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Motivations

Better understanding limits of (robust) algorithms in
performing fundamental tasks in optimization and
inference

Minimizing/maximizing a complex function:

e solving any optimization problem

e training a neural network

e inferring via the likelihood

Sampling a complex probability distribution

e inferring via the posterior

o out of equilibrium glassy physics



Ensembles of random problems

No worst case analysis
Typical case analysis -> statistical mechanics

Ensemble of randomly generated problems depending on
few key parameters (e.g. mean degree of a random graph)

Tuning parameters one can

e vary the hardness of random problems

e undergo phase fransitions

Learn from hardest random problems

Look for a connection between algorithmic complexity
and phase transitions



Which algorithms?

e Large and sparse random models (no AMP et simila)

e Two classes of algorithms

e Belief Propagation run on a specific graph:
- exact in some phases
- Bayes optimal (if properly initialized)
- not very robust on non-random graphs

e Monte Carlo based algorithms:
- (Replicated) Simulated Annealing, Parallel Tempering, ...
- very robust

Their limits are mostly unknown (working in the regime of
times scaling linearly in the system size)



Monte Carlo based algorithms

Aim: minimize E(o)

Run MCMC sampling from Pr (o) o exp|—FE(o)/T]

Send T' — 0 and try to find the state of lowest energy
Simulated Annealing (SA)

oo !
Replicated Simulated Annealing (RSA)

oo !
Parallel Tempering (PT)
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Random Constraint Satisfaction Pb.

Find a configuration of N variables that satisfies M = aN
constraints, randomly generated

Examples: random k-SAT, random graph g-coloring, ...

key parameter: the mean degree of the random graph
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phase transitions & algorithms

>

“easy IRERENN Bp-based alg. Semerjian, RT JSTAT 2009
" easy BRERENN sampling uniformly solutions by MC

heuristic smart algorithms: message passing alg. (SID, BSP),
Monte Carlo based, biased random walks (FMS, ASAT)



phase transitions & algorithms

e Key observation: smart algorithms do not sample
solutions uniformly (they never find frozen solutions)

e Conjectured ultimate algorithmic threshold is o

e Uniform measure over solutions not very useful to

understand algorithms -> better biasing the measure
(see Robust ensemble in Zecchina's talk)



Biasing the measure: a first attempt
Budzynski et al. JSTAT 2019

Random hypergraph bicoloring / NAE-k-SAT (k=5)
Uniform measure: oy = 9.465, a, = 10.46  Gabrié et al. JPA 2017

Simulated Annealing works until aqy =~ 9.6
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Algorithms & random CSP

Many phase transitions found

Several hints for the origin of the computational
complexity: dynamical phase transition, long range
correlations, frozen variables, glassy metastable states...

Exact connection between phase fransitions and
algorithmic threshold is lacking (but in few cases)

Smart algorithms find more easily solutions which are
more attractive/accessible (one should count basins of
attractions!)

Biased measured can be a good solution
..but the story is sftill long...



iteration steps

..meanwhile use Parallel Tempering
Angelini, RT PRE 2019

e Most robust and general purpose optimization algorithm

e Largest Independent Set in d-regular random graph
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Bayesian inference

e Teacher-student scenario

e the teacher chooses a ground truth =™ from the prior P,(x)
and a probabilistic model to generate the data P, (y|z™)

e the teacher provides the student with the prior P,(-),
the model P,,(:|-) and the data y

e the student uses Bayes formula to compute the
posterior probability distribution

P (ylz) Pp(x)
Z(y)

e student problem is then sampling or maximizing
the posterior probability distribution

Plx|y) =



Bayesian inference

e Statistical estimators are given in terms
of marginal probabilities

pi(zi) = Z P(x|y)

® C/IJ\Z — sz CL’Z/LZ(ZL’@) minimizes the MSE

e I; = argmax u;(x;) maximizes the MO

e« Computing marginal probabilities is as hard as
computing the partition function



Random sparse Bayesian inference

Examples: SBM, planted random graph g-coloring, ...
Given the random graph, infer hidden/planted structure

Bayes optimality

-> noise in the data = noise assumed in doing inference
-> Nishimori condition in statistical physics

-> replica symmetric free-energy

-> Belief Propagation (BP) returns the right marginals!



Phase transitions & BP thresholds

Decelle et al. PRE 2011
optimal (Bayes)
easily achievable (BP)
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Quiet planting in random CSP

Krzakala Zdeborova PRL 2009
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phase diagram & algorithmic hardness
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Glassy behavior in planted models

EUROPHYSICS LETTERS 15 August 2001

Europhys. Lett., 55 (4), pp. 465-471 (2001)
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Phase diagram for predicting MC behavior
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SA in planted models (q=5 coloring)
N =10> 7=10"

0.8

0.7

Q(T)

0.6

0.5

e(T)

04 r

0.3 r

0.2

0.1 F




Picture for SA in planted models

Paramagnetic state
Uninformative f.p.
Bayes/Nishimori ok
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Phase diagram for predicting MC behavior
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e(T)
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Analytical prediction of finite size effects

e Solution on the infinite tree -> thermodynamic limit
e BP on a given graph -> finite size effects (unexpected!)
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e(T)

Strong finite size effects (understood)
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Replicated SA

Proposed by Zecchina & co. to sample states of larger
entropy with higher probability

Very simple implementation
e R replicas ¢ with a=1,..., R

e energy function prefers replicas to be close by
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e ~=1in all next plots



RSA in planted random coloring (q=5)
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Replicated model: analytical results

Exact solution is costly: supervariables with ¢” values

Run BP on the replicated graph

(there are short loops!) L

For large y short loops
become weaker

-> the BP threshold
coincides with RSA

For y>1 the glass transition is continuous

< [

Computations on the infinite tree returns badly wrong
thresholds (unless supervariables are used)



New critical lines for the replicated model

same threshold as BP
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Conclusions and perspectives

Analytic predictions for the algorithmic thresholds of
SA and RSA (for y large)

Mandatory fo consider the dynamical transition fowards
glassy states (not seen by AMP or BP)

Finite size effects can be studied via BP on finite graphs
Glass transition in replicated model (y>1) is continuous

Linear time MC algorithm work up to the boundary of
the hard phase. Can super-linear MC algorithm work
inside the hard phase?



Thanks!



