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Problem definition

Optimization problem

Find a configuration minimizing a cost function
H ()= number of violated constraints

With H,,;, = 0
Constraint Satisfaction Problem

Find a configuration of
N variables satisfying M constraints




g-colorability (g-COL) of a graph

1

N g-states Potts variables o; € {1,2,...,q}

M pairwise interactions avoiding monochromatic edges

H(3) =) 05, «— counts the number of edges
(if ) connecting vertices of the
same color




K-satisfiability (K-SAT)

N binary variables o, € {—1,1}
M constraints involving K variables each

each constraint (clause) prohibits 1 among the 2*
configurations of the K variables it contains, e.qg.

(07 Va4V oi3) forbids oy =F, 04 =T, o013=F

M
N Oi,(1) — Ja,l 0i,(2) — Ja,,2 Oi (K) — Ja,K
H(G) =S <>2 <>2 - Tia( >2

a=1




Looking for hard instances...

® Benchmarks for solving algorithms

® \NVhat makes an instance hard to solve?

o \Worst vs. typical case analysis

® These problems are NP-complete

- hard instances do exist

- nheed to find an ensemble concentrated on these




...In the case of SAT

K-SAT with K>2 is NP-complete (Cook "71)
but...

...formulas from the fluctuating K ensemble are
typically easy to be solved.

Hint: the hardness of a constraint is ~ 2%
satisfy first constraints with the smallest K

This ensemble undergoes a phase transition,
but when a solution exists it is typically easy to

find it




Random K-SAT

e M clauses (constraints) of fixed length K

® [or each clause:

- choose randomly K indices i4(1),...,%,(K)

- choose randomly .J, ; = &1 with prob. 1/2

(0'7\/5'4\/0'13)/\(0'1()\/5'13\/5'2)/\...




Random CSP

® random q-col
- (-coloring a random graph with M links

® random K-SAT

- M randomly generated clauses (constraints) of
fixed length K

(o =M/N |




SAT/UNSAT
phase transition

Kirkpatrick & Selman, Science '94
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SAT/UNSAT
phase transition
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Connection to
computational complexity

100000 I I I I I I
A N =100

N =150 .
10000 N =200 — Using a
Running _ complete

times solving

100 N algorithm

(DPLL)

10 I I I N
3 35 4 45 5 55 6 65 7

a=M/N
A good ensemble is random K-SAT with K>2
close to the critical point.
QS: Why? General rules for producing hard
instances? What happens by mixing K values?




Rigorous results

o Friedgut ('99): For any K there exist a
sequence a (N ) such that for N — oo

Psat(M/N = as(N) —¢) — 1
Psar(M/N = as(N) +¢) — 0

Numerically as(N) — o
Rigorously only bounds to a¢ are known.

Ve > 0

e All provably linear time convergent algorithms
stop working at some «, , well before o
E.g. for large K




A big gap!

SAT o UNSAT
polynomial | & & o o o

resolution

| > Q

v \4
bounds to o i

g,

10

172.65

- 2

20

95263

726813 -

QS: What happens in the gap?

Can we find an algorithm with o, ~ o, ?




Stat. Mech. approach

—5H(0)
Pop(0) = 705) H% i (1)s -+ Tiy (k)

compatlblllty functions
(inference problems)

Limit T — 0, 8 — oo

? Oia (k))

iIndicator functions
number of solutions




Stat. Mech. approach

¢ Compute the free energy f(3) of Pog(d)
¢ Find phase transitions lowering temperature

e Compute ground states of H(7)
inthe limit 7' — 0, 8 — ¢

- IS EGS =07
- structure of solutions space ?

- phase transitions varying o ?

® (Connections to computational complexity...




The role of the disorder

® [ (o) depends on the RANDOM factor graph

- annealed average In (Z)

- quenched average In(Z)
 Annealed bound: Ngg=2"(1-2"" M

typical GS entropy = %111/\/@3 < In(2) + aln(1 — 25)

In(2)
= Tin(1— 2 5),




Stat. Mech. approach

If the factor graph is locally tree-like,
we use Bethe approximation to compute

Z(3) = Z o~ BH(G) _ ,—BfN

—

o)

M
Z=> TITa @iy i)
g a=l




Cavity calculation

Mézard & Parisi, EPJB '01

Compute single variable marginals in the absence
of a neighbor, P, \ ;(o;). For pairwise interactions

and full marginals by summing over k£ € V(i)

Pi(o;) Z H Py \i(ok)Y(0i, o)

10k tkev) kEV (7)

Estimate free-energy via Bethe aproximation




Why does cavity method work?

e (Cavity equations are exact on a tree

@Eﬁb’éﬁ) independent without vertex i
N7

P(O’l,O'Q,O'g) = P(O’l)P(O'Q)P(O'g)

e Random structures are locally tree-like

- N -




Factor graph representation

-3

Q p ? () variable nodes
@ check nodes
a e

(constraints)

Ug—i

Pz',a(a-fi,) 0.6 exp[@ua_)iai]

T~

(
\hi—>b
b Pi,\b(a-z') X exp[ﬁhiﬁbai]

P;(0;) o< exp {ﬁ Z uaﬁiai}

acV (1)



RS cavity formalism

One equation
per link of the

fHPj—atjeviani; ja) factor graph

Free energy: Bethe approximation on the factor graph

The method works for a given instance!!




<

RS cavity formalism

(. .
1—b One equation

per link of the

\Ua—i f({hj—a}jevianiJa)  factorgraph

l

eﬁua_>@07: X Z Heﬁhj_}aajwa(aia {Oj})
{oi} 7

Free energy: Bethe approximation on the factor graph

The method works for a given instance!!



L ack of factorization

Even for |i — j| — oo
Pij(aia Uj) 7 Pi(Ui)Pj(Uj)
because of many states.

E.g. ferromagnets for T < T,

(0i05) = mg # (0i){05) =0

1
§P7;j(0'i,0'j| I) sz(0-270-3| )

3 Piail+)Py{o;1) + 5 Puoil )Py

P;i(o;,0;)




Cavity with many states

For |i — j| — ¢

Pij(04,05) = Zwapia(gi)qu(Jj)

States are exponentially many

confiqgurational entro
N(E) = eNHE) — () or Co?nplexity >

Aim: compute X(e)

»(0) < 0 = UNSAT




Counting the states

Aim: compute X (f,T) such that N'(f,T) = eV=+(/-T)




Counting the states

Aim: compute X (f,T) such that N'(f,T) = eV=+(/-T)

Define the replicated free-energy ®(m, T')
—BmP(m, )N _ Z 7z = /e—ﬁmfN—i—NEf(f,T)df

v




Counting the states

Aim: compute X (f,T) such that N'(f,T) = eV=+(/-T)

Define the replicated free-energy ®(m, T')
—BmP(m, )N _ Z 7z = /e—ﬁmfN—i—NEf(f,T)df

and by the Legendvre transform
Zf(fv T) — 6mf — 6mq)(m7 T)‘fzam(mcb)




Counting the states

Aim: compute X (f,T) such that N'(f,T) = eV=+(/-T)

Define the replicated free-energy ®(m, T')
—BmP(m, )N _ Z 7z = /e—ﬁmfN—i—NEf(f,T)df

and by the Legendvre transform
Zf(fv T) — 6mf — 6mq)(m7 T)‘fzam(mcb)
For T' — O with 6m = u
Ye(e) = pe — pu®(p)|e=o, (uo)

m is the Parisi parameter




Populations of messages

® (On each link of the factor graph:
- O0ONne message u or h per state

- many states —> population of messages

e Extra re-weighting factors depending on m




Populations of messages

® (On each link of the factor graph:
- O0ONne message u or h per state

- many states —> population of messages

e Extra re-weighting factors depending on m

Qui(u) ox / T dP—alh))o[u— f({hy}. Jo)]

jeV(a)\i

P;_y(h) oc/ H an_yL-(ua)(S[h — Zua} X

aceV (i)\b

w e Bm(2g [tal =224 ual)




A simpler case:
random K-XORSAT

Ricci-Tersenghi, Zecchina & Weigt, PRE ‘01
Mézard, Ricci-Tersenghi & Zecchina, JSP '03
Cocco, Dubois, Mandler & Monasson, PRL '03

Like random K-SAT but replacing OR with XOR

(07 @04 @ o13) A (010 D O13 D T2) A ..

N

M parity checks over N variables




SAT/UNSAT phase transition
iINn random K-XORSAT
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Increase of computing times
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Structure of solutions space
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Structure of solutions space
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Structure of solutions space

0.18
0.16 |
0.14
0.12

0.8 . 9 . 1
| | Y

Q @— each cluster contains
Q e™V(5=>) solutions




Where are hard instances?

Easy phase Hard-SAT
running phase

times O(N)




Leaf removal algorithm

e while (there exists a vertex of degree 1)
remove it and the clause it belongs to

for a < ay G=(V,E)— (V,0)
for o > A g — (V, E) — (chEC)

® reconstruction procedure for a < ay:

- assign to any value the variables in V..

- add clauses in the reverse order and assign the
newly added variable to satisfy the clause




The core

Minimum degree 2

Point-like clusters at distance O(N)

No sample-to-sample fluctuations:
the annealed computation is exact
a solution exist as long as M. < N,

Long range correlations: hard to find solution
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Minimum degree 2
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The core

For a > ay

Minimum degree 2

Point-like clusters at distance O(N)

No sample-to-sample fluctuations:
the annealed computation is exact
a solution exist as long as M. < N,

Long range correlations: hard to find solution




The cavity solution




Cavity solution for
random K-SAT

Mézard, Parisi & Zecchina, Science '02




A problem with
the standard picture

Easy phase Hard-SAT UNSAT «
running phase

times O(N)




A problem with
the standard picture

Very simple algorithms can find
solutions well beyond o4!!

,\ //a\ \n W

d g

Easy phase Hard-SAT UNSAT o
running phase

times O(N)




Entropic effects at
very low temperatures

e taking first the limit 7" — 0

then f =e—T
f=e ° ok if e, > 0

Ly =€ T=e 7<:but|fe,y—0

= 1 always!




Entropic effects at
very low temperatures

e taking first the limit 7" — 0

then f=e—F

ok if e, > 0
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= 1 always!




Entropic effects at
very low temperatures

e taking first the limit 7" — 0

then f=e—F

ok if e, > 0

Zy =€ T=e 7<butif67:()

Z~ =1 always!
e consider only solutions (e, = 0)

f=-Ts Zy = e PN/ o eNon

larger clusters count more!




New replicated potential

Mézard, Palassini & Rivoire, PRL ‘05
Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova, PNAS '07

6N\If(frn) _ E :emN57+NZS(5’Y)
Y

U(m) = max [ES(S) + ms}

m = 0 — most numerous clusters
(like with the energetic method)

m = 1 — clusters dominating the measure
(if they exists, i.e. have > > 0)




How to compute dominating
clusters of solutions

0.04

0.03




6-coloring random regular graphs

Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova, PNAS ‘07

Krzakala, Zdeborova, PRE '07

-

degree=17,18,19,20 -
(from top to bottom)




6 coloring of regular random graph very low connectivity




6 coloring of regular random graph connectivity c=17




6 coloring of regular random graph connectivity c=18




6 coloring of regular random graph connectivity ¢=19




6 coloring of regular random graph connectivity ¢c=20




Random K-SAT revised

Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova, PNAS ‘07
Montanari, Ricci-Tersenghi, Semerjian, JSTAT '08

We have computed 3, (s, o) for K=3 and K=4

It is numerically very demanding: on each link
there is a population of messages, to be

updated and re-weighted at each iteration
step, until convergence.

For m=0 and m=1 equations simplify a lot

- simpler messages (couple or triples) per link




random 4-SAT

R
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random 4-SAT




random 4-SAT

large K
result




liquid

liquid with

Summary

sub-dominating clustered clustered UNSAT

(paramagnet)

clusters

liquid condensed no solution

RS oy, RS

d

8%

o

0y d1RSB ¢ S1RSB

I
‘ N og(k) ok

the largest k .
for large K = Qe ~ Q5 ~ 2




Frozen variables

6-coloring random
regular graphs

| — dominating
_ clusters

have frozen

1 variables

--- dominating
1 clusters do not
1 have frozen
| variables




random 4-SAT

unfrozen




random 4-SAT

unfrozen




random 4-SAT

unfrozen




Dall'Asta, Ramezanpour & Zecchina, PRE '08

s(m=0)~0007 @
sm=1)~0.016 O

s(BPR) ~ 0.021

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
S




Frozen variables for large k

Achlioptas, Ricci-Tersenghi, STOC '06

For £ > 9 and ar < a < ag every cluster has

2
at least (1 — —) N frozen variables.

k

4
For k — oo, af ~ 52k log(2)

Is af (which is a bound to as ) a threshold for
algorithms? Maybe yes, but... ar ~ 2% 1og(2)/k




Main open problems

e Stability of 1TRSB solutions (technical point)

® (losing the gap between algorithmic threshold
and SAT/UNSAT threshold

- improvements in analysis of algorithms
(decimation, reinforcement, etc.)

® Non-random structures, like those present In
real world problems

- beyond Bethe approximation (effects of loops,
Cluster Variation Method, etc.)




