appears

rather naturally; furthermore one expects that this noise should generically exhibit some

non-stationary contributions.

Another interesting aspect of the dynamics on a `multi-level' tree is its response to

temperature cycling. It was suggested in Refs[

13;33

] that the negative temperature cyclings

{ which reveal both `rejuvenation' in the intermediate, low temperature period, followed by

a perfect `memory' of the a.c. susceptibility { point towards a hierarchical picture of phase

space, where �ner details are progressively revealed as the temperature is lowered. Using

the fact that the whole curve x(q) decreases when the temperature is lowered, it is easy to

account for this phenomenon within the multi-level tree model

79

.

� Energy or `entropy' barriers ?

Before discussing the possible relation between this hierarchical picture and real-space,

droplet like descriptions, one should emphasize that in the trap models discussed above,

aging is induced by the presence of energy barriers, the crossing of which becomes slower

and slower as the temperature is decreased. Aging is nevertheless also present in models

where there is no barrier crossing at all. It was already noticed

100

that the sk model at

T = 0 has a slow decrease in energy and never reaches a stable con�guration. This same

situation can be seen more clearly in the following model: let us consider the case

84

where

the hopping rateW

�!�

is equal to zero if the state energy f

�

is larger than f

�

, and equal to

W

0

= (Nt

o

)

�1

otherwise. This rule actually corresponds to the Glauber dynamics at zero

temperature. In the limit N !1, the system never reaches the ground state: there always

exists states of lower energy towards which the system can evolve { the number of these

`escape directions' however becomes smaller and smaller as time increases. One can show

that independently of the distribution of energies �(f) (but provided that these energies are
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independent), the correlation function in this model is given by

84

C(t

w

+ �; t

w

) = (q

ea

� q

0

)

t

w

t

w

+ �

+ q

0

: (39)

Note that the decay of C(t

w

+ �; t

w

) is regular when � ! 0, in contrast with the above

trap model and, as we shall see, with the generic mean-�eld situation. Slow dynamics in

this model can thus be attributed to `entropic barriers', i.e. the fact that paths leading

to smaller energies become more and more scarce as time increases. A similar scenario

holds in the `Backgammon model' introduced by Ritort

101

and studied in detail in Ref.

[

102

]. It is reasonable to expect that both energy and entropy barriers should contribute to

non-equilibrium dynamics in real systems.

� Speculations about trees and clusters.

What could be the interpretation of Eq. (36) in real space ? Clearly, large q's should be

related to small clusters of reversed spins, corresponding to `fast' processes, while small q's

correspond to large clusters, or `slow' processes. Let us suppose that the overlap between

two con�gurations can be written as a sum of contributions from `clusters' of di�erent linear

scales `:

q

�;�

=

1

L

d

L

X

`=1

(

L

`

)

d

X

i

`

=1

q

`

�

`

�;�

(i

`

) ; (40)

where L is the size of the sample, q

`

is the incremental contribution to q of the clusters of

size `; for fractal clusters

k

of dimension d

f

one expects q

`

/ `

d

f

. �

`

�;�

(i

`

) is equal to zero

if the states � and � di�er by the reversal of the cluster of size ` in the `cell' labeled i

`

and

equal to one otherwise. Following the same speculative vein, one can write the two-time

correlation function as

C(t

w

+ �; t

w

) =

L

X

`=1

q

`

`

d

�

`

(t

w

+ �; t

w

) (41)

where �

`

(t

w

+ �; t

w

) is the average (over all the `cells' of size `) fraction of clusters which

have not 
ipped between t

w

and t

w

+� . The disorder average is no longer needed here since

there is a space average over many independent clusters.

Assuming that the barrier heights are distributed exponentially with a scale depen-

dent parameter x(`), we �nd that the correlation function will behave much as above in

Eqs.(30,31). The parameter x(`) actually �xes the relation between energy scales T=x(`)

and length scales (see Refs.[

99;92

]). Taking x(`) = T=(�`

�

) (as suggested by scaling argu-

ments or replica calculations on the problem of pinned manifolds

104;99;92

), one �nds that

there exists a characteristic length scale `

�

such that x(`

�

) = 1, separating small length

scales ` < `

�

{ for which equilibrium is reached { from large length scales where aging takes

k

The idea of fractal clusters of spins in spin-glasses dates back to Ref [

103

].
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place. In other words,

C(t

w

+ �; t

w

) =

L

X

`=`

�

q

`

`

d

�

`

(t

w

+ �; t

w

) + C

st

(�) (42)

with C

st

(�) =

P

`

�

`=1

q

`

`

d

�

`

(�). In particular, one has:

q

ea

� lim

�!1

lim

t

w

!1

C(t

w

+ �; t

w

) =

L

X

`=`

�

q

`

`

d

: (43)

Assuming that

63

� / (T

g

� T )

!

, one thus �nds q

ea

/ (T

g

� T )

�

, with � = ((d� d

f

)!)=�.

Interestingly, as the temperature is decreased, there is an in�nite sequence of `glass tran-

sitions', where all the length scales (in decreasing order) are progressively driven out of

equilibrium.

� Conclusion

Although there is still a lot of work to do to clarify the above picture and make it

consistent, the idea of modelling the dynamics of a complex system through the motion

of a point `particle' in a random potential is fruitful, and actually used in many di�erent

contexts (structural glasses, protein folding, etc.

85

). The aim of the present Section was to

show that such models can naturally lead to aging. Actually, the next Sections, devoted

to an analytical study of some mean-�eld models of spin glasses (which can also be seen

as models of di�usion in a random potential) will share many similarities and important

di�erences with the above discussion.

3 Mean-�eld models of aging: analytical results

It took several years to realize that mean-�eld models of spin-glasses, endowed with a

suitable relaxational dynamics (usually Langevin, though Glauber is also possible), actually

do capture some aging phenomena in the glassy phase

49;41;29

. They thus provide a set of

microscopical models where glassy dynamics and aging e�ects can be studied analytically.

This Section will summarize the main results obtained in the recent years on these mean-

�eld models, which have been most valuable in clarifying some of the basic theoretical issues

described in the Introduction. The relation between these models and �nite dimensional

systems is still very much a matter of debate; we shall however postpone this discussion to

Section 3.8 and the Conclusion.

The basic simpli�cation occuring in mean-�eld models is that, after averaging over the

disorder and making the number of spins large (N ! 1), one obtains a set of closed

equations for the two-time correlation and response functions, from which the energy and

magnetization can also be calculated. As we discuss below, these equations imply the exis-

tence of a critical temperature T

c

, below which aging e�ects appear, and the fdt is violated.

On the other hand above T

c

, the same equations allow for a tti solution, compatible with

fdt.
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Most mean-�eld dynamics studied so far have focused on models which belong to the

following family of spin glass Hamiltonians, describing the interactions of N continuous

spins �

i

, i = 1:::N :

E(f�g) =

1

X

r=1

F

r

X

i

1

<i

2

;:::<i

r+1

J

i

1

;i

2

;:::;i

r+1

�

i

1

:::�

i

r+1

(44)

where the J

i

1

;i

2

;:::;i

r+1

are random Gaussian variables with variance N

�r�1

. Di�erent choices

of F

r

lead to di�erent models.

A quartic spin weight term can be added in order to make a `soft' version of Ising spins,

or one can consider a spherical version, i.e.

P

i

�

2

i

= N . A popular choice is the p-spin

spherical model

105

de�ned by F

r

= g�

r+1;p

, plus a spherical constraint. In what follows we

shall mainly use as an example the spherical (or Gaussian) versions. The same model (44)

can also be seen as the potential energy of a point particle in a random potential, where the

�

i

's are the coordinate of the particle's position in a N dimensional space

106

. In this case,

the energy is a Gaussian random potential, the correlations of which are related to the F

r

's

as

E(f�g)E(f�

0

g) = NV

 

1

N

X

i

�

i

�

0

i

!

V(x) =

1

X

r=1

F

2

r

(r + 1)!

x

r+1

(45)

where the overline means an average over the quenched disorder.

We shall in the following consider the dynamics to be modeled by a Langevin equation:

d�

i

dt

= ��(t)�

i

�

@E

@�

i

+ �

i

(t) + h

i

(t) (46)

where the white noises �

i

are mutually independent and of variance 2T , and h

i

(t) is a

time dependent external �eld. The `mass' term �(t) is incorporated in order to enforce the

spherical constraint each time, or to model the presence of an harmonic potential in the

case of a particle in a random potential, but may be set to zero in other cases.

The correlations and response are de�ned as:

C(t; t

0

) =

1

N

N

X

i=1

h�

i

(t)�

i

(t

0

)i ; R(t; t

0

) =

1

N

N

X

i=1

�h�

i

(t)i

�h

i

(t

0

)

�

�

�

�

�

h

i

=0

(47)

where the braces mean average over the thermal noises �. There exist by now well estab-

lished methods in order to obtain the equations of motion for these systems in the large

N limit (time being kept �nite). The best known is to introduce a dynamical �eld theory

partition function, average over disorder the partition function by using the fact that it is

normalised

107

, and compute it for large N by a saddle point method. This is the route

which was followed originally by Sompolinsky and Zippelius

8;9

. An alternative derivation

uses the cavity method. We refer the reader to the original papers or to more recent text-

books

4;6

, and rather focus on the solution of these equations. Starting the dynamics at

time t = 0 from a random con�guration (chosen with a uniform distribution in con�guration
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space, corresponding to a quench from in�nite temperatures) the dynamical equations for

the spherical or the Gaussian case are found to be

@C(t; t

0

)

@t

= ��(t)C(t; t

0

) + 2T R(t

0

; t)

+

Z

t

0

0

ds D(t; s) R(t

0

; s) +

Z

t

0

ds �(t; s) C(s; t

0

) ; (48)

@R(t; t

0

)

@t

= ��(t)R(t; t

0

) + �(t� t

0

) +

Z

t

t

0

ds �(t; s) R(s; t

0

) ; (49)

where

�(t; t

0

) � R(t; t

0

)V

00

[C(t; t

0

)] ;

D(t; t

0

) � V

0

[C(t; t

0

)] : (50)

It is worth keeping in mind the limitations of the present approach. For example, the simple

form for �; D in terms of C;R is a peculiarity of this class of models. More complicated

forms in which �(t; t

0

); D(t; t

0

) are functionals of C;R (with integrals involving C and R at

intermediate times) rather than ordinary functions are obtained, for example, in the case of

the Sherrington-Kirkpatrick model. So long as the functional dependency is only on C;R,

one may however expect that they can be treated with the same methods. On the other

hand, as soon as one introduces a Hamiltonian with a �nite number of neighbours per spin

(even for mean-�eld-like Hamiltonian such as Bethe lattice, or random lattice systems), the

dynamical equations do not close on the two point correlation and response. One must

then introduce a whole hierarchy of k point correlations and responses, which has not been

investigated yet.

3.1 Self-averageness and `universality'

Equations (48), (49) and (50) are exact in the large N limit | for times that do not diverge

with N . Furthermore, one can show using the same methods by which they are derived,

that the correlations and responses are self-averaging with respect to both the thermal noise

and the realization of disorder, again for times that do not diverge with N . Hence, we could

well have omitted the braces and the overbar in Eq. (47). Non self-averageness in certain

macroscopic quantities appears only for times that diverge with the system size, and in

particular within the equilibrium Gibbs-Boltzmann measure.

The insensitivity of dynamics with respect to the realisation of disorder is probably

intimately related to the fact, discussed in the next Section, that certain models without

quenched disorder show very similar out of equilibrium behaviour, and hence can be studied

by considering them as disordered. The correspondence between the random and non-

random version might however break down for (divergent) times when non-self averaging

features appear.
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Figure 6: The response R(t; t

0

) versus t

0

� t at high temperatures T = 1 > T

c

for four total times t =

t

1

; t

2

; t

3

; t

4

. The curves were obtained from a numerical resolution of the dynamical equations (48), (49)

and (50) in a p = 3 spherical spin glass. All four curves merge into one, R(t; t

0

) = R(t� t

0

). In the inset,

~�(t; t

0

) = ~�(t� t

0

) vs. C(t; t

0

) = C(t� t

0

), fdt is satis�ed and the slope is just �1=T .

3.2 The high temperature phase: two types of spin glasses

One expects that the above spin glass models converge fast towards a paramagnetic equilib-

rium phase at high enough temperatures, where the system has no long-term memory and

obeys tti and fdt. This can be seen nicely from a numerical study of the dynamical equa-

tions at relatively short times, which will also be useful to identify the qualitative behaviour

at low temperatures. In order to study the memory of the system, we plot the response

functions R(t; t

0

) versus t

0

� t at di�erent values of time t, t = t

1

; t

2

; t

3

; t

4

. (These curves

were obtained numerically from the model model de�ned in Eq.(44) with only F

2

6= 0. A

simple numerical procedure consists in discretizing time evenly and iterating the dynamical

equations which are causal. With some extrapolation procedure on the mesh of the grid

one can reach safely times of order 1000

44

.)

Figure 6 shows that the response at high temperatures does not extend to the distant

past and that it depends only on time di�erences. The system achieves equilibrium after

a transient, and eventually forgets the origin of times. Actually, the correlation function is

also tti. Finally, the ~� vs. C plot (see Section 1.3) is a straight line of slope �1=T for all

values of C (see the inset in Fig. 6) showing that fdt is satis�ed.

Turning now to the analytical treatment of the equation, it is easy to show that if tti

holds (i.e. if the two unknown functions of two variables C(t

w

+ �; t

w

) and R(t

w

+ �; t

w

)

actually depend only on �), then the second equation (49) is a consequence of the �rst (48)

provided the fdt is satis�ed. We are thus left with a single function C(�) in Eq. (48), and

the kernels � and D are related by dD=d� = ��=T . Using the �nite extent of the memory
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we can safely send the initial time to �1, to obtain:

dC(�)

dt

= ��

1

C(�) +

1

T

Z

�

�1

d�

0

V

0

[C(� � �

0

)]

@C(�

0

)

@�

0

; C(� = 0) = 1 (51)

where

�

1

= �(t!1) � V

0

[1]=T : (52)

The above equation is valid as long as C(�) decays to zero in the long � limit.

Equation (51) is basically the general `schematic' Mode-Coupling equation for the den-

sity correlations in a supercooled liquid above the dynamical transition temperature intro-

duced by Leutheusser

16

, G�otze and others

17

as a model for the ideal glass transition. The

only di�erence lies in the fact that the Mode-Coupling equations also possess an `inertial'

term @

2

�

C(�). This coincidence will be further discussed in Section 4.4.

The behaviour of the solution to these equations when one lowers the temperature

depends upon the structure of the disorder, i.e. upon the function V . It turns out that

there are two broad classes of mean-�eld spin glasses, characterized by rather di�erent

behaviours. The point is that as one lowers the temperature, there appears a critical point

T

c

at which the decay behaviour of C(�) shows a marked change. For `discontinuous'

models, C(�) does no longer decay to zero, but rather to a �nite value q

ea

> 0 (which

is also called the non ergodicity parameter f in the context of glasses). For `continuous'

models, C(�) still decays to q

ea

= 0 at T

c

but with critical slowing down. Below T

c

, q

ea

grows continuously from zero

l

.

� `Discontinuous' models

The simplest prototype, which we discuss here, is the pure spherical p-spin model with

F

r

= g�

r+1;p

. Another example is provided by the problem of a particle in a random

potential with short range correlations, i.e. when V(x) decays su�ciently fast for large x's.

The solution, studied in Refs.[

17;108;109

] behaves as follows. Above the critical temper-

ature T

c

, the correlation C(�) decays to zero at large � . Slightly above T

c

, the correlation

already starts developing a plateau at C � q

ea

before eventually decaying to zero, as shown

in Fig. 7. The length of the plateau increases as a power law of T � T

c

when the temper-

ature gets closer to T

c

. The details of how C(�) �rst decays towards the plateau and then

departs from it has been one of the most studied aspect of the mct in the context of glass

forming liquids, since these features can be directly tested experimentally using a variety

of techniques. One �nds that:

C(�) � q

ea

+ c

a

�

�a

C

>

�

q

ea

;

C(�) � q

ea

� c

b

�

b

C

<

�

q

ea

;

(53)

where the exponents a; b are related by

�

2

[1 + b]

�[1 + 2b]

=

�

2

[1� a]

�[1� 2a]

=

T

c

2

V

000

(q

ea

)

(V

00

(q

ea

))

3=2

: (54)

l

These two types are also called, respectively, A and B in the context of the Mode Coupling theory

17

.

One should keep in mind that we speak here of dynamical phase transitions, and this terminology is not

related to the Ehrenfest classi�cation of equilibrium phase transitions.
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Figure 7: The correlation for the same model as in Fig. 6 at high temperatures close to the transition T

>

� T

c

Clearly, the equilibration time for a system that is quenched to T > T

c

is at least as large as

the time of the plateau �(T ). A formulation in terms of time-di�erences (52) is thus valid

only when the waiting time is much larger than the �-relaxation time �(T ). For times that

are smaller than �(T ), one has to go back to the two-time equations | this will be the case

throughout the low-temperature phase.

� `Continuous' models

The class of `continuous' spin glasses contains the more usual case of the sk model

8

(which is however not described by an equation of the type (51)). Among the systems we

are discussing is the case of a particle in a long-range correlated random potential

110

(V(x)

decaying as a power law), or some spin systems such as a mixture between p = 2 and p = 4

interactions

111

: F

r

= g�

r+1;2

+ g

0

�

r+1;4

.

Again there is a critical temperature T

c

above which the correlation C(�) decays to

zero at large � . The main di�erence with the previous case is the absence of the plateau

structure around q

ea

for T slightly above T

c

, which is obviously related to the fact that in

this case the Edwards-Anderson order parameter departs continuously from zero when one

decreases the temperature through T

c

.

3.3 Low temperatures: Weak long term memory and weak ergodicity breaking

Let us now discuss what happens below T

c

. Again, we �rst show the numerical solution

of the full causal dynamical equations (48), (49) and (50), and look at the same plot as
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Figure 8: The response R(t

i

; t

0

) in terms of t

0

� t

i

at a low temperature T < T

c

for the same model as in

Fig.6. For each curve t

i

is t

1

= 100, t

2

= 200, t

3

= 300, t

4

= 400, respectively. `Quench' corresponds to

t

0

= 0 while `present' to t

0

= t

i

.

before, namely the response functions R(t; t

0

) versus t

0

� t, for di�erent values of time t,

t = t

1

; t

2

; t

3

; t

4

. Figure 8 shows that:

{ The system has a strong response to pertubations in the immediate past that is quite

similar to the high temperature response.

{ However, a long tail extending down to the quench time t

0

= 0 has now appeared.

The total area under the response curves,

R

t

0

dsR(t; s) approaches at large times a �nite

limit, which is equal to the linear susceptibility ~� to a constant �eld. Part of this area is

already given by the peak to the right of Fig. 8, which is the high-frequency, stationary

contribution to the susceptibility. It turns out however that the area below the long-time

tail also gives a non-zero contribution { the memory to the distant past is substantial and

can never be neglected:

8t

�

lim

t!1

Z

t

t�t

�

dsR(t; s) < lim

t!1

Z

t

0

dsR(t; s) : (55)

This can be hinted from the simulations. As we shall see, it can also be derived from the

dynamical equations.

At this stage it would seem that in order to solve for the correlations and responses at

large times we need to know the complete solution at all times, because the memory kernels

(which involve the response) have nontrivial contributions from all the past. If this were

the case, the problem of �nding an asymptotic solution for long times would be hopeless

from the analytical point of view!
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Figure 9: The correlation function C(t
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0

) vs t
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i

at low temperatures for the same model as in Figs 6

and 8. From left to right t

i

= 400; 200; 100; 50.

Fortunately, something remarkable happens within the models considered here: even

though the area under the long-time tails of the response remains �nite, the height of the

tails themselves tend to zero as we consider larger times. More precisely, the integrated

response at time t to a signal between the initial time s = 0 and any �nite time s = t

�

tends

to zero at large t:

lim

t!1

Z

t

�

0

dsR(t; s) = 0 (56)

for any �xed t

�

. The same can be said about the integral of R � G where G is any �nite

function, such as the memory kernel �. This behaviour was described as `weak long term

memory' in Ref. [

41

]: the memory tends to be `weak' for any �nite interval of the past,

but is strong when integrated over the whole past

m

. This is close in spirit to the `weak

ergodicity breaking' property de�ned in Section (1.4): a perturbation lasting for any �nite

duration will eventually be forgotten. Therefore the long time dynamics will decouple from

the initial (non universal, and out of control) transients.

The evolution of the two-time correlation function also has (at least) two distinct

regimes, as shown in Figs. 9 and 10. For times such that � = t � t

0

is small all curves

merge and one has tti. (These are times close to `present' in Fig. 9 and to the left in Fig.

10.) The corresponding decay is `fast' (see footnote

b

above) in the regime where C drops

from 1 at equal times to the plateau value q

ea

, de�ned in Eq.(6). However, when C decays

m

Not every system will satisfy this condition; on the contrary, systems that remember their initial

transients are much harder to treat and how to deal with their dynamics is still a fully open problem.
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below q

ea

it does it in a manner which depends on both t and � . This subsequent decay is

`slow'.

This suggests (and the analytical calculation later con�rms) that one can perform, for

both the correlation and response functions, a decomposition into a stationary and an aging

part, similar to the one introduced above for the description of aging experiments (see Figs.

1 and 2):

R(t

w

+ �; t

w

) = R

ag

(t

w

+ �; t

w

) +R

st

(�) ;

C(t

w

+ �; t

w

) = C

ag

(t

w

+ �; t

w

) + C

st

(�) : (57)

De�ning as in Eq.(6) the Edwards-Anderson order parameter: q

ea

= lim

�!1

lim

t

w

!1

C(t

w

+ �; t

w

), the stationary (and thus the aging) parts are de�ned by:

C

st

(�) � lim

t

w

!1

C(t

w

+ �; t

w

)� q

ea

R

st

(�) � lim

t

w

!1

R(t

w

+ �; t

w

) (58)

It turns out that the stationary parts, which are by de�nition tti, also satisfy the fdt,

R

st

(�) = �

1

T

dC

st

(�)=d� . Finally, note that the above de�nitions imply:

lim

t

w

!1

C

ag

(t

w

+ �; t

w

) = q

ea

lim

t

w

!1

R

ag

(t

w

+ �; t

w

) = 0

lim

�!1

C

st

(�) = 0 C

st

(0) = 1� q

ea

lim

�!1

R

st

(�) = 0 R

st

(0) = 1

(59)

3.4 Low temperature solution of the dynamical equations

� General strategy.

An asymptotic solution to the dynamical equations was �rst found in Ref. [

41

] in the

p-spin spherical model and then generalised to various situations

42�45;112;51

. It has been

described in detail in several papers

43;45;51

. We restrict here to the essential assumptions

and the main ideas allowing one to �nd the low temperature solution of the dynamical

equations (48) and (49).

The solution strongly relies on the weak long term memory assumption. It is asymptotic

in the sense that it holds only at large times t

w

: the transient e�ects are much more

complicated, and have not been studied yet. The method of solution we shall outline here

only determines the time-dependences in the aging regime up to a reparametrization in time

t! h(t). Thus, one obtains a family of solutions for the aging part, related to one another

by time reparametrisations:

C

ag

(t; t

0

)! C

ag

(h(t); h(t

0

)) R

ag

(t; t

0

)!

�

dh(t

0

)

dt

0

�

R

ag

(h(t); h(t

0

)) : (60)

(Note that the presence of the factor dh(t

0

)=dt

0

comes from the fact that it is the integral of

R over time, rather than R itself, which is the physical quantity). The `selection problem'
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of determining the actual function h chosen by the system is still an open one that requires

the matching of the regimes of short and long time di�erences.

The starting step consists in proposing asymptotic forms for the aging part of the

correlation function in the two-time plane valid for large t

w

+ � and � . As we mentioned in

(1.2), a possible form for the correlation is:

C

ag

(t

w

+ �; t

w

) �

X

i

C

i

�

h

i

(t

w

)

h

i

(t

w

+ �)

�

(61)

where each term will vary in separate time sectors, de�ned by taking the times to in�nity

with 0 < h

i

(t

w

)=h

i

(t

w

+ �) < 1 (see Eq.(10)). The asymptotic form of the correlation is

given then by the knowledge of C

i

and h

i

. This form is meant to represent the correlation

only in the limit of large times, and it need not be unique. One may wonder whether it

exhausts all possibilities.

This question can be answered with the following construction

43

. Consider the con-

�gurations at three large times t

min

� t

int

� t

max

, and the corresponding correlations

C(t

max

; t

min

), C(t

max

; t

int

) and C(t

int

; t

min

). Using the fact that the correlations decrease

with time-separations, one can show that in the limit of large times the three correlations

must be related by

C(t

max

; t

min

) = f [C(t

max

; t

int

); C(t

int

; t

min

)] (62)

where the function f de�nes the geometry of the triangles described by the trajectory of the

system in phase space. Now, it is easy to see that f is an associative function, and one can

classify all the possible forms of an associative, monotonical function

43

using elementary

group theory.

This in turn leads to a classi�cation of all the possible two-time scalings as follows. One

considers the special (�xed point) values of the correlation q

0

; q

1

; : : : ; q

k

� q

ea

; q

k+1

�

C(t; t) de�ned by f(q

i

; q

i

) = q

i

. If the number of �xed points is �nite, one can prove

that the correlation can be written for large times as (61) with q

i

=

P

j<i

C

j

(1). The in-

termediate values of correlation between two �xed points constitute a `correlation scale',

within which only one term of (61) is non-constant. Triangles whose sides belong to dif-

ferent scales (e.g. C(t

max

; t

int

) < q

i

, C(t

int

; t

min

) > q

i

) are isosceles with C(t

max

; t

min

) =

min[C(t

max

; t

int

); C(t

int

; t

min

)]: there is ultrametricity

113

between correlation scales. It

may also happen that the �xed points q

i

form a continuum within a certain range (q

a

; q

b

).

In that case we have, for any two correlations within this range:

C(t

max

; t

min

) = min[C(t

max

; t

int

); C(t

int

; t

min

)] as t

min

!1 : (63)

Correspondingly, the correlation has to be represented in that case as a limit of a continuous

sum of in�nitely many scaling functions C

i

with vanishing weight. Note that the above

construction does not rely on any concrete model and is not restricted to mean-�eld.

It is interesting to see that this form of ultrametricity in the correlations appears

in a very natural way within out of equilibrium dynamics. It is already present in the

simplest form in the case of domain growth: if we consider three very large times such
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that C(t

max

; t

int

) > m

2

and C(t

int

; t

min

) < m

2

(where m is the magnetization), then

C(t

max

; t

min

) = min[C(t

max

; t

int

); C(t

int

; t

min

)]. Ultrametricity between correlations larger

and smaller than m

2

expresses the fact that the time scale corresponding to relaxation due

to domain wall motion becomes in�nitely larger than the one corresponding to thermal


uctuations within each domain. It is however not clear that there are �nite dimensional

models for which a `full' ultrametric form (63) holds for any two values of the correlations.

Having discussed the possible asymptotic forms of the correlations, the next step is to

make an Ansatz for the response function. One can write without loss of generality:

R(t; t

0

) =

X(t; t

0

)

T

@C(t; t

0

)

@t

0

(64)

(t � t

0

). The Ansatz now consists in proposing that for large t; t

0

, X only depends on time

through C:

X(t; t

0

) = X [C(t; t

0

)] (65)

or, in other words, that the parametric plots ~� vs C in Section 1.3 converge to a limit

curve as t

w

! 1. The asymptotic form for the response is thus obtained from that of

the correlation through the introduction of a certain function X [C]. At this point one

substitutes the above Ans�atze for the correlation and response functions into the dynamical

equations. In this way one determines

i) X [C] (which contains the information on aging of the response) and

ii) f , or, equivalently, the number of terms in (61) and the respective C

i

.

iii) One should in principle also obtain the h

i

, but this requires to solve the selection

problem discussed above.

The corresponding computations can be rather lengthy. We shall not detail them here,

but rather present the results obtained when one applies this technique to the mean-�eld

models considered above.

� The case of discontinuous models.

For low temperatures T < T

c

the correlation is given by Eq.(61) with only one aging

sector (i.e. one function h(t)) plus the tti scale. It reads

C(t

w

+ �; t

w

) = C

st

(�) + C

ag

�

h(t

w

)

h(t

w

+ �)

�

: (66)

The memory properties of the system are controlled by X [C], which takes a particularly

simple form:

X [C] = 1 for C > q

ea

(fdt)

X [C] = X < 1 for C < q

ea

: (67)

X is a positive, temperature-dependent number, constant throughout the aging regime.

The fact that X is constant is not assumed a priori, but comes out from the equations of

motion. A possible explanation for this fact is found when interpreting T

eff

= T=X as
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an `aging temperature': it means that degrees of freedom of comparable frequencies are

mutually thermalised

48

. Note that at the glass transition, the aging temperature is equal

to the bath temperature. The ratio T

eff

=T increases with decreasing bath temperature; in

particular, T

eff

remains non-zero at zero bath temperature.

The behaviour of the correlation around the plateau q

ea

provides the low-temperature

extension of the one already encountered at high temperatures. Taking the limit of large

t

w

before taking the limit of large � one only explores the approach of the correlation to

the plateau q

ea

. This decay is still given by a power law characterised by a temperature-

dependent exponent a, as was the case for T > T

c

. However, the subsequent departure from

q

ea

is t

w

-dependent and characterized

45

by another temperature-dependent exponent b:

C(t

w

+ �; t

w

) � q

ea

+ c

a

�

�a

C

>

�

q

ea

C(t

w

+ �; t

w

) � q

ea

� c

b

�

�

T

w

�

b

C

<

�

q

ea

(68)

where T

w

is an e�ective waiting time, de�ned as T

w

= h(t

w

)=h

0

(t

w

). (In the case in which

h(t) is a simple power law, one has T

w

/ t

w

.) The exponents a; b have precisely the same

meaning as the exponents a; b de�ned in Section (1.1), and are in this case related by

X

�

2

[1 + b]

�[1 + 2b]

=

�

2

[1� a]

�[1� 2a]

=

T

2

V

000

(q

ea

)

(V

00

(q

ea

))

3=2

(69)

with q

ea

given by Eq.(6).

� The case of continuous models.

As regards the temporal behaviour of the correlations in the stationary regime, the

approach to the plateau at q

ea

is also given by a power law with a temperature-dependent

exponent a. The situation within the aging regime is however more complicated than in the

case of discontinuous models. The aging part of the correlations satisfy the full ultrametric

triangle relations (63):

f(C

1

; C

2

) = min[C

1

; C

2

] (70)

if at least one of C

1

; C

2

is smaller than q

ea

. A representation like (68) for the escape from

the plateau is not possible for these models unless one makes the exponent b waiting-time

dependent.

For purely continuous models the function X [C] is not a constant and, remarkably,

coincides with the function x(q) in the replica treatment of equilibrium

n

. This and other

coincidences between out of equilibrium dynamics and statics of continuous models have

escaped any kind of physical understanding so far. (For some recent work in this direction,

see Ref. [

31

].)

n

The dynamical X[C] is much easier to obtain numerically than its static counterpart because one does

not have to equilibrate. The numerical con�rmation of the analytical form of X[C] for the sk model is

astonishingly good

114;115

.
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3.5 Generalization to several coupled modes | the case of spatial dependence

New physical insights appear when we consider the generalization to several coupled models,

and, in particular, to mean-�eld cases in which there is also spatial dependence. In such

cases we have to deal with several correlations C

k;k

0
(t; t

0

) and responses R

k;k

0
(t; t

0

), where

the indices k; k

0

refer to di�erent modes, for example they can represent spatial positions

x

k

or Fourier components.

The construction of an Ansatz proceeds as before

112

. One has to add now a prescrip-

tion for the long-times relationship between di�erent correlations. Choosing one particular

correlation function C

0;0

as an e�ective `clock', one may look for solutions of the form:

C

k;k

0

(t; t

0

) = F

k;k

0

[C

0;0

(t; t

0

)] (71)

with F

k;k

0

to be determined. One also introduces the 
uctuation-dissipation violation factors

de�ned by

R

k;k

0

(t; t

0

) =

X

k;k

0
[C

k;k

0
(t; t

0

)]

T

@C

k;k

0

@t

0

: (72)

Interestingly, it turns out that the Ansatz closes with two extreme possibilities:

i) X

k;k

0

6= 0 for k 6= k

0

, and X

k;k

= X

k

0

;k

0

at equal times;

ii) X

k;k

0
! 0 for k 6= k

0

, and X

k;k

; X

k

0

;k

0
possibly di�erent.

This can be understood as a property of partial thermalisation

48

: remembering that

T

k

� T=X

k;k

is an e�ective temperature, in the case i) the subsystems have T

k

= T

k

0
at

corresponding time scales, while in case ii) the subsystems have zero cross response and T

k

may be di�erent from T

k

0

.

A mean-�eld case with many modes is obtained when one studies the dynamics of a

random manifold in a disordered medium within the Hartree approximation

112

. One has

all the time scalings described so far for each mode k, plus dynamical scalings in terms of

k and times. It turns out that a solution satisfying (71) and (72) appears naturally in that

case.

3.6 Speculations on the `e�ective' age function h(t)

Although the above solution describes some general features of the low temperature, aging

regime of mean-�eld spin glass models, it is still, even in the simpler discontinuous case,

incomplete. As mentioned above, the dynamical equations become, in the asymptotic (t!

1) limit, invariant under any monotonous time reparametrisation t ! h(t). The function

h(t) can in principle only be determined through matching with the early (� � t

o

) solution,

or by a numerical solution of the two-time equations. For the spherical p-spin problem, the

latter procedure suggests that h(t) is close to a power-law

41

, in other words that the aging

part of the correlation function C(t

w

+ �; t

w

) is a function of the ratio �=t

w

. In principle,

h(t) could be any other function of time, for example:

h(t) = exp

"

1

1� �

�

t

t

o

�

1��

#

or h(t) = exp

�

log

�

(

t

t

o

)

�

(73)
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Figure 10: The correlation C(t

w

+ �; t

w

) as a function of � at a low temperature T < T

c

. t

w

is t

w

=

50; 100; 200, respectively.

in which case, the e�ective `age' T

w

appearing in, e.g. (68) is

T

w

�

h(t

w

)

h

0

(t

w

)

= t

�

w

t

1��

o

or

t

w

� log

��1

(

t

w

t

o

)

: (74)

Except in the cases � = 1 or � = 1, where h(t) = t=t

o

, these more complicated forms lead

to an explicit dependence of the e�ective age T

w

on the microscopic time scale t

o

. (More

precisely, when � < 1 (or � > 1), the e�ective age T

w

is much smaller than t

w

, a situation

called `subaging' in Ref.[

14

].)

The simplest scaling situation would be that the value of t

o

becomes irrelevant on the

experimental time scale where t

w

; � � t

o

. This would lead immediately to `full' aging,

T

w

/ t

w

. Naive scaling can however break down in some cases

116

, which means that the

value of t

o

is important even in the t

w

! 1 limit { in other words that the e�ective age

T

w

depends on t

o

. Such is the case of systems with logarithmic domain growth e.g. the

random �eld Ising models, where T

w

/ t

w

log(

t

w

t

o

) (`superaging'). Signs that subaging may

also happen in the mean-�eld models considered here can be found in

117

. We feel that the

determination of h is one major unsolved issue in mean-�eld dynamics. Correspondingly,

the same ambiguity remains from an experimental point of view: a detailed analysis of the

trm reveals small but systematic deviations from `full' aging. A scaling function h(t) of

the above form, with � = 0:97 or � � 2, does a better job at �tting the experiments

14

(see

Figs. 3.b and 3.c. in Ref.[

14

]). However, these deviations might alternatively be interpreted
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as being `interrupted aging' (i.e. equilibration in a long but �nite time) due to �nite �eld

10;118

or �nite size

49;119

e�ects.

At any rate, note that a pure �=t

w

behaviour would rule out the existence of many time

sectors with full ultrametricity, and would leave a scaling as in the discontinuous models as

the only possibility.

3.7 Out of equilibrium versus `equilibrium on diverging time scales'

Dynamical studies of mean-�eld spin glass models in their low temperature phase are not

new. They started more than 15 years ago with the work of Sompolinsky and Zippelius

8;9

and were subsequently applied to many other problems. The above description, which

focuses onto out of equilibrium dynamics, has followed a very di�erent route { which was

only found recently

41

. However, as all these works address similar issues, a comment on

their relationship is in order. For lack of space we shall not be able to present in any detail

the former approaches, but these are by now well documented

8;9;3;4;6

. We rather want to

stress the conceptual di�erences with the present approach.

Consider a mean-�eld spin glass model below T

c

. The two times dynamical equations

(48) and (49) are exact equations relating the correlation and response in the mean-�eld

models. They describe the behaviour of the system at times that do not diverge with N .

Even when speaking of `long times' within this framework, one really means:

lim

t;t

0

!1

lim

N!1

: (75)

Obviously for �nite N the spin glass will equilibrate in a �nite time. There exists an equili-

bration time t

erg

(N), such that for t

w

much larger than t

erg

(N) the system is equilibrated,

which means that the con�gurations are sampled with a frequency proportional to their

Boltzmann-Gibbs weight. The correlation and response then become time translational

invariant, and related by the fdt. At large N the equilibration time diverges.

The approach of Ref. [

9

] starts from the very same dynamical equations (48) and (49),

but one assumes that the size of the system is �nite and large. One also assumes that the

initial time of the dynamics has been sent to �1 and that tti holds. The corresponding

construction relies on the hypothesis that there exists a strong hierarchical structure of time

scales which all diverge with N . Calling t

x

these time scales, where x is an index chosen

for instance in [0; 1], the hierarchy means

lim

N!1

t

x

=1; lim

N!1

t

x

t

y

=1 if x < y : (76)

The largest of these time scales thus corresponds to the equilibration time t

erg

.

This allows to produce a solution to the dynamical equations which exhibits a non-trivial

dynamics within each diverging time scale t

x

. This dynamics exhibits tti, as assumed

from the beginning, but it violates the fdt. This astute solution presents several formal

similarities with the static solution of Parisi (and also with the out of equilibrium study),

starting with the hierarchical structure, which acquires an appealing interpretation in terms

of diverging time scales. However it su�ers from several problems. At the level of the
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results �rst: the correlation function C(�), at very large times � > t

erg

, does not go to the

correct Boltzmann Gibbs equilibrium value, known from the static studies. This is clearly

inconsistent. A careful study of their derivation reveals two weak points.

First, there is an inconsistency in the hypotheses. If the initial time has been sent to

�1, for a �nite N system, then it is fully equilibrated, and then the dynamics is necessarily

tti and obeys fdt. Otherwise (if the waiting time is much smaller than t

erg

) there is no

reason to assume either tti or fdt.

Second, this approach uses the dynamical equations derived within the N !1 theory,

for a �nite system where activated processes take place. Even though large N saddle-point

approaches can be used to study activated processes that occur for large but �nite N , there

are subtleties related to the existence of multiple solutions. The multiplicity of solutions is

related to the fact that the results at times greater than t

erg

should be non-self averaging,

as the replica solution shows

120

.

Because of these problems, which created many discussions

121;122;123;5

, there have been

various attempts in the litterature to try to amend this solution, while keeping most of its

nice mathematical structure. One possibility, �rst suggested by Horner

122

and developed

in Ref.[

123

], is to keep the cooling rate �nite. This allows to send the volume to in�nity

while keeping a regularization time scale which is the inverse cooling rate, which is sent to

in�nity in the end. What happens once the cooling procedure is over is still not clear in this

approach. On the other hand, Horner

124

proposed an alternative `regularizing' procedure

which consists in making the disorder time-dependent. In this way, aging disappears, the

solution is tti and manifestly out of equilibrium.

We believe that the present out of equilibrium dynamical approach, inspired by the

experiments themselves, is very clear. It is seen to work consistently within the �nite time,

in�nite N regime (75). The price to pay is that one has to abandon the postulate of tti,

and think in the two times plane. In a vague sense, there is also a regularization time which

is involved, namely the age of the system.

Finally we want to point out that in all the approaches developed so far to study the

spin glass phase at the mean-�eld level, there is a hierarchical (ultrametric) structure which

is involved. This is true in the statics where it is hidden in Parisi's Ansatz. It is also true

in the `dynamics on diverging time scale' approach where it appears in the hypothesis of

strong time hierarchy (76). In the out of equilibrium dynamical approach, the situations is

rather more favourable in that ultrametricity can be proven with mild assumptions (see 3.4

above).

3.8 On the links between the static and dynamical approaches. Phase space geometry

In an in�nite system, there is no reason for the out of equilibrium dynamics to be related

to the static, equilibrium picture. Indeed as we saw, the dynamics refer to �nite time scales

(when N ! 1), while the static properties are only recovered in the opposite, non-physical

limit

o

. Yet it is instructive to compare the results of the two approaches. It allows to gain

some intuition on the physical mechanism at the origin of aging. It further underlines the

o

The divergence of t

erg

at large N is known to be of the type t

erg

� exp(N

�

).
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physical di�erence between the low-temperature behaviour of the two classes of mean-�eld

spin-glasses.

In continuous spin-glasses one gets the natural result that the dynamical transition

temperature T

c

coincides with the static critical temperature corresponding to the onset of

a non zero q

ea

and of replica symmetry breaking e�ects. Furthermore, the large time values

of one-time intensive quantities such as the energy density E(1) in the limit (75) coincide

with the value E

eq

found at equilibrium within the static (replica) approach.

In discontinuous spin-glasses the results are more surprising: the static transition tem-

perature T

s

is lower than the dynamic one

19;122

, T

s

< T

c

. In fact the static thermodynamic

quantities computed within the Boltzmann Gibbs equilibrium are perfectly analytic in the

neighborhood of the dynamical temperature T

c

, and conversely nothing special happens at

T

s

in the dynamics (75). Furthermore, throughout the low-temperature phase, the out of

equilibrium dynamical energy does not converge to the equilibrium one E

eq

. In fact it never

goes below a `threshold level'

41

E(1) � E

thres

> E

eq

.

� The energy landscape

A geometric explanation for this strange phenomenon can be found within the frame-

work of the static mean-�eld equations of Thouless, Anderson and Palmer (tap equations).

In the static limit it is possible to write a free energy F

tap

(m

1

; :::; m

N

) in terms of local

`magnetization' variables which represent the average value of a spin on a large time-window

(but the large N limit has to be taken �rst). The minima of this free energy correspond

to various metastable states; it is known that their weighted sum gives back the correct

equilibrium results

125

.

It is far from obvious in general that the dynamical evolution of a system can be seen as

the relaxation of a point in this free-energy landscape. Yet it is always possible to compute

the dynamical properties, such as the energy, and to see in what region of the landscape

the dynamics takes place. This actually provides interesting insights for discontinuous

spin-glasses. The most complete discussion is available for the case of the spherical p-spin

system. It turns out that the tap states can be computed rather easily in this case. The

reason is the absence of chaoticity: A tap solution at temperature T

1

can be followed

adiabatically when one changes the temperature to T

2

, the only change is a global rescaling

of the (m

1

; :::; m

N

). Once the free energies of the solutions are ordered at a temperature

T

1

, this order is maintained at all temperatures: there is no crossing of the solutions in

the temperature - free energy plane (see Fig. 11). Non-trivial tap solutions exist in a

wide range of temperatures, extending above the static transition temperature T

s

, and even

above the dynamic one T

c

.

Comparing this landscape to the results of the dynamics, the present understanding of

the situation is as follows

126;41;127

: above the dynamical temperature T

c

, there is a coexis-

tence of a paramagnetic state and a bunch of non trivial, but isolated, tap states. When the

dynamics starts from random initial conditions, the system thermalises within the param-

agnetic state. However if one chooses carefully the initial conditions, one can let the system

thermalize within one of the tap states, which are separate ergodic components

127

.
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Between T

s

and T

c

, the paramagnetic state is fractured into exponentially (in N) many

separate ergodic components, each of which has a higher free-energy compared to that of

the paramagnetic state, by an amount which is exactly equal to their overall con�gurational

entropy, called the `complexity'

20;129

. Correspondingly, the simplest static approach (see

below for more elaborate ones) does not notice this subtlety, and still describes the system as

a simple paramagnet. In the dynamical approach, starting from random initial conditions,

one �nds that the energy actually remains above the threshold level which is the energy of

the highest tap state (see Fig. 11). Therefore in the limit (75) the system never reaches the

energies where it would get forever trapped into one of the tap states. This is the origin of

weak ergodicity breaking in these models.

In the case of continuous spin-glasses the geometry of the tap landscape looks super�-

cially quite clear: while above the transition temperature T

s

= T

c

the free-energy has only

one minimum, it develops below T

c

exponentially many states, which matches nicely with

the Parisi picture. The identi�cation of the low lying tap minima, and of the pure states

in Parisi's construction to the dynamical ergodic components seems inevitable. The puzzle

of how to match this equilibrium picture with the out of equilibrium dynamics containing

in�nitely many time sectors is however completely open, as we already saw in the previous

Section. Surprisingly, many purely static quantities involving di�erent states (which are in

principle mutually inaccessible) coincide with their dynamical counterparts. In particular,

the large time values of one-time intensive quantities such as the energy density E(1) in

the limit (75) coincide with the values found at equilibrium within the static approach. This

means that the set of two dynamical equations (48) and (49) contain all the information

on the replica symmetry breaking solution of these systems at low temperatures (A careful

numerical check of this point can be found in Refs.[

42;44;114

]). Therefore the study of these

equations may provide an alternative route to a rigorous study of the spin glass phase.

� The geometrical description of mean-�eld aging.

The models we have been describing can be thought of as the motion of a point in

a high-dimensional phase-space landscape (to the extent that we deal with soft spins).

For discontinuous models, one �nds that, surprisingly, the e�ect of temperature on the

dynamics is very minor, provided that one stays within the low temperature phase. Indeed,

the solution of the equations is regular at T = 0: the dynamics at zero-temperature is

not very di�erent from the one at �nite temperature, T < T

c

. This at once tells us that

activated processes are not the main ingredient here. What is then the origin of aging in

mean-�eld models?

At T = 0, we simply have gradient descent within the basin of attraction of some

phase-space minimum, and we can discuss

128

the essence of the problem without having

to postulate a `free-energy landscape' with a dynamical meaning. Since the basins are

high dimensional objects, a random starting condition will be in the thermodynamical limit

practically on a border between basins, and hence will remain close to this border for all

�nite times without reaching a minimum. Now, the border is itself partitioned into basins

of attraction of the stable points on it, which are the saddles with one negative eigenvalue.
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The same argument as before tells us that, again, they will not reached in �nite times: the

system remains almost on the `border of a border'. One can now iterate this argument,

invoking borders within borders and saddles of higher (but smaller than O(N)) indices.

The conclusion is that high dimensional (phase-space) wells take long to fall into. In

this sense, the above `endless descent' scenario concerns equally the motion of a mean-

�eld system within a basin of attraction and the `fall' of a ferromagnet (in any spatial

dimension) into one of its two `wells'. Indeed, both ordinary coarsening and mean-�eld

aging are reminiscent of the phase-space model described

84;101

in Section 2, in which aging

is due to the fact that downhill directions are always present, although in decreasing number

as time grows. What we have described so far is the fact that a macroscopically di�erent

phase takes an in�nite time to grow in the absence of a driving �eld, a fact that when looked

upon from the phase-space point of view is recognized to hold even at the mean-�eld level.

At �nite temperature one cannot invoke a simple gradient descent, but one can still

use the tap free-energy to understand why the (N = 1) system ages and never falls

below the threshold level

41

. The above discussion can be reformulated as follows: the

density of eigenvalues of the matrix of second derivatives in each tap minimum is a shifted

semicircle law. The smallest eigenvalue �

min

(F ) decreases as one considers minima with

higher F , and becomes zero precisely for those with F = F

thres

. Above the threshold, the

spectrum for the saddle points continues to shift, with now �

min

< 0, so that one encounters

saddles with more and more negative eigenvalues. If one makes a cut of the free energy

landscape at di�erent values of F , one obtains disconnected `islands' around each minimum

for F < F

thres

. As one raises F just above F

thres

one crosses saddles with larger and larger

number of negative eigenvalues. Each time, a separatrix develops and the set of mutually

disconnected components becomes more and more connected. One can then picture the

(N =1) aging system as falling in more and more disconnected space, hence moving more

and more slowly { without ever quite stopping, since there are always directions where the

free-energy decreases (while staying above threshold)

p

.

Again, even at �nite temperature this scenario is rather distinct from the `trap' picture

of Section 2: Because N is in�nite (and the model is fully connected) the system never

reaches the bottom of a trap from which it could only escape through thermal activation.

For �nite N , however, activated processes will begin to play a crucial role after a �nite

amount of time (see Section 5).

� The `marginal stability' criterion.

Finally, we would like to mention the possibility of identifying the dynamical transition

temperature from purely static computations. This is very useful since static calculations

are generally easier than dynamical ones, in particular when one deals with discrete spin

variables.

In continuous spin-glasses, the clearest mathematical characterization of the onset of

the static transition is to consider two identical copies of the system with the same disorder,

coupled through a small, but extensive, coupling term of strength proportional to g. For

p

This is similar to the idea of `percolation' in phase space, investigated in Refs. [

82;83

]
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Figure 11: A sketch of the free energy of the tap states in the spherical p-spin systems. Each tap state

like (2) or (4) can be followed adiabatically in temperature until it disappears. The line (1) is the static

equilibrium free energy, taking into account the multiplicity of the tap solutions. (5) shows the free energy

of the tap states giving the leading contribution to the static equilibrium partition function. The highest

tap states (3) are marginally stable and provide the threshold energy: In its dynamical evolution, the energy

of a system starting from random initial conditions stays above this threshold.

instance in the Edwards-Anderson model, one can compute the partition function Z

2

for

two spin systems s and �, coupled through their local energy densities

130

:

H

2

= �

X

(ij)

J

ij

(s

i

s

j

+ �

i

�

j

)� g

X

(ij)

(J

ij

s

i

s

j

)(J

ij

�

i

�

j

) (77)

The system is in its low temperature phase when the overlap between the two copies (de�ned

as �1=(�N)@ log(Z

2

)=@g) is discontinuous at g ! 0. When g ! 0

+

this overlap tends to

the Edwards-Anderson order parameter, while when g ! 0

�

, it is the smallest possible

overlap between di�erent states.

In the case of discontinuous spin-glass transitions this construction must be modi�ed

because of the existence of exponentially many tap states. Roughly speaking the partition

function can be approximated as

Z =

X

�

e

��F

�

=

Z

dfe

N(S

c

(f)��f)

(78)

where � labels various tap states, f = F=N are the free energy densities, and exp(N S

c

(f)),

usually called the complexity, is the number of tap states at a given free energy density.

The large degeneracy of tap states shifts the dominant region of free energies in the integral

(78). If one took two copies of the system with a small extensive attraction as in (77), the
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leading contribution to Z

2

should come from the case where the two spin systems are in

the same state. However, this leads to Z

2

(g! 0

+

) '

R

dfe

N(S

c

(f)�2�f)

which is dominated

by a wrong saddle point in f . Therefore, in this case, one must be more clever and study

instead m identical copies of the system in the formal limit m ! 1 (in which case, the

correct saddle point in f will be recovered). The onset of a non-ergodic phase with many

components (and thus the value of the dynamical transition temperature T

c

), is signalled

by the existence of a non-trivial limit for the order parameter, which is now the overlap

of any two of these m copies in the carefully ordered limit lim

m!1

lim

g!0

+ lim

N!1

. (In

a replica language what one needs to compute is the free energy within the `one step rsb'

Ansatz, where the n replicas are grouped into n=m groups of m replicas, an then expand

the resulting free energy at n = 0 around the point m = 1: F = F

0

+ (1�m)F

1

. One then

studies whether the piece F

1

has a non trivial saddle point in the overlap.)

For technical reasons which we shall not explain here, this criterion is known under the

name of `marginal stability'. It has been used in many instances for discontinuous spin-

glasses. An insightful interpretation due to Monasson

131

shows how this procedure amounts

to calculate a partition function restricted to a subset of con�gurations, chosen by a random

pinning �eld. A related approach

132

uses another technique to calculate a partition function

over a subset of con�gurations, where one starts from a typical con�guration at given energy

called the `pivot', and calculates the free energy�1=� log(Z

q

) associated to all con�gurations

at overlap q from the `pivot'. T

c

now appears as the temperature where this free-energy

develops a local minimum for q 6= 0.

4 Glasses and spin-glasses without disorder

As emphasized above, the Mode-Coupling equations which have been used with some suc-

cess in the recent years to describe supercooled liquids

17

formally coincide with the exact

equations describing some mean-�eld spin-glasses, or the motion of a point particle in a

random potential

18;133;134

(in large spatial dimension). This is a priori surprising in view

of striking di�erences between the behaviour and the basic constitutive ingredients of spin-

glasses on the one hand and structural glasses on the other hand. Let us mention a few

rather obvious ones:

{ In spin-glasses, there exists some quenched disorder (e.g. the random position of the

spin carrying atoms in spin-glasses, which do not move with time) which is absent in glass

forming liquids, where the disorder is, in a sense clari�ed below, `self-induced'.

{ The glass transition is a dynamical e�ect, basically de�ned as the temperature or den-

sity at which the relaxation times reaches the experimentally accessible order of magnitude

of hours. The existence of a true transition at lower temperatures is very controversial. In

spin-glasses, on the other hand, there exists some (experimental

75;15

and numerical

38

) evi-

dence in favour of the existence of a second order phase transition (at least in zero magnetic

�eld), with a power law divergence of the relaxation time and of the non-linear magnetic

susceptibility.

{ Another important di�erence is the existence of a crystalline phase in structural

glasses, which can in principle be reached in a very slow annealing procedure. This has no
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counterpart in spin-glasses.

In spite of these important di�erences, there has been recently an increasing convergence

between the two �elds, both at the theoretical level and experimentally, because of the

existence of an aging regime at low temperatures. This chapter will review some of these

points of convergence.

4.1 Phenomenology of glasses: a few basic facts

Many very di�erent glass formers exhibit surprisingly similar properties when approaching

the glass transition. The glass transition temperature itself is a purely conventional (and

somewhat anthropomorphic) temperature where the relaxation time reaches a value of the

order of 10

3

seconds. However a common experimental feature is the stretching and shoul-

dering of the relaxation (of, e.g. the density 
uctuations) as the temperature is decreased

17;86

towards T

g

. More precisely, the relaxation evolves from a simple Debye exponential at

high temperatures (liquid) to a two-step process at lower temperature (supercooled liquid),

where the correlation function �rst decays rather quickly to a `plateau', and later departs

from this plateau value on a much longer time scale �(T ). Correspondingly, the frequency

dependent susceptibility �

00

(!) evolves from a one peak, high frequency, structure to a two-

peak structure when the temperature is decreased. The second, low frequency peak (called

the `�-peak') shifts to lower and lower frequencies !

�

= 1=�(T ) as T is lowered; the shape of

the peak is furthermore strongly non-Debye, which re
ects the fact that the time relaxation

functions are non-exponential (and often �tted by stretched exponentials). The shape of

the minimum lying in-between these two peaks has been the focus of an intense interest

recently, essentially because one of the major predictions of mct is that, around a certain

temperature T

c

,

�

00

(!)

�

00

(!

min

)

/

8

<

:

�

!

min

!

�

b

! � !

min

;

�

!

!

min

�

a

! � !

min

;

where a and b are two (positive) exponents related through Eq. (54). This behaviour

re
ects, in frequency space, the behaviour of the correlation function C(�) represented in

Fig. 7 (see Eq. (53)).

The relaxation time �(T ) grows extremely fast as the temperature is decreased, in

general faster than the Arrhenius law exp(�=T ). Systems for which �(T ) are close to an

Arrhenius behaviour are called `strong', whereas systems for which the divergence is faster

are called `fragile'

86

. For the latter systems, a widely used description of the experimental

data (based on dielectric measurements, viscosity measurements, etc.) is the Vogel-Fulcher

law

�(T ) � t

o

e

�

T�T

0

(79)

which suggests that �(T ) actually diverges when T ! T

0

, i.e. that there is a true phase

transition at T = T

0

. This temperature furthermore appears to coincide with the tempera-

ture (called Kauzman temperature) at which the extrapolated excess entropy (as compared

to the crystal) would vanish. However, the divergence of �(T ) is so rapid that �(T ) becomes
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larger than experimental time scales at the glass temperature T

g

which is often apprecia-

bly larger than T

0

. Is is thus di�cult to claim the existence of a transition on the basis

of the �t of �(T ) only (see however

136

). In particular, other functional forms, such as

�(T ) � t

o

exp((�=T )

2

), also give reasonable �ts of the data

137

{ without invoking the

existence of a critical temperature where �(T ) would diverge

138

.

4.2 Discontinuous spin-glasses: a mean-�eld scenario for structural glasses

In order to understand better why some theoretical ideas emerging from spin-glass mean-

�eld theory might also be relevant for structural glasses, it is important to keep in mind the

fact that, as we already emphasized in Section 3, there exist two di�erent classes of mean-

�eld spin-glasses, continuous and discontinuous. While the most conventional { continuous {

ones provide a good starting point for the description of real spin-glasses, with a second-order

phase transition where the Edwards-Anderson order parameter vanishes, some discontinuous

models are characterized by a discontinuous static phase transition at a temperature T

s

,

where the order parameter is �nite just below T

s

. An extreme example of this type of

spin-glass ordering is provided by the Random Energy model

93

, which has zero entropy

density in the whole low temperature phase. There are in fact many other such examples

(see Section (3.2)). As discussed there, the discontinuous models generally possess a rather

peculiar dynamical behaviour, with a dynamical transition temperature T

c

which is higher

than the static one (and which coincides with the Mode-Coupling critical temperature).

When approaching T

c

from above, the relaxation time �(T ) diverges as a power law, but

there is no singularity in the static thermodynamic quantities, which are analytic around

T

c

(see Fig. 12). Thermodynamic singularities, including a jump in the speci�c heat,

only occur at the lower temperature, T

s

. As explained above (Section 3.8), this behaviour

originates from the fact that as soon as T < T

c

, the system starts aging for ever in a slow

descent towards a state with a free-energy extensively higher than the one of the equilibrium

state. Note that between T

s

and T

c

, the number of such metastable states is exponentially

large, the associated con�gurational entropy (the `complexity') being exactly equal to the

free energy di�erence between the metastable states and the equilibrium (paramagnetic)

state.

Such a scenario can however only exist, strictly speaking, at the mean-�eld level, where

nucleation barriers are in�nite. In �nite dimensional space, metastable states with a free

energy density larger than that of the ground state have a �nite lifetime, since the nucleation

of large `bubbles' of the ground state are always favoured. The gain in free energy for a

bubble of size L scales as L

D

, while the surface energy cost scales at most like L

D�1

(if the

interaction is short-ranged). Therefore the mean-�eld picture cannot survive as such in a

�nite dimensional system. However, one can argue that around the mean-�eld T

c

the bubble

nucleation will be a slow process, leading to a rapid increase of the terminal relaxation

time �(T ), which only diverges when the static transition temperature T

s

is reached. This

picture was proposed nearly a decade ago in an insightful series of papers by Kirkpatrick,

Thirumalai and Wolynes

18�20

: within this hypothesis T

c

is a crossover temperature below
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Figure 12: Relaxation time vs temperature in discontinuous spin-glasses. The right hand curve is the

mean-�eld prediction, which gives a dynamical transition at a temperature T

c

above the static transition

temperature T

s

. The left curve is a conjecture on the behaviour in �nite dimensional systems: activated

processes smear the dynamic transition. The relaxation time diverges only at the static temperature T

s

, but

becomes experimentally large already around the glass temperature T

g

.

which activated processes become important

q

leading to a rapidly increasing (�a la Voger-

Fulcher

139

) relaxation time as the temperature is further reduced. The static ordering

critical temperature T

s

appears as a Vogel-Fulcher or Kauzman temperature (below which

freezing is complete), while the experimental glass temperature T

g

, where �(T ) reaches 10

3

seconds, lies somewhere between T

s

and T

c

(see Fig.12).

This rather appealing idea however su�ers from important theoretical loopholes. First of

all, it relies on a model with quenched disorder, absent in structural glasses. As discussed in

the next paragraph, this might not be too serious as this disorder might well be `self-induced'

by the system itself. One would actually like to be sure that the above nucleation arguments

are indeed correct for �nite dimensional versions of discontinuous models (there exist a few

numerical simulations for the Potts glass, p-spin spin-glass and `frustrated percolation'

models

140�142

). The subtlety comes from the fact that the nucleation is in the present

case rather peculiar, since the nucleating phase cannot be the ground state (otherwise the

system would be completely frozen after a �nite time, and would loose the contribution of

the complexity to the free-energy), but rather another metastable phase with exactly the

same free-energy density { which makes it hard to understand why the bubbles should grow

at all. The meaning of the `entropic driving force' invoked in Ref.[

20

] is not very clear to

us, and, surprisingly, little progress has been made to support this conjecture

139

. Another

picture, somehow related to that of Ref.[

143

], is that the complexity induces a microphase

q

Similar ideas can be found within the context of `extended' mct,

17

although the precise relation between

the two pictures is not obvious to us.
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Figure 13: The energy of the labs model with open boundary conditions vs temperature. The top curves

are the results from a Monte-Carlo simulation of a N = 401 spin system with logartihmically decreasing

cooling rates (from Ref.[158]). The other curves are derived analytically with the �duciary random system.

T

c

is the dynamical transition temperature below which the �duciary system freezes, and T

s

is the static

transition temperature which cannot be found from a Monte Carlo, but is accessible in principle from exact

enumerations of systems with a much smaller size. The lowest curve, corresponding to the 'crystalline' state,

has been found only in the case of periodic boundary conditions and for some special values of N .

separation into `grains', each of a di�erent metastable phase, with a certain temperature

dependent size. The relaxation time would correspond to the time needed to a `grain' to

disappear or for a new grain to appear. In this sense, glass dynamics might have a lot in

common with foams or microemulsions, as recently advocated in Ref.[

144

].

4.3 Self-Induced Quenched Disorder: Spin glasses without disorder

An important obstacle if one wants to convert the above picture valid for some spin-glasses

into a theory for structural glasses is the meaning of the quenched disorder in the latter

case. It turns out however that a series of recent works

145�153

has shown the existence

of discontinuous spin-glass like behaviour in systems with frustration but without quenched

disorder. These systems thus provide natural spin analogues of glass formers. Although their

microscopic description does remain remote from that of structural glasses (in particular

because they involve in�nite range interactions), they provide at least an existence proof to

the phenomenon of self-induced disorder, and their study is worth the e�ort, both for their

intrinsic beauty and as a source of inspiration for modelling structural glasses. Furthermore,

from an experimental point of view, Charge Density Wave systems (among others

154

) have

recently been shown to behave very much like disordered systems

25

, with however a very

small density of impurities, suggesting that incommensurability e�ects alone (inducing some

frustration) might be su�cient to generate `self-induced disorder'

155

.
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Monte Carlo simulations show that the low-temperature dynamics is highly non-trivial

in all cases. Although an analytical study of the dynamical features could in principle be

done along the lines described in Section 3, in many of the recent papers the shortcut was

taken of calculating some dynamical properties using the `pseudo-statical' approaches we

described in Section 3.7.

� Low autocorrelation binary sequences.

We shall �rst concentrate on some spin systems with frustration but without disorder,

which contain long-range interactions. These systems exhibit the same behaviour as the

discontinuous mean-�eld spin-glasses, namely a dynamical transition at a temperature T

c

larger than the temperature T

s

of the static transition. The �rst example is the problem of

`low autocorrelation binary sequences' (labs). This is an old and important problem from

communication theory

156

which was restated in physical terms by Bernasconi

157

as follows:

take a one dimensional chain of Ising spins �

i

= �1; i = 1:::N . Compute the correlation

function at distance k

C

k

=

N

X

i;j=1

�

i

�

j

�

j;i+k

(80)

and de�ne the energy function as

E(f�g) =

1

2(N � 1)

N�1

X

k=1

C

2

k

: (81)

The interest in communication theory is to �nd the low energy con�gurations. In fact

the ground state of this energy function does provide a sequence of bits which minimizes

the two point correlations, and this is also useful for building a pseudo random number

generator. Two versions of this problem have actually been studied, di�ering in the choice of

boundary conditions. Due to the in�nite range of the interactions, they present signi�cative

di�erences. A �rst version studied in Refs.[

145;147;158

] has free boundary conditions, where

the correlation function C

k

is de�ned with the sum over the spin indices i going from 1 to

N � k. Another choice, studied in

147

is that of periodic boundary conditions, where one

can de�ne C

k

through a sum over the spin indices i going from 1 to N � 1. As any other

optimisation problem, this can be generalised to a �nite temperature study by assigning to

each sequence of spins a Boltzmann weight P (f�g) = exp(��E(f�g)=Z.

Let us �rst discuss the case with free boundary conditions. It was shown by Monte

Carlo simulations that there exists a �nite temperature freezing region in a temperature

range around T ' 0:1, with a weak cooling rate dependance of the low temperature energies

(see Fig. 13). Computations spanning very long time scales have been perfomed at low

temperature by using an e�cient Monte Carlo algorithm

158�160

, and reveal a clear aging

e�ect, characterized by a �=t

w

scaling (see Fig. 14). The smearing of the transition and the

cooling rate dependence might be a �nite N e�ect. In this case, the presence of `traps' in

phase space with a broad distribution of trapping times

158

is rather convincingly observed

for �nite N (see Fig.15).
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� A replica analysis for non-disordered problems.

The analytical study of the labsmodel is in itself very interesting. Despite its simplicity,

we know of no direct solution. A rather indirect, but illuminating, way of proceeding is to

replace the non-disordered labs model by a `�duciary' model with quenched disorder. The

basic idea consists in considering the model at hand as one special sample of an ensemble

of systems containining quenched disorder. In the case with free boundary conditions this

is achieved as follows

145;147

: one de�nes a `disordered' correlation function

C

d

k

=

X

ij

M

(k)

ij

�

i

�

j

; (82)

where M

(k)

is a matrix with random elements, equal to 0 or 1, with the only constraint

that

P

ij

M

(k)

ij

= N � k. The original problem is a particular choice of M

(k)

, where the

only nonzero elements are on the k

th

diagonal. The hope is that this particular case is a

generic case, and this is actually not at all obvious. (For example, it would be nonsense

to claim that a ferromagnet is a special instance of a spin-glass with J

ij

= �J couplings,

where all J

ij

happen to be equal to +J : the ferromagnet is just a very atypical sample.)

There is in fact quite a bit of educated guesswork involved in the choice of the ensemble

of disordered system, of which the original model is argued to be a generic member { see

below. In the present case, the original model is extremely frustrated due to the long-range

and con
icting nature of the interactions, two features which are indeed retained by the

Hamiltonian de�ned using Eq. (82).

Now, the crucial remark is that if the model is indeed generic, its static properties can

be obtained by means of the replica method, where the averaging is performed over the

�ctitious disorder. In the case at hand, the resulting free energy indeed turns out to be a

good approximation of the original model in the high temperature, replica symmetric phase.

This approximation actually corresponds to the one proposed by Golay

156

using di�erent

arguments; as seen from a high temperature expansion, this approximation is however not

exact (but see next paragraph). Its main virtue is to predict the existence of a static phase

transition at a temperature T

s

= 0:0476, below which a breaking of replica symmetry of the

discontinuous type appears (see Fig. 13). The low temperature phase is characterised by

a residual entropy density which is linear in T , but small (less than 10

�5

per spin at T

s

).

From a glass point of view this phase transition can be seen as the resolution of an entropy

crisis appearing at an extrapolated Kauzman temperature which is very close to T

s

. The

prediction for the ground state energy density, E

0

=N ' 0:0202, is compatible with a large

N extrapolation of the ground state energies found by exact enumeration on small samples

161;157

N � 48. On the other hand, it does substantially di�er from the apparent ground

state energy extracted from Monte Carlo simulations, even after extrapolating to very small

cooling rate (see Fig.13). In fact, similar discrepancies have been seen and studied in detail

before on several disordered spin-glasses (for instance, the binary perceptron problem

162

).

This is again reminiscent of the above discussion of discontinuous spin-glasses and of the

existence of a dynamical transition at T

c

> T

s

, where the Langevin (or Monte Carlo)

dynamics gets trapped in metastable states with high energies E

thres

= E(T

c

). In analogy
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Figure 14: Two time correlation C(t

w

+ �; t

w

) obtained in an extensive Monte Carlo simulation of the labs

model of 400 spins with open boundary conditions (Ref. [158]), at a temperature T = :075, plotted versus

�=t

w

. The data exhibits a clear aging e�ect.

with other discontinuous spin-glasses, one may thus expect that the dynamical transition

where the energy freezes takes place at a temperature T

c

�xed by the marginality condition

(see Section 3.7), i.e the temperature where a replica symmetry broken solution �rst appears,

with a breakpoint (in Parisi's Ansatz) equal to m = 1. This leads to

146

T

c

= 0:103, in

reasonable agreement with the Monte-Carlo data (see Fig. 13).

� A model with a `crystalline' state.

In summary, we have shown that the labs model with free boundary conditions provides

an interesting example of a non disordered mean-�eld spin system, sharing many similarities

with discontinuous spin glasses. However, the �duciary Hamiltonian constructed using the

disordered correlation Eq. (82) is only approximate, and does not, for example, give the

exact free-energy in the high temperature phase. It turns out that the situation is under

better control with periodic boundary conditions

147;148

. In this case, the model furthermore

exhibits, in some sense, a `crystal' phase.

The simpli�cation comes from the fact that with periodic boundary conditions, the

energy can be expressed as

E =

1

N

2

N

X

q=1

js(q)j

4

; (83)

where we have introduced the Fourier series �(q) =

P

j

�

j

exp(2i�qj=N). The problem
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Figure 15: Energy per spin vs log

10

(time) in a single Monte Carlo run for a N = 400 labs spin system at

T = :075 (From Ref.[158]).

remains non trivial since one has to remember that s(q) is constrained to be the Fourier

transform of a binary sequence. In this case a clever choice of the �duciary disordered

system was found in

147

, which consists in substituting the usual Fourier components �(q)

by a disordered version of the Fourier transform:

�

d

(q) =

X

j

U

q;j

�

j

(84)

where U is a kind of random unitary matrix

r

. One can again compute the equilibrium

properties of the disordered problem with the replica method. One �nds, similarly to the

case with free boundary conditions, two transition temperatures T

s

and T

c

. However, the

periodic labs problem is in fact richer

147;163

:

{ It can be shown that the disordered model has the same free energy as the original one

to all orders in a high temperature expansion. The phase transitions, both dynamical and

static, predicted by the replica solution of the disordered problem are in good agreement

with the numerical simulations. The identity of the two problems in the low temperature

phase, at the level of extensive thermodynamic quantitites, is however still a conjecture.

{ It turns out that the periodic labs model possesses a very special ground state for

some particular values of N . When N is prime, clever number theoretic properties can be

used to generate a sequence of spins with a �nite energy E, and therefore a vanishingly small

r

There is a subtlety in this construction, namely the fact that one wishes to introduce a 'disordered

Fourier transform' with a matrix U which is unitary, but also satis�es U

�q;j

= U

�

q;j

, where

�

stands for

complex conjugation. The proper construction through random orthogonal transformation is described in

Ref.[

147

].
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energy density E=N in the thermodynamic limit. (Actually for N prime of the form 4k+3,

k integer, the ground state energy is E = 1, and for N prime of the form N = 4k + 1,

is is found to be E = 5). These special con�gurations are very di�cult to �nd using

Monte-Carlo like dynamics: the energy landscape has sometimes been described as a `golf

course' potential, in the sense that the ground state is an unexpected deep hole surrounded

by rather unfavorable states. These ground states constitute the analogue of a crystalline

state. If one simulates a labs model with a `magic N ' (in the above sense), starting at zero

temperature from the crystalline state, one �nds that the low temperature speci�c heat is

very small, and the energy has a discontinuous jump (�rst order transition) to the high

temperature energy curve at a `melting' temperature T

m

> T

c

(a sketch is given in Fig. 13).

No such crystalline state has been found in the free boundary case

161

.

� Speculations on the `�duciary' disordered Hamiltonian strategy.

We have thus seen how some frustrated spin systems without disorder can be solved

(approximately, or even exactly at least in the high T phase for the labs with periodic

boundary conditions), following a rather interesting strategy. This strategy consists in sub-

stituting the original problem by a `�duciary' one with quenched disorder, and solving the

disordered system using, e.g., the replica method to obtain the static properties and infor-

mation about the transitions. There is unfortunately no systematic method of choosing the

�duciary model so far. The above two examples, or other models which have been stud-

ied in a similar way

148;150

, show the importance of symmetry considerations in the choice

of the �duciary disordered problem, and suggest as a criterion that this disordered model

should be as `close' as possible to the original one in the high temperature (liquid) phase.

This strategy is reminiscent of the very fruitful approach to energy levels in complex nuclei

through the study of �duciary random Hamiltonians with the proper symmetries

167

. In

our case we do not yet understand when such an approach may be successful or not, if it

is only restricted to �nite time dynamics or if it does apply to thermodynamical proper-

ties. In some cases (see

133;148;151

and below), the `spin-glasses without disorder' explicitly

involve pseudo random numbers in the sense that the spin couplings are deterministic, but

very rapidly oscillating. This is much less obvious in the labs model, especially with free

boundaries. Finally, as discussed in the next subsection, self-consistent (Mode-Coupling)

approximations of non disordered models often lead to equations which are exact for some

adequately chosen disordered systems.

In a loose sense, one expects that the slow dynamics at low temperatures originates from

some degrees of freedom which freeze and play the role of an e�ectively quenched disorder

�eld for the other degree of freedom. The success of the present strategy might lie in the

fact that the precise identi�cation of these `slow' variables is not necessary to understand

the freezing transition in these models.

� Other mean-�eld spin-glass models without disorder.

There exist by now a few such examples of spin-glasses without disorder. Besides the
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`�duciary' Hamiltonian strategy, other approaches have been attempted, in particular some

direct diagrammatic calculations { either static ones

149;151

(basically through a resummation

of the high temperature expansion) or using dynamical perturbation theory

133;152

. Because

of space limitation we cannot mention them all here. We should nevertheless point out the

case of Josephson junction arrays because it may allow a direct experimental investigation

of many of the ideas discussed here

151;152

. This model involves two sets of N spins, �

j

=

exp(i�

j

) (living on the rows of a 2-D array of Josephson junctions) and �

0

k

= exp(i�

0

k

)

(living on the columns of the same array) which are normalised two component vectors

(U(1) spins). These are coupled through the Hamiltonian

H = �

J

p

N

N

X

j;k=1

�

exp(i2��jk=N)�

�

j

�

0

k

+ c:c:

�

(85)

where c.c. means complex conjugate. This can be realised by using a stack of two mutually

perpendicular sets ofN parallel wires. There is supposed to be a Josephson junction at each

crossing of an horizontal wire with a vertical one. The variable �

j

is the reference phase of

the j

th

horizontal wire, while �

0

k

is the reference phase of the k

th

vertical wire. The system

lies in an external transverse �eld H , which induces a phase shift per unit area � proportional

to H . The high temperature expansion has been resummed for 1=N � �� 1, both for the

static theory

151

and for the two-time correlation and response function

152

, leading exactly

to the same equations as those describing the p = 4 spherical spin-glass which we have

discussed in Section 3. Again, the system undergoes two phase transitions, a dynamical

one at a temperature T

c

larger than the static one T

s

. These dynamical equations are also

equivalent to a particular case of the `schematic' mode coupling equations of supercooled

liquids. Josephson junction arrays may thus provide an interesting experimental playground

to test directly the predictions of these theoretical studies.

� Towards the description of the glass phase for interacting particles

As is often the case in statistical physics, it is technically easier to study a phenomenon

(here the glass transition in spin systems without disorder) on the magnetic case. A natural

problem is to try to extend the kind of ideas that we have seen at work on these spin ana-

logues towards more realistic problems where a glass phase appears without any quenched

disorder, like glass forming liquids.

One must thus describe interacting particles. The studies in this direction are still

rather preliminary. Two routes have been recently explored. One is to consider interacting

particles in large dimensional (D) spaces. In Ref.[

149

] n point-like particles interacting

repulsively are constrained to move on the vertices of a D-dimensional hypercube. The

model can be mapped onto a modi�ed O(n) matrix model. It has a sharp glassy transition

of the kind described previously. Amusingly, for n multiple of four, an unproven conjecture

of Hadamard gives the `crystalline' ground states. On the same line, similar properties are

found in a model

150

of hard spheres moving on the surface of a D-dimensional hypersphere.

Another study retains the three dimensional nature of the problem, and starts from

a reasonable analytic approximation of the liquid phase given by the Hypernetted Chain
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Approximation (hnc). It turns out that one can generalize this hnc description through

the introduction of a replicated theory as described in Section 3.7. This approach

164

yields

a good analytical prediction for the glass transition temperature or density of hard or soft

spheres systems. A precise description of the low temperature phase along the same lines

is however still missing.

4.4 p-spin models, Mode Coupling Theory of glasses, and its extension at low temperatures

The above arguments suggest that discontinuous mean-�eld spin-glasses, in spite of the

presence of quenched disorder, can provide a good starting mean-�eld theory for structural

glasses. Among the most striking convergence between the two subjects, already alluded to

many times above, is the equivalence (in the high temperature phase) between the Mode

Coupling equations for glasses and the dynamical mean-�eld equations for p-spin-glass mod-

els. This analogy was �rst noticed already long ago

18

. It has been useful technically, in

particular by transposing the mathematical analysis of the Mode Coupling equations devel-

oped for glasses

17;16

to the study of the high temperature dynamics of p-spin systems

108

and manifolds in random media

109;110

, e.g. the divergence of the relaxation time and the

shouldering of the relaxation. Following similar developments in the �eld of fully developed

turbulence

165;166

, it has been realized more recently that the factorization property which

is at the heart of the mode coupling approximation actually becomes exact for certain sys-

tems, which turn out either to contain quenched disorder

134

or some deterministic version

of disordered systems, in the sense of having rapidly oscillating couplings which have sta-

tistical properties of disordered ones

133

. We shall �rst give a general 
avour of why this

is the case, and then turn to the implications of this general result to the low temperature

extension of the Mode-Coupling equations, and its physical consequences.

� Mode coupling approximation and hidden disorder.

Both glass forming systems and turbulence can be described by some non-linear stochas-

tic dynamical equation. In order to describe the essence of the mode coupling approximation

and its relation with disordered systems, we shall explain it brie
y on the simple case of a

single scalar degree of freedom �, with a Langevin dynamics

@�

@t

= ��(t)� �

g

3!

�

3

+ � (86)

with initial condition �(t = 0) = 0. The thermal noise � is a Gaussian noise � with

h �(t) i = 0 and h �(t) �(t

0

) i = 2T �(t� t

0

) (in the following the brackets will always denote

an average over the realisations of the Gaussian white noise �). The coupling constant g

serves as a book-keeping parameter to set up a perturbative expansion. This expansion can

either be well-behaved or ill-behaved depending { say { on the dimension of space. It is in

any case rather useless when g = O(1) if it cannot be resummed in one way or another. The

mode coupling consists in a `one-loop' self-consistent perturbation theory. This amounts to

resumming a particular (in�nite) set of terms in the perturbation expansion. In this way,
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non-trivial self-consistent equations are obtained, which enable one to peep into the strong

coupling regime, through an approximation which is however not easily controlled.

Setting R

0

= [�(t) +

@

@t

]

�1

, which gives R

0

(t; t

0

) = exp

�

�

R

t

t

0

d� �(�)

�

, the perturbative

expansion for �(t) is easily written as:

�(t) = R

0


 � �

g

3!

R

0


 fR

0


 � �R

0


 � �R

0


 �g+ ::: (87)

where 
 means a time convolution: (R

0


 f)(t) =

R

t

0

dt

0

R

0

(t; t

0

)f(t

0

) and � is a simple

product.

The lowest non trivial order perturbative expansion for the correlation function C(t; t

0

)

and the response function R(t; t

0

) is easily written in terms of the kernels �(t; t

0

) and D(t; t

0

)

through the Dyson equations:

R(t; t

0

) � R

0

(t; t

0

) +

Z

t

t

0

dt

1

Z

t

1

t

0

dt

2

R

0

(t; t

1

) �(t

1

; t

2

) R(t

2

; t

0

) ; (88)

C(t; t

0

) �

Z

t

0

dt

1

Z

t

0

0

dt

2

R(t; t

1

) D(t

1

; t

2

) R(t

0

; t

2

) : (89)

The mode coupling approximation for this problem amounts to an approximation of the

kernels �(t; t

0

) and D(t; t

0

) where one takes their values at order g

2

and substitutes in them

the bare propagator R

0

and the bare correlation by their renormalised values. This gives

the following self-consistent equations:

�(t; t

0

) =

g

2

2

C

2

(t; t

0

)R(t; t

0

)

D(t; t

0

) = 2T �(t� t

0

) +

g

2

6

[C(t; t

0

)]

3

; (90)

This approximation neglects `vertex renormalisation'.

The problem is of course to try to control this procedure. An important step in this

direction is to identify a model for which the self-consistent equations are exact. The ba-

sic remark (�rst made by Kraichnan in the context of turbulence

166

, where the analogous

method is named direct interaction approximation) is that the diagrams retained by the

mode coupling approximation are precisely those which survive if one considers the fol-

lowing disordered problem. First, one upgrades � to an N� `colour' object �

�

, where

� = f1; 2; :::; Ng. The equation of motion Eq. (86) is then generalized to:

@�

�

@t

= ��(t)�

�

� 4g

X

�<
<�

J

��
�

�

b

�




�

�

+ �

�

(91)

with independent noises �

�

. The couplings J

��
�

are quenched, i.e. time-independent,

Gaussian random variables of zero mean and variance J

2

��
�

= 1=N

3

. In the large N

limit, the correlation: C(t; t

0

) �

1

N

P

N

�=1

h�

�

(t)�

�

(t

0

)i (where the overline denotes the

average over the random couplings J

��
�

) and the response: R(t; t

0

) �

1

N

P

N

�=1

h

@�

�

(t)

@�

�

(t

0

)

ij

�=0

precisely obey the mode coupling approximation equations
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, Eqs. (88) and (89).
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� A particle in a random potential.

The same construction can be generalised

134

to an arbitrary nonlinearity F (�) substi-

tuting the

g

3!

�

3

in Eq.(86). Therefore one �nds that the general schematic mode coupling

equations developed in the study of glass forming liquids can be derived exactly from the

Langevin dynamics of N continuous spins �

�

, of the type:

@�

�

@t

= ��(t)�

�

�

�V [f�g]

��

�

+ �

�

: (92)

This disordered multispin Hamiltonian is precisely the generic mean-�eld problem (44)

which we studied in Sect. 3, which can also be seen as describing a particle evolving in an

N !1 dimensional space in a quenched random potential V [f�g].

This interpretation is rather appealing. Let us introduce the following highly simpli�ed

picture of a glass: the motion of a given particle can be thought of as taking place in a

random potential created by its neighbours. Since the motion of the molecules is extremely

slow at low temperatures, one can assume that this random potential has a static component,

in the spirit of the `self-induced quenched disorder' scenario which we discussed above

168

.

In large dimension of space, one can establish the exact equations relating the two-time

correlation function C(t

w

+�; t

w

) = h~r(t

w

+�)�~r(t

w

)i (where ~r(t) is the position of the particle

at time t), and the two-time response to an external force R(t

w

+ �; t

w

). For temperatures

higher than T

c

, we have seen that C and R are actually tti, and furthermore that the fdt

R(�) = �

1

T

�(�)

@C(�)

@�

is obeyed. As noted in Section 3.2, one can then eliminate R(�) and

�nd an equation for C(�) which is precisely the schematic Mode-Coupling equation, with a

kernel related to the correlation of the random potential.

Hence, the physical content of the (schematic) mct is clear: it is a mean-�eld description

of a single point in a static quenched random potential. The important point is thus that

mct implicitly assumes the presence of some quenched disorder which should rather, as

discussed above, be `self-induced' by the dynamics itself. In a sense it looks rather similar

to the introduction of �duciary models discussed before.

� Mode coupling at low temperatures

Coming back to the general equations relating C and R, one can now postulate that

they are the correct generalisation of the schematic Mode Coupling equations for two time

quantities, and investigate the `glass' phase T < T

c

. The results of Section 3 are thus directly

applicable. In particular, the correlation and response function cease to be functions of �

only. More precisely, C(t

w

+ �; t

w

) can be written as the sum of a stationary contribution

C

st

(�) which only depends on � , and an aging part which depends on the ratio t

w

=(t

w

+�),

(or a generalisation thereof, see Section 3.6): C

ag

(t

w

=(t

w

+ �)). The expected shape of the

correlation function in the glass phase is thus given in Fig. 10.

The same decomposition holds for the response function, and the aging parts of C and

R are related by an `anomalous' fdt, where T is replaced by an e�ective temperature T=X ,

with X � 1.
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In more physical terms, this means that for a �nite waiting time t

w

after the quench

below T

c

, one expects that the susceptibility �(!; t

w

) still exhibits two peaks: a high fre-

quency �-peak very similar to the high temperature (T > T

c

) one, and a low frequency

�-peak which reaches a maximum at a frequency !

�

' 1=t

w

, which thus progressively dis-

appears as t

w

! 1. An interesting prediction of this low temperature extension of mct

is that the high frequency part of the aging �-peak behaves as (!t

w

)

�b

, while the low fre-

quency `foot' of the �-peak behaves as !

a

, with the following relation between a, b, and

X (see (69)): X�

2

[1 + b]=�[1 + 2b] = �

2

[1 � a]=�[1 � 2a]: This equation generalizes the

well known mct relation (54) between a and b for T > T

c

, for which X � 1. It would be

extremely interesting to try to test these predictions experimentally, taking care of the fact

that the above picture is only valid insofar as t

w

is small compared to the relaxation time

�(T ), such that `activated' e�ects might indeed be neglected.

5 Conclusion. Where do we stand ?

Let us now summarize some of the most important ideas developed in this review and

discuss some open problems.

We have tried to show that aging e�ects are not spurious, irreproducible artifacts of

non equilibrium situations, but rather an unescapable feature of systems characterized by a

very large relaxation time, because time-translational invariance breaks down and the well

known 
uctuation-dissipation theorem has to be modi�ed in a non trivial way. However,

the asymptotic aging regime where all times are large reveals some universal properties; in

particular, the `e�ective' relaxation time becomes a time dependent notion and grows with

the waiting time. The detailed investigation of these aging e�ects actually o�er a unique

way to probe the phase-space structure of complex systems. From that point of view, a

system in equilibrium is `dead'.

We have described several simple models where aging can be described in detail: coars-

ening models, `trap' models and mean-�eld spin-glass models: (which turn out to give

dynamical equations in exact correspondance with the `Mode-Coupling' description of su-

percooled liquids). Coarsening leads to aging in the correlation function but not in the

response function: the fdt is most strongly violated in the aging regime. This scenario

can thus only include aging in the response of spin-glasses or polymer glasses as a transient

e�ect even in an in�nite system { quite apart from the fact that it is not obvious what

would actually grow with time in these systems.

Mean-�eld spin-glasses provide an interesting testing �eld. One generically �nds aging

in the low temperature phase of these models, although two very di�erent categories of

systems emerge. In the discontinuous case (corresponding in the high temperature phase

to `model B' of mct), a dynamical temperature transition is found above the equilibrium

transition. Throughout the low-temperature phase the asymptotic energy-density arrived

at after any type of cooling is higher than the equilibrium energy-density. The two-time

plane breaks up into two sectors, which correspond to the stationary and aging dynamical

regimes. On the contrary, for the continuous case (such as the Sherrington-Kirkpatrick

model) static and dynamical transition temperatures coincide, as do the asymptotic out
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of equilibrium energy density and the equilibrium one. The two-time behaviour is much

more complicated, re
ecting in some way the subtleties of Parisi's ultrametric equilibrium

solution.

Interestingly, if one views mean-�eld glassy dynamics as the dynamics of a point in

a many dimensional rugged phase-space, one �nds that the basic mechanism for aging is

germain to that of simple coarsening: because of high dimensionality of phase-space the

system starts near the border of a basin of attraction, and remains forever undecided about

where to go.

It is of course crucial to know how these mean-�eld predictions are modi�ed when one

goes beyond mean-�eld and studies �nite dimensional systems. From a theoretical point

of view, the di�culty comes from the fact that activated processes, which are e�ectively

absent in mean-�eld, come into play when the dimension is �nite. For example, the in-

�nitely long-lived metastable states in mean-�eld acquire a �nite relaxation time in �nite

dimension, through bubble nucleation. The dynamical transition, which corresponds in the

language of supercooled liquids to the Mode-Coupling critical temperature, is thus smeared

out. Similarly, a particle in a random potential in �nite dimension reaches a local minimum

after a �nite time, beyond which thermal activation starts playing an important role; con-

tributions to aging of a somewhat di�erent nature | such as those described by the `trap'

picture | then set in. The relation of these trap models to the aging dynamics of real

spin-glasses or other disordered systems such as pinned vortex lines, dislocations, domain

walls, or polymers is however still rather tentative.

For the same reason (absence of activated e�ects), mean-�eld models are not suited to

describe cooling rate dependent e�ects, which can be very large in some disordered systems

and in glass forming liquids.

Therefore, new theoretical ideas which would allow one to extend the previous ap-

proaches to �nite dimensions (bearing in mind that activated e�ects cannot, in general, be

accounted for within perturbative schemes) are clearly desirable. Returning to the question

of aging in the response, the fdt-violation factor X in �nite dimension is particularly in-

teresting: this factor | that is related to e�ective temperatures in the system | is found

to be non-trivial (0 < X < 1) in the disordered mean-�eld models; what is the situation in

�nite dimensions? Some numerical results

46;47

suggest that X does indeed remain non triv-

ial in �nite dimensions, while arguments based on coarsening pictures would suggest that

asymptotically, X = 0. This might actually be a clear-cut dynamical distinction between

droplet like coarsening pictures and mean-�eld like pictures of real spin-glasses, which surely

deserves more e�orts { as stated above, spin-glasses, after all, do exhibit aging in response

functions.

We have also discussed rather at length the relation between glasses and disordered

systems, noting that:

{ some models without disorder behave very much like disordered systems and can

actually be theoretically described as such, and

{ some approximation schemes for systems without disorder, but strongly interacting,

lead to dynamical equations (i.e. the Mode-Coupling equations) which correspond to the

hidden assumption of the existence of some quenched disorder and are actually exactly the
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equations describing disordered mean-�eld spin-glasses.

Correspondingly, many of the ideas developed to describe aging in disordered systems

are de facto also relevant for glasses. We have mentioned in particular how aging should

manifest itself, within the Mode-Coupling scenario and for times smaller than the relaxation

time as a waiting time dependent �-peak. A detailed analysis of these aging regimes should

enable one to distinguish, again, between mean-�eld like descriptions and activated, `trap'

like, models; or perhaps understand how both mechanisms are blended.

Several questions still remain completely open. In particular, is there a general criterion

allowing one to understand when a `complicated' system can be described as disordered ? Is

this description only viable at �nite times, where the speci�city of the system at hand has

not yet had time to reveal itself ? A possibility is that this time scale can only be in�nite for

mean-�eld like models, such as the labs model or the long-range Josephson array. Related

to this is of course the lurking question of the very existence of a true glass transition in

any short range system without disorder.

The question of the existence of a true phase transition is however, after all, not crucial

to understand the out-of-equilibrium properties, as it is displayed in so many physical

systems. In this respect, it is plausible that mean-�eld models provide in general a much

better starting point for the �nite time, dynamical properties of real systems, than for its

long time, equilibrium properties.

Acknowledgements We have bene�ted from many useful discussions with F. Alberici, A.

Baldassarri, A. Barrat, R. Burioni, A. Comtet, D. S. Dean, P. Doussineau, S. Franz, C.

Godr�eche, W. Kob, W. Krauth A. Levelut, G. Lozano, C. Monthus, J. Hammann, L.

Laloux, P. Le Doussal, R. Monasson, M. Ocio, R. Orbach, G. Parisi, L. Peliti, F. Ritort,

H. Takayama, G. Tarjus, F. Thalmann, E. Vincent, M. A. Virasoro and H. Yoshino; L. F.

C. wishes to thank the SPEC at Saclay and the Laboratoire de Physique Th�eorique des

Liquides at Jussieu, Paris, where part of this work was done, for their kind hospitality.

58



1. S. F. Edwards and P. W. Anderson, J. Phys. C 5, 965 (1975).

2. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1972 (1975). S. Kirkpatrick

and D. Sherrington, Phys. Rev. B 17, 4384 (1978).

3. K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986).

4. M. M�ezard, G. Parisi and M.A. Virasoro, Spin Glass Theory and Beyond, (World

Scienti�c, Singapore, 1987).

5. V.S. Dotsenko, M. V. Feigel'man and L.B. Io�e, Spin-Glasses and related problems,

Soviet Scienti�c Reviews, vol. 15 (Harwood, 1990).

6. K. H. Fischer and J. A. Hertz, Spin Glasses, (Cambridge Univ. Press, 1991).

7. G. Parisi, Phys. Lett. A 73, 154 (1979), J Phys. A 13, L115 (1980), ibid 13, 1101

(1980), ibid 13, 1887 (1980).

8. H. Sompolinsky and A. Zippelius, Phys. Rev. Lett. 47, 359 (1981), Phys. Rev. B 25,

6860 (1982).

9. H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981), Phil. Mag. 50, 285 (1984).

10. L. C. E. Struick, Physical Aging in Amorphous Polymers and Other Materials (Else-

vier, Houston, 1978).

11. L. Lundgren, P. Svedlindh, P. Nordblad and O. Beckmann, Phys. Rev. Lett 51, 911

(1983); P. Nordblad, L. Lundgren, P. Svedlindh and L. Sandlund, Phys. Rev. B 33,

645 (1988).

12. M. Alba, M. Ocio and J. Hammann, Europhys. Lett. 2, 45 (1986); J. Phys. Lett. 46,

L-1101 (1985); M. Alba, J. Hammann, M. Ocio and Ph. Refregier, J. Appl. Phys. 61,

3683 (1987). Ph. Refregier, M. Ocio, J. Hammann and E. Vincent, J. Appl. Phys.

63, 4343 (1988).

13. E. Vincent, J. Hammann and M. Ocio in Recent Progress in Random Magnets, ed.

D.H. Ryan (World Scienti�c, Singapore, 1992).

14. E. Vincent, J. Hammann, M. Ocio, J.P. Bouchaud and L. F. Cugliandolo; Slow dy-

namics and aging, ed. M. Rub�� Sitges Conference on Glassy Systems, 1996 (springer-

Verlag, in press). cond-mat/9607224.

15. P. Nordblad and P. Svedlindh, Experiments on Spin Glasses, in this volume.

16. E. Leutheusser, Phys. Rev. A 29, 2765 (1984).

17. W. G�otze, in Liquids, freezing and glass transition, eds. JP Hansen, D. Levesque, J.

Zinn-Justin Editors, Les Houches 1989 (North Holland). W. G�otze and L. Sj�ogren,

Rep. Prog. Phys. 55, 241 (1992).

18. T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36, 5388 (1987), ibid 37, 5342

(1988), Phys. Rev. A 37, 4439 (1988). D. Thirumalai and T. R. Kirkpatrick, Phys.

Rev. B 38, 4881 (1988). T. R. Kirkpatrick and D. Thirumalai, J. Phys. A22, L149

(1989).

19. T. R. Kirkpatrick and P. Wolynes, Phys. Rev. A 35, 3072 (1987). T. R. Kirkpatrick

and P. Wolynes, Phys. Rev. B 36, 8552 (1987).

20. T. R. Kirkpatrick, D. Thirumalai, P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).

21. N. Bontemps and R. Orbach; J. Physique 49, C8-1077 (1988). W-L Luo, R. Hooger-

beets, R. Orbach and N. Bontemps, J. Physique 49, C8-1151 (1988).

22. C.A. Angell, H. Sundar, A. Kulkarni, H. Senapati, S. Martin, in Molecular Dynamics

59

http://xxx.sissa.it/abs/cond-mat/9607224


and Relaxation Phenomena in Glasses, Lecture Notes in Physics 277, Ed: T. Dorf-

muller and G. Williams, Springer (1986).

23. J. Gilchrist; Phys. Lett. A 156, 76 (1989), J. of Mol. Liq. 69 253 (1996).

24. P. Doussineau, A. Levelut and Ziolkiewicz; Europhys. Lett. 33, 391 (1996); ibid, 539

(1996). F. Alberici, P. Doussineau and A. Levelut, J. Phys. (France) to appear.

25. For a review, see K. Biljakovic, in Phase Transitions and Relaxation in Systems with

Competing Energy Scales, Ed: T. Riste, D. Sherrington, Kluwer Academic (1993).

See also, K. Biljakovic, F. Nad', J.C. Lasjaunias, P. Monceau, K. Bechgaard, J. Phys.

Cond. Mat. 6, L135 (1994).

26. J.O. Andersson, J. Mattson and P. Svedlindh, Phys. Rev. B 46, 8297 (1992).

27. H. Rieger, J. Phys. A 26, L615 (1993).

28. G. Parisi, F. Ricci Tersenghi and J. Ruiz-Lorenzo, cond-mat/9606051, J. Phys. A (to

appear).

29. L. Cugliandolo, J. Kurchan and F. Ritort, Phys. Rev. B 49, 6331 (1994).

30. A. Baldassarri, cond-mat/9607162.

31. H. Takayama, H. Yoshino, K. Hukushima, cond-mat/9612071.

32. L. Lundgren, P. Svedlindh and O. Beckmann, J. of Magn. Magn. Mat 31-34, 1249

(1983). P. Grandberg, L. Sandlung, P. Nordblad, P. Svendlindh, L. Lundgren, Phys.

Rev. B 38, 7097 (1988).

33. Ph. Refregier, E. Vincent, J. Hammann and M. Ocio, J. Phys. (France) 48, 1533

(1987). M. Lederman, R. Orbach, J. Hammann, M. Ocio and E. Vincent, Phys.

Rev. B 44, 7403 (1991). J. Hammann, M. Lederman, M. Ocio, R. Orbach and

E. Vincent, Physica A 185, 278 (1992). F. Le
och, J. Hammann, M. Ocio and E.

Vincent, Europhys. Lett. 18, 647 (1992).

34. F. Le
och, J. Hammann and E. Vincent, Physica B 203, 63 (1994). E. Vincent, J.P.

Bouchaud and J. Hammann, Phys. Rev. B 52, 1050 (1995). D. Chu, G. G. Kenning

and R. Orbach, Phil. Mag. B 71, 479 (1995). Y. G. Joh, R. Orbach and J. Hammann,

Phys. Rev. Lett. 25, 4648 (1996). See also

118

.

35. W. Reim, R. H. Koch, A. P. Malozemo�, M. B. Ketchen and H. Maletta, Phys. Rev.

Lett. 57, 905 (1986). Ph. Refregier and M. Ocio, Revue Phys. Appl. 22, 367 (1987).

H. Bouchiat and M. Ocio, Comm. Cond. Mat. Phys. 3, 163 (1988).

36. G. B. Alers, M. B. Weissmann and N.E. Isrealo�, Phys. Rev. B 46, 507 (1992). M.

B. Weissmann, N.E. Isrealo� and G. B. Alers, Journal of Magn. Magn. Mat. 114,

87 (1992). M. B. Weissmann, Rev. Mod. Phys, July 1993.

37. H. Rieger, Ann Rev. of Comp. Phys. II, ed. D. Stau�er (World Scienti�c, Singapore,

1995).

38. E. Marinari, G. Parisi and J. Ruiz-Lorenzo, Numerical simulations of spin-glass sys-

tems, cond-mat/9701016, in this volume.

39. A. J. Bray, Adv. Phys. 43, 357 (1994).

40. The disordered model studied in J. M. Kosterlitz, D. J. Thouless and R. C. Jones,

Phys. Rev. Lett. 36, 1217 (1976); P. Shukla and S. Singh, J. Phys. C14, L81 (1981);

S. Ciuchi and D. de Pasquale, Nucl. Phys. B 300 [FS22], 31 (1988); L. F. Cugliandolo

and D. S. Dean, J. Phys. A 28, 4213 (1995) is `equivalent' to the O(n) model in d = 3.

60

http://xxx.sissa.it/abs/cond-mat/9606051
http://xxx.sissa.it/abs/cond-mat/9607162
http://xxx.sissa.it/abs/cond-mat/9612071
http://xxx.sissa.it/abs/cond-mat/9701016


41. L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993). Phil. Mag. B

71, 501 (1995).

42. S. Franz and M. M�ezard, Europhys. Lett. 26, 209 (1994).

43. L. Cugliandolo and J. Kurchan, J. Phys. A 27, 5749 (1994).

44. S. Franz and M. M�ezard, Physica A 209, 1 (1994).

45. L. F. Cugliandolo and P. Le Doussal, Phys. Rev. E 53, 1525 (1996).

46. S. Franz and H. Rieger; J. Stat. Phys. 79, 749 (1995).

47. G. Parisi, cond-mat/9701015, cond-mat/9701100. D. Lancaster and G. Parisi, cond-

mat/9701045.

48. L. F. Cugliandolo, J. Kurchan and L. Peliti, cond-mat/9611044, Phys. Rev. E (to

appear).

49. J.P. Bouchaud, J. Phys. I (France) 2, 1705 (1992).

50. This de�nition is akin to the ideas of damage spreading, see, e.g., H. E. Stanley, D.

Stau�er, J. Kertesz and H. J. Herrmann, Phys. Rev. Lett. 59, 2326 (1987). B.

Derrida and G. Weisbuch, Europhys. Lett. 4, 657 (1987). B. Derrida, Phys. Rep.,

184, 207 (1989). I. A. Campbell and L. de Arcangelis, Physica A 178, 29 (1991).

51. A. Barrat, R. Burioni and M. M�ezard, J. Phys. A 29, 1311 (1996).

52. S. N. Majumdar and C. Sire, Phys. Rev. Lett. 77, 1420 (1996), C. Sire, S. N.

Majumdar and A. Rudinger, to appear.

53. J-P Bouchaud and D. S. Dean, unpublished.

54. L. F. Cugliandolo and D. S. Dean, J. Phys. A, 28, L453 (1995).

55. For a review, see e.g.: T. Natterman and J. Villain; Phase Transitions 11, 5 (1988),

T. Natterman and P. Rujan; Int. J. Mod. Phys. B 3, 1597 (1989).

56. J. Villain, Phys. Rev. Lett. 52, 1543 (1984),J. Physique 46, 1843 (1985). R. Bruinsma

and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984). G. Grinstein and J. F. Fern�andez,

Phys Rev. B 29, 6389 (1984). A. J. Bray and M. A. Moore, J Phys. C 18, L927

(1985). D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986). For reviews see

55

.

57. B. Drossel and M. Kardar, Phys. Rev. E52 4841 (1995) and Refs. therein.

58. L. B. Io�e and V.M. Vinokur, J. Phys. C 20, 6149 (1987).

59. E. T. Gawlinski, K. Kaski, M. Grant, J. D. Gunton and K. Kaski, Phys. Rev. Lett.

53, 2266 (1984). E. T. Gawlinski, S. Kumar, M. Grant, J. D. Gunton and K. Kaski,

Phys. Rev. B 32, 1575 (1985). J. L. Cambier and M. Nauenberg, Phys. Rev. B 34,

7998 (1986). S. Anderson, Phys. Rev. B 36, 8435 (1987).

60. F. Alberici, J-P Bouchaud, L. F. Cugliandolo, P. Doussineau, J. Kurchan and A.

Levelut, unpublished.

61. J. Shore, M. Holzer and J. Sethna, Phys. Rev. B 46 11376 (1992).

62. P. Nozi�eres and F. Gallet, J. Phys. (France) 48 353 (1987).

63. D.S. Fisher and D.A. Huse, Phys. Rev. Lett 56, 1601 (1986); Phys. Rev. B 38, 373

(1988).

64. D. C. Mattis, Phys. Lett. A 56, 421 (1976).

65. W. L. Mc Millan, J Phys. C 17, 3179 (1984), Phys. Rev. B 31, 340 (1985).

66. A. J. Bray and M. A. Moore, J. Phys. C 17, L463 (1984) and in Heidelberg Colloquium

on Glassy Dynamics, Lecture Notes in Physics 275, ed. J. L. van Hemmen and I.

61

http://xxx.sissa.it/abs/cond-mat/9701015
http://xxx.sissa.it/abs/cond-mat/9701100
http://xxx.sissa.it/abs/cond-mat/9701045
http://xxx.sissa.it/abs/cond-mat/9701045
http://xxx.sissa.it/abs/cond-mat/9611044


Morgenstern (Springer, Berlin).

67. G.J. Koper and H.J. Hilhorst, J. Phys. (France) 49, 429 (1988).

68. H.J. Hilhorst and M. Thill, cond-mat/9507092 and Refs. therein.

69. M. M�ezard, G. Parisi, N. Sourlas, G. Toulouse and M. A. Virasoro, Phys. Rev. Lett.

52 1156 (1984), J. Physique 45 843 (1984).

70. We thank J. Hammann, P. Nordblad and E. Vincent for useful discussions on this

point.

71. C. M. Newman and D.L. Stein, Phys. Rev. Lett. 76, 515 (1996), cond-mat/9612097.

72. A. J. Bray and S. A. Roberts, J. Phys C 13, 5405 (1980). D. S. Fisher and H.

Sompolinsky, Phys. Rev. Lett. 54, 1063 (1985). T. Temesvari, I. Kondor and C. de

Dominicis, J. Phys. A 21, 1145 (1988).

73. S. Caracciolo, G. Parisi, S. Patarnello and N. Sourlas, J. Phys. (France) 51 1877

(1990), J. Phys. I (France) 1 627 (1991). E. Grannan and R. Hetzel, Phys. Rev Lett.

67, 907 (1991).

74. J. Mattson et al, Phys. Rev. Lett. 74, 4305 (1995).

75. J. A. Mydosh, Spin-glasses: an experimental introduction (Taylor & Francis, London,

1993).

76. D.A. Huse, Phys. Rev. B 43, 8673 (1991).

77. E. Marinari, G. Parisi, F. Ritort and J. J. Ruiz-Lorenzo, Phys. Rev Lett. 76, 843

(1996).

78. C de Dominicis, I Kondor and T. Temesvari, Int. J. Mod. Phys. B 7 986 (1993) and

in this volume.

79. J.P. Bouchaud and D.S. Dean; J. Phys. I (France) 5, 265 (1995).

80. A somewhat arbitrary choice of early papers in the context of spin-glasses is: R. G.

Palmer, D. L. Stein, E. Abrahams and P. W. Anderson, Phys. Rev. Lett. 53, 958

(1984). M. Schreckenberg, Z. Phys. B 60, 483 (1985). C. Bachas and B. Huberman,

Phys. Rev. Lett. 57, 1985 (1986). G. Paladin, M. M�ezard and C. de Dominicis,

J. Physique (Lettres) 46, L-985 (1985). R. G. Palmer, in Chance and Matter, eds.

R. Stora, G, Toulouse, J. Vannimenus, Les Houches 1986 (North Holland). See also

81;79;82;83;84

.

81. P. Sibani and K.H. Ho�mann, Europhys. Lett. 4, 967 (1987), Phys. Rev. A 38, 4261

(1988), Europhys. Lett. 16, 423 (1991).

82. I. A. Campbell, J. Phys. Lett. 46,L1159 (1985); Phys. Rev. B 33, 3587 (1986)

83. C.M. Newman and D. Stein, Phys. Rev. Lett 72, 2286 (1994); D. L. Stein and C. M

. Newman, Phys. Rev. E 51, 5228 (1995).

84. A. Barrat and M. M�ezard, J. Phys. I (France) 5, 941 (1995). A. Barrat, Th�ese de

l'Universit�e de Paris (1996), unpublished.

85. Phase space models in the context of glasses have a long history. For a review, see

86

.

86. For a review, see the interesting series of papers in Science, 267, 1924 (1995).

87. M. V. Feigel'man and V. Vinokur, J. Phys. I (France) 49, 1731 (1988)

88. H. Yoshino, cond-mat/9604033, J. Phys. A to be published.

89. R. M�elin and P. Buteau, cond-mat/9701112.

90. M. M�ezard, G. Parisi and M.A. Virasoro, J. Physique Lett. 46, L217 (1985). B.

62

http://xxx.sissa.it/abs/cond-mat/9507092
http://xxx.sissa.it/abs/cond-mat/9612097
http://xxx.sissa.it/abs/cond-mat/9604033
http://xxx.sissa.it/abs/cond-mat/9701112


Derrida and G. Toulouse, J. Physique Lett. 46, L223 (1985).

91. G. Parisi, in Chance and Matter, Proceedings of the Les Houches Summer School

1986, eds. R. Stora, G, Toulouse, J. Vannimenus, (North Holland).

92. L. Balents, J-P Bouchaud and M. M�ezard, J. Phys. I (France) 6 1007 (1996).

93. B. Derrida, Phys. Rev. Lett. 45, 79 (1980), Phys. Rev. B 24, 2613 (1981).

94. B. Derrida, J. Physique (Lettres) 46, 401 (1985). B. Derrida and E. Gardner, J. Phys.

C 19, 2253 (1986).

95. V. Vinokur, M. C. Marchetti and L. W. Chen, Phys. Rev. Lett. 77, 1845 (1996).

96. J.P. Bouchaud and M. M�ezard, in preparation.

97. C. Monthus and J.P. Bouchaud, J. Phys. A 29, 3847 (1996).

98. J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).

99. M. M�ezard and G. Parisi, J. Phys. I (France) 1, 809 (1991).

100. H. Eissfeller and M. Opper, Phys. Rev. Lett. 68, 2094 (1992).

101. F. Ritort, Phys. Rev. Lett. 75, 1190 (1995).

102. S. Franz and F.Ritort, Europhys. Lett. 31, 507 (1995). C. Godr�eche, J.P. Bouchaud

and M. M�ezard; J. Phys. A 28, L603 (1995). C. Godr�eche and J.M. Luck; J. Phys.

A 29, 1915 (1996). S. Franz and F. Ritort, cond-mat/9508133, cond-mat/9609271.

103. J. Villain, Europhys. Lett. 2, 871 (1986). A.P. Malozemo� and B. Barbara, J. Appl.

Phys. 57, 3410 (1985). M. Ocio, J. Hammann and E. Vincent, J. Magn. Magn. Mat.

90-91, 329 (1990).

104. D. S. Fisher and D. Huse, Phys. Rev. B 43 10728 (1991). T. Hwa and D.S. Fisher,

Phys. Rev. B 49 3136 (1994).

105. A Crisanti and H-J Sommers, Z. Phys B 87, 341 (1992).

106. J. Villain, B. Semeria, F. Lancon and L. Billard, J. Phys C 16, 6153 (1983); A.

Engel, J. Physique Lett 46, L409 (1983).

107. C. de Dominicis, Phys. Rev. B 18, 4913 (1973).

108. A. Crisanti, H. Horner and H-J Sommers, Z.Phys. B 92, 257 (1993).

109. H. Kinzelbach and H. Horner, J. Phys. I (France) 3, 1329 (1993)

110. H. Kinzelbach and H. Horner, J. Phys. I (France) 3, 1901 (1993).

111. T. Nieuwenhuizen, Phys. Rev. Lett. 74, 4293 (1995).

112. L. F. Cugliandolo, J. Kurchan and P. Le Doussal, Phys. Rev. Lett. 76, 2390 (1996).

113. R.Rammal, G. Toulouse and M. A. Virasoro, Rev. Mod. Phys. 58, 765 (1986)

114. A. Baldassarri, L. F. Cugliandolo, J. Kurchan and G. Parisi, J. Phys. A 28, 1831

(1995).

115. G. Ferraro, PhD Thesis, Universit�a di Roma I, Roma, Italia, 1994.

116. G.I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics, Consul-

tant Bureau, NY, 1979.

117. H. Horner, Z. Phys. B 100, 243 (1996) and work in progress.

118. E. Vincent, J.P. Bouchaud, D.S. Dean and J. Hammann, Phys. Rev. B 52, 1050

(1995).

119. J-P Bouchaud, E. Vincent and J. Hammann, J. Phys. I (France) 4, 139 (1994).

120. This point was made in J. Kurchan, J. Phys. (France) I 2, 1333 (1992) , and in S.

Franz and J. Kurchan, Europhys. Lett. 20, 197 (1992). The program, however, has

63

http://xxx.sissa.it/abs/cond-mat/9508133
http://xxx.sissa.it/abs/cond-mat/9609271


not been completed.

121. A. Houghton, S. Jain and A. P. Young, Phys. Rev. B 28, 2630 (1983).

122. H. Horner, Z. Phys. B 57, 29 (1984), Europhys. Lett. 2, 487 (1986).

123. L. B. Io�e, Phys. Rev. B 38, 5181(1988).

124. H. Horner, Z. Phys. B 57, 29 (1984); ibid., 39 (1984).

125. C. De Dominicis and A. P. Young, J. Phys. A 16, 2063 (1983).

126. J. Kurchan, G. Parisi and M. A. Virasoro, J. Phys. I (France), 3, 1819 (1993).

127. A. Barrat, R. Burioni and M. M�ezard, J. Phys. A 29, L81 (1996).

128. J. Kurchan and L. Laloux, J. Phys. A29, 1929 (1996).

129. T. Nieuwenhuizen, Phys. Rev. Lett. 74, 3463 (1995).

130. S. Caracciolo, G. Parisi, S. Patarnello and N. Sourlas, Europhys. Lett. 11, 783

(1990); S. Franz, G. Parisi and M. A. Virasoro, Europhys. Lett. 17, 5 (1992).

131. R. Monasson, Phys. Rev. Lett. 75, 2847 (1995).

132. S. Franz and G. Parisi, J. Phys. (France) I 5, 1401 (1995).

133. S. Franz and J. Hertz, Phys. Rev. Lett. 74, 2114 (1995).

134. J.P. Bouchaud, L. F. Cugliandolo, J. Kurchan and M. M�ezard, Physica A 226, 243

(1996).

135. For an enlightening introduction to the experimental controversy, see the series of

Comments in Phys. Rev. E: X.C. Zeng, D. Kivelson and G. Tarjus, Phys. Rev. E 50,

1711 (1994).

136. P. K. Dixon, N. Menon and S. R. Nagel, Phys. Rev. E 50, 1717 (1994).

137. H. Bassler, Phys. Rev. Lett. 58, 767 (1987). V. Arkhipov and H. Bassler, Phys.

Rev. E 52, 1227 (1995).

138. H. Z. Cummins and G. Li, Phys. Rev. E 50, 1720 (1994). H. Z. Cummins, W.M.

Du, M. Fuchs, W. Gotze, S. Hildebrand, A. Latz, G. Li and N.J. Tao, Phys. Rev. 47,

4223 (1993).

139. G. Parisi Slow dynamics in glasses, cond-mat/941115, cond-mat/9412034.

140. H-O Carmesin and K. Binder, J. Phys. A 21, 4053 (1988).

141. H. Rieger, Physica A 184, 279 (1992). H. Rieger and T. R. Kirkpatrick, Phys. Rev.

B 45, 9772 (1992). D.

�

Alvarez, S. Franz and F. Ritort, Phys. Rev. B 54, 9756 (1996).

142. A. Coniglio, J. Phys. IV, Colloq. C1 3, 1 (1993), Nuovo Cim. D 16, 1027 (1994),

Prog. Theor. Phys. (to be published).

143. D. Kivelson, S. Kivelson, X. Zhao, Z. Nussinov, G. Tarjus, Physica A 219 27 (1995).

144. P. Sollich, F. Lequeux, P. Hebraud, M. Cates; Rheology of Soft Glassy Materials,

cond-mat/9611228.

145. J.P. Bouchaud and M. M�ezard, J. Phys. I (France) 4, 1109 (1994).

146. J.P. Bouchaud and M. M�ezard, unpublished.

147. E. Marinari, G. Parisi, and F. Ritort, J. Phys. A 27, 7615 (1994).

148. E. Marinari, G. Parisi, and F. Ritort, J. Phys. A 27, 7647 (1994).

149. L. F. Cugliandolo, J. Kurchan, G. Parisi and F.Ritort, Phys. Rev. Lett. 74, 1012

(1995).

150. L. F. Cugliandolo, J. Kurchan, R. Monasson and G. Parisi, J. Phys. A 29, 1347

(1996).

64

http://xxx.sissa.it/abs/cond-mat/9412034
http://xxx.sissa.it/abs/cond-mat/9611228


151. P. Chandra, L. B. Io�e and D. Sherrington, Phys. Rev. Lett. 75, 713 (1995). P.

Chandra, M. V. Feigel'man and L. B. Io�e, Phys. Rev. Lett. 76, 4805 (1996).

152. P. Chandra, M. V. Feigel'man, M. E. Gershenson and L. B. Io�e, cond-mat/9610071.

P. Chandra, M. V. Feigel'man, L. B. Io�e and I. Kagan, cond-mat/9701122.

153. See also the interesting work by S. Obuhkov, D. Kobzev, D. Perchak, M. Rubinstein,

and C. Reuner, H. L�owen, J.L. Barrat on rotating hard rods (preprints, 1995).

154. G. Aeppli and P. Chandra, Science, 10 January 1997.

155. G.P. Tsironis and S. Aubry, Slow relaxation induced by breathers in nonlinear lattices,

Saclay-preprint (1996).

156. M. J. E. Golay, IEEE IT 23, 43 (1977), IEEE IT 28, 543 (1982).

157. J. Bernasconi, J. Phys. (France) 48, 559 (1987).

158. W. Krauth and M. M�ezard, Z. Phys. B 97, 127 (1995).

159. W. Krauth and O. Pluchery, J. Phys. A 27, L715 (1994)

160. A.B. Bortz, M.H. Kalos and J.L. Lebowitz, J. Comput. Phys. 17, 10 (1975).

161. S. Mertens, J.Phys. A 29, L473 (1996)

162. H. Horner, Z. Phys. B 86, 291 (1992).

163. G. Migliorini and F. Ritort, J. Phys. A 27, 7669 (1994).

164. M. M�ezard and G.Parisi, J. Phys. A. 29, 6515 (1996).

165. R. Kraichnan and S. Chen, Physica D 37, 160 (1989).

166. R. Kraichnan, J. Fluid Mech. 7, 124 (1961).

167. For a review, see O. Bohigas and M.J. Giannoni, inMathematical and computationnal

methods in Nuclear Physics, Ed: J.S. Dehasa, et al., Springer-Verlag (1983).

168. J.P. Bouchaud, A. Comtet, C. Monthus, J. Phys. I (France) 5 1521 (1995). See also

T. Odagaki, Phys. Rev. Lett. 75, 3701 (1995).

65

http://xxx.sissa.it/abs/cond-mat/9610071
http://xxx.sissa.it/abs/cond-mat/9701122

