Phase transitions and computational complexity a physicist point of view

Federico Ricci-Tersenghi Physics Department Sapienza University, Roma

in collaboration over the years with D. Achlioptas, A. Coja-Oghlan, F. Krzakala, M. Mézard, A. Montanari, G. Parisi, G. Semerjian, M. Weigt, R. Zecchina, L. Zdeborova

Question What makes a random constraint satisfaction problem hard to solve?

1 million dollars question ;-) (P vs NP)

Answer The structure of the solutions space

- Random CSP undergo phase transitions, that change drastically the solution space (proved)
- Connect behavior of solving algorithms to the structure of the solution space (first results...)

Random CSP

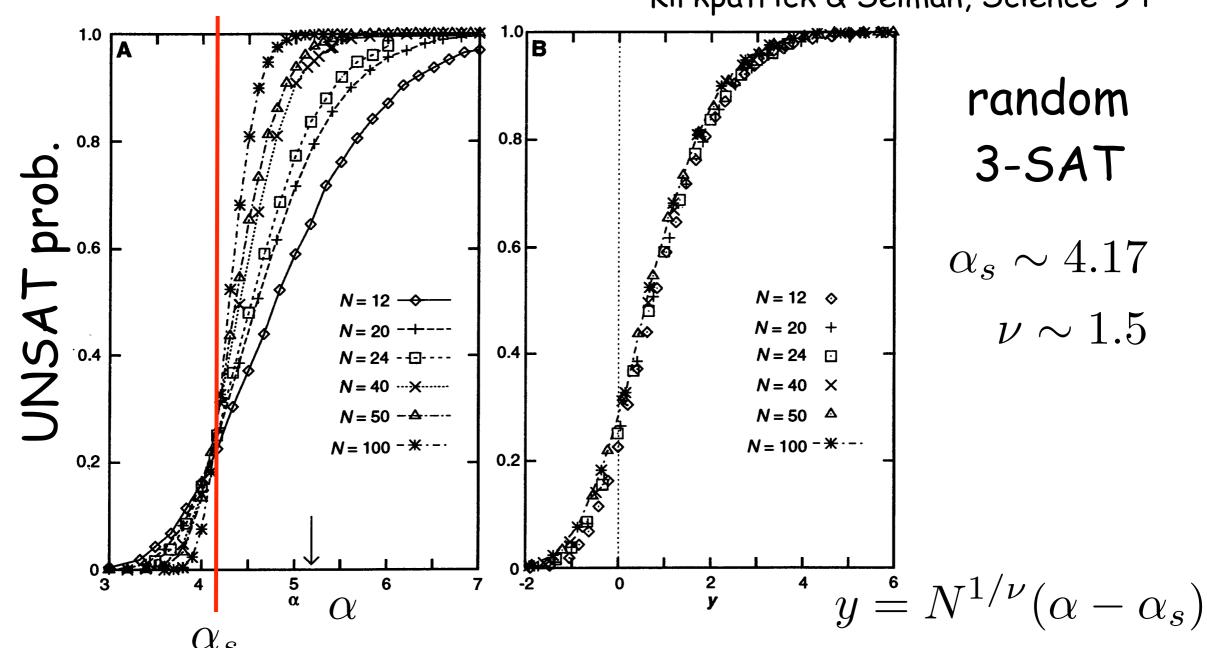
- random q-col
 - q-coloring a random graph with N vertices and M links
- random K-SAT

N Boolean variables and M randomly generated clauses (constraints) of fixed length K

$$\alpha = M/N$$

SAT/UNSAT phase transition

Kirkpatrick & Selman, Science '94



Connection to computational complexity



Rigorous results

• Friedgut ('99): For any K there exist a sequence $\alpha_s(N)$ such that for $N \to \infty$

$$P_{\text{SAT}}(M/N = \alpha_s(N) - \varepsilon) \to 1$$

$$P_{\text{SAT}}(M/N = \alpha_s(N) + \varepsilon) \to 0$$

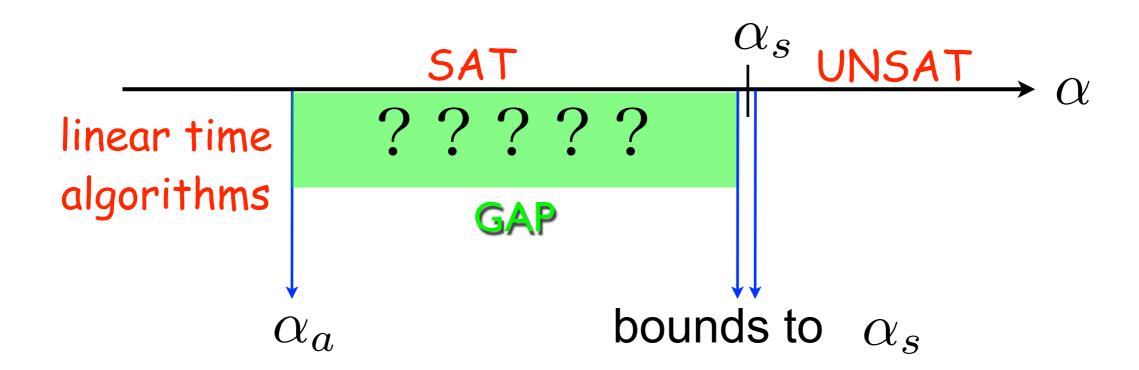
$$\forall \varepsilon > 0$$

Numerically $\alpha_s(N) \to \alpha_s$ Rigorously only bounds to α_s are known.

• All provably linear time convergent algorithms stop working at some α_a , well before α_s

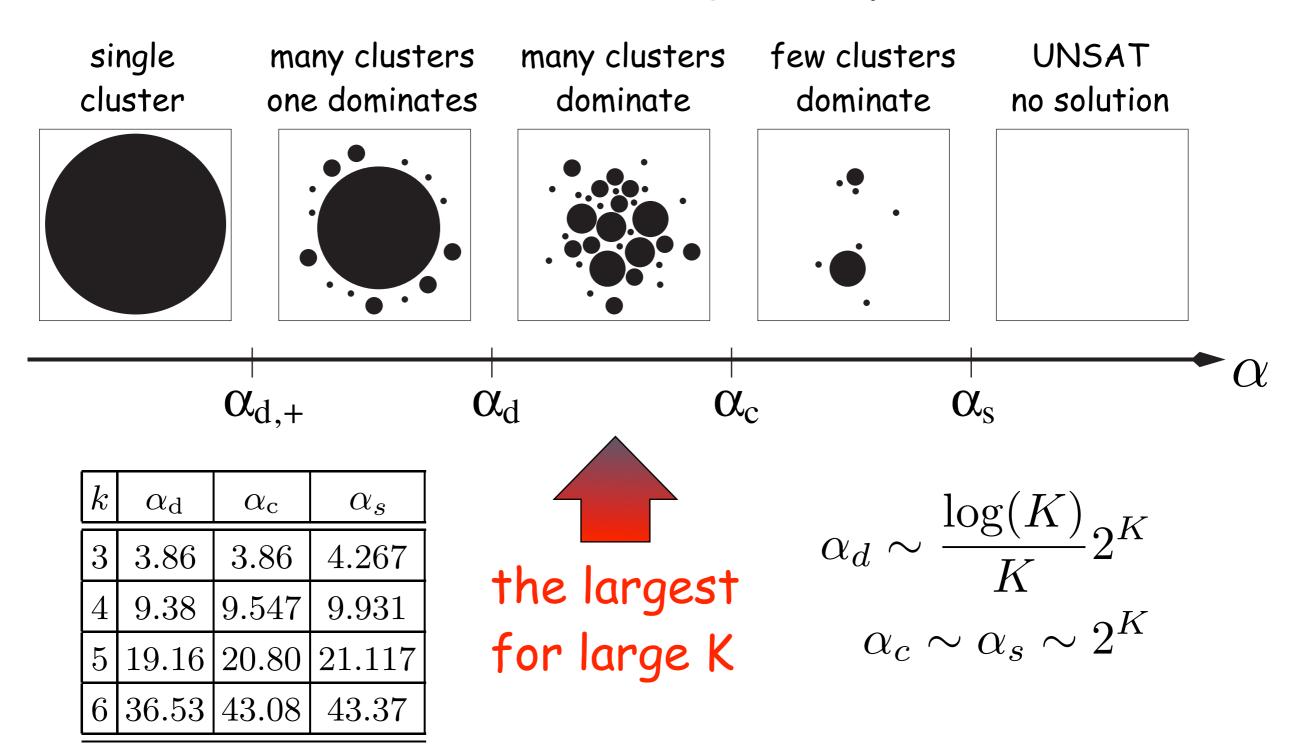
$$\alpha_a \le \frac{\ln K}{K} 2^K \qquad \alpha_s \simeq 2^K$$

A big gap!

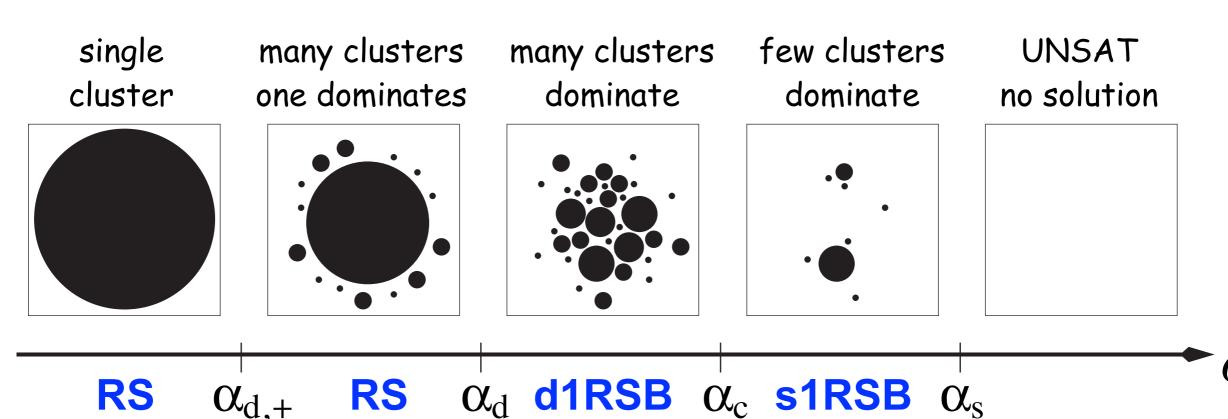


$oxed{K}$	α_a	α_s
10	172.65	707 ± 2
20	95263	726813 ± 4

Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova, PNAS '07



Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova, PNAS '07



k	$lpha_{ m d}$	$lpha_{ m c}$	α_s
3	3.86	3.86	4.267
4	9.38	9.547	9.931
5	19.16	20.80	21.117
6	36.53	43.08	43.37

the largest for large K

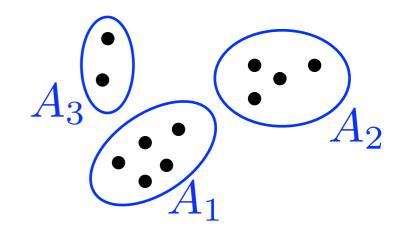
$$\alpha_d \sim \frac{\log(K)}{K} 2^K$$

$$\alpha_c \sim \alpha_s \sim 2^K$$

$$\mu(\vec{\sigma}) = \frac{1}{Z} \prod_{a=1}^{M} \mathbb{I}_a \left(\sigma_{i_a(1)}, \dots, \sigma_{i_a(k)} \right)$$

$$w_{\gamma} = \sum_{\vec{\sigma} \in A_{\gamma}} \mu(\vec{\sigma}) \qquad w_1 > w_2 > w_3 > \dots \qquad A_3$$

$$w_1 > w_2 > w_3 > \dots$$



- RS: most of the measure in a single cluster $\lim_{n \to \infty} w_1 = 1$
- d1RSB: the measure divides in $e^{N\Sigma^*}$ clusters
- s1RSB: the measure condensates in sub-exp number of clusters $\lim_{n o \infty} \lim_{N o \infty} \sum_i w_i = 1$

Random K-XORSAT

Ricci-Tersenghi, Zecchina & Weigt, PRE '01 Mézard, Ricci-Tersenghi & Zecchina, JSP '03 Cocco, Dubois, Mandler & Monasson, PRL '03

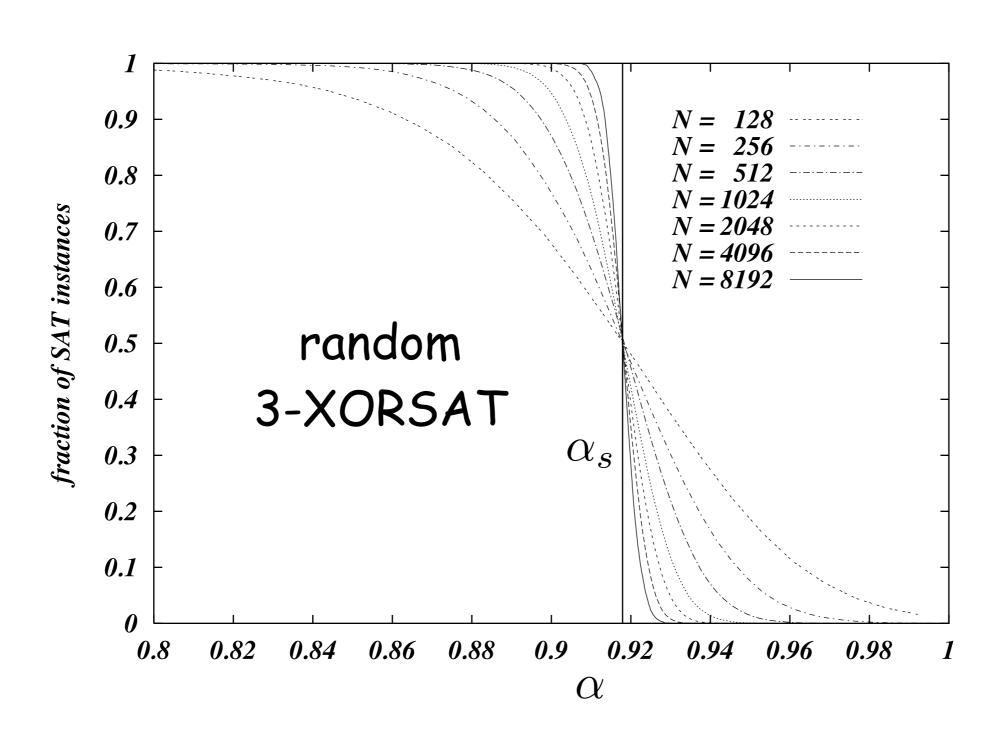
Like random K-SAT but replacing OR with XOR

$$(\sigma_7 \oplus \bar{\sigma}_4 \oplus \sigma_{13}) \wedge (\sigma_{10} \oplus \bar{\sigma}_{13} \oplus \bar{\sigma}_2) \wedge \dots$$

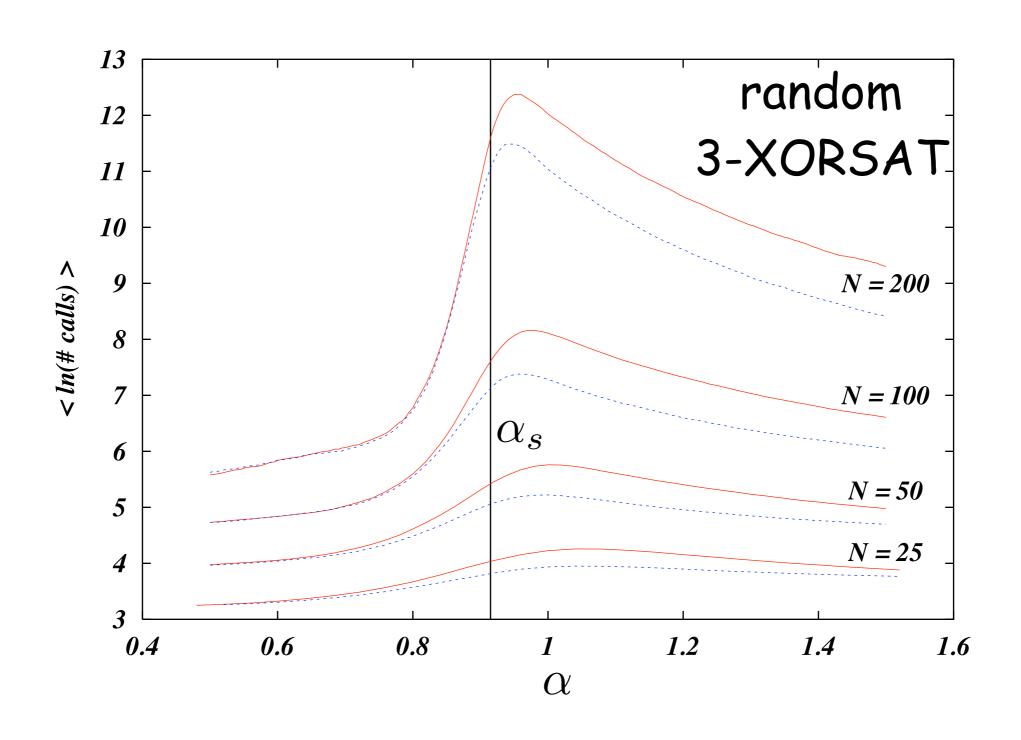
M parity checks over N variables

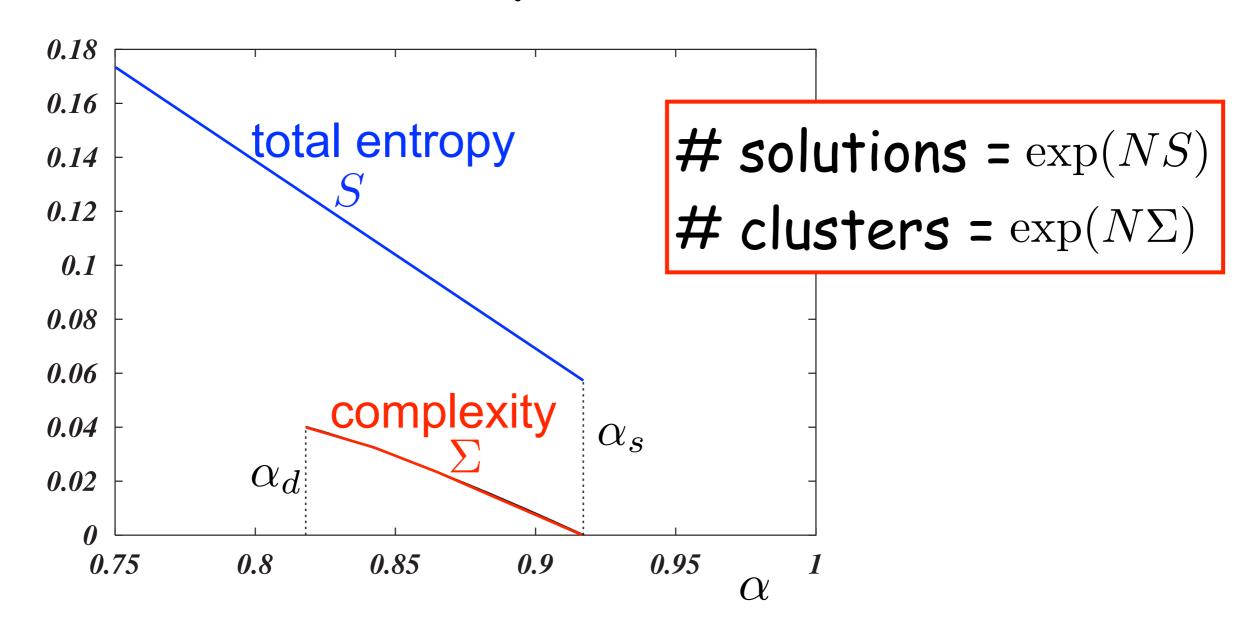
Equivalent to M linear equations in N binary variables

SAT/UNSAT phase transition in random K-XORSAT

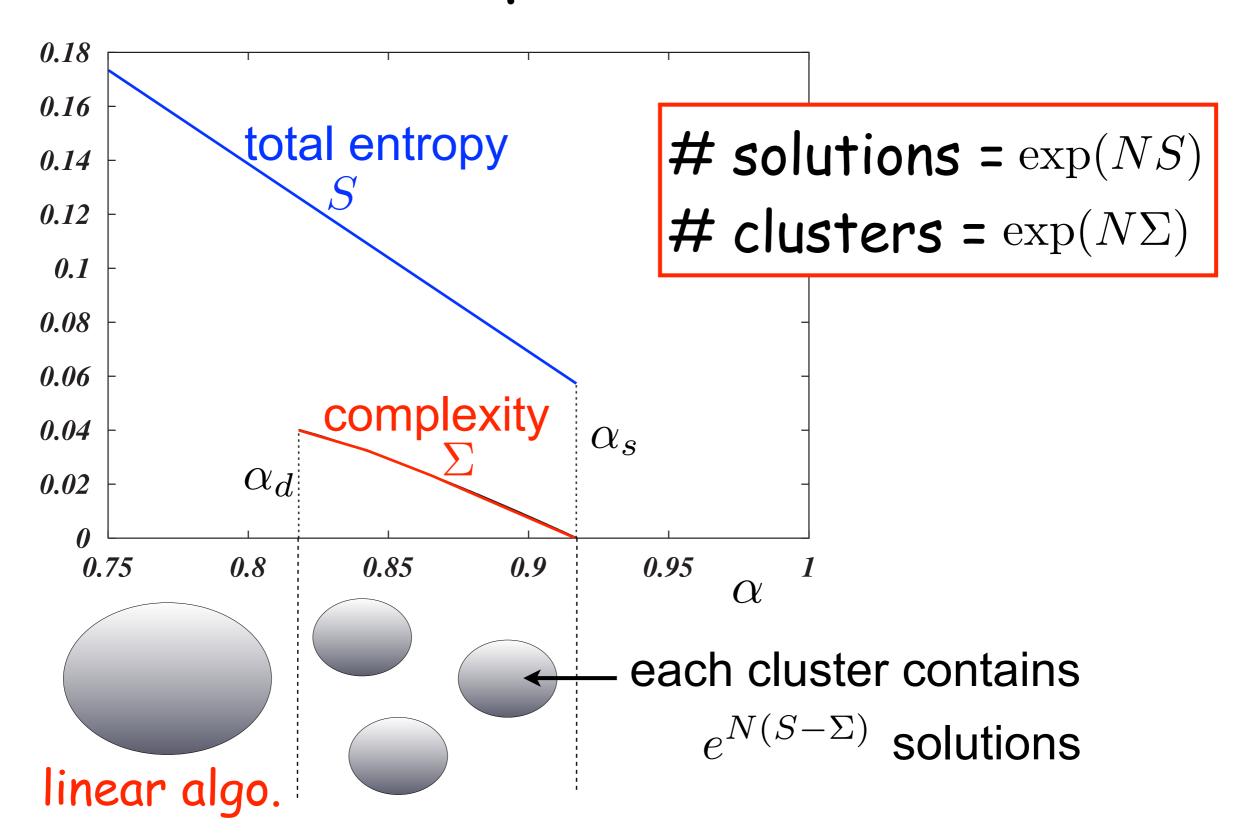


Increase in computing times









Leaf removal algorithm

while (there exists a vertex of degree 1)
 remove it and the clause it belongs to

for
$$\alpha < \alpha_d$$
 $\mathcal{G} = (V, E) \to (V_c, \emptyset)$ for $\alpha \geq \alpha_d$ $\mathcal{G} = (V, E) \to (V_c, E_c)$

- reconstruction procedure for $\alpha < \alpha_d$
 - ullet assign to any value the variables in $\,V_c$
 - add clauses in the reverse order and assign the newly added variable to satisfy the clause

For
$$\alpha \geq \alpha_d$$
 CORE

- N_c variables, minimum degree 2, M_c clauses
- $\exp(N\Sigma)$ solutions at distance O(N)
- long range correlations: hard to find solutions
- solutions exist as long as $M_c \leq N_c$

For $\alpha \geq \alpha_d$

- N_c variables, minimum degree 2, M_c clauses
- $\exp(N\Sigma)$ solutions at distance O(N)
- long range correlations: hard to find solutions
- solutions exist as long as $M_c \leq N_c$

For $\alpha \geq \alpha_d$

- N_c variables, minimum degree 2, M_c clauses
- $\exp(N\Sigma)$ solutions at distance O(N)
- long range correlations: hard to find solutions
- solutions exist as long as $M_c \leq N_c$

For $\alpha \geq \alpha_d$

- N_c variables, minimum degree 2, M_c clauses
- $\exp(N\Sigma)$ solutions at distance O(N)
- long range correlations: hard to find solutions
- solutions exist as long as $M_c \leq N_c$

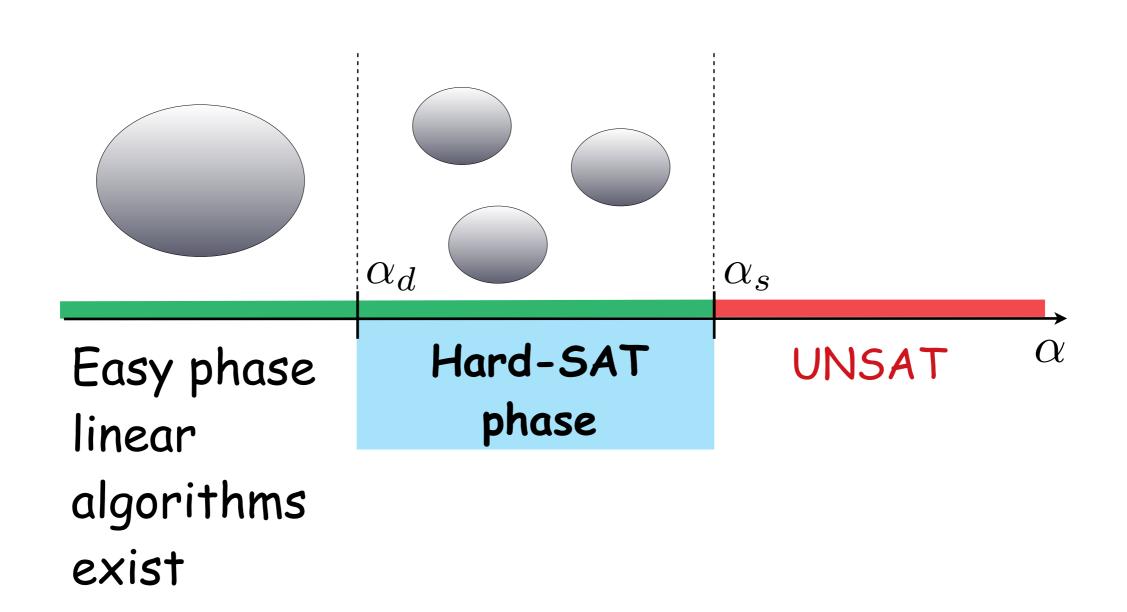
For $\alpha \geq \alpha_d$

- N_c variables, minimum degree 2, M_c clauses
- $\exp(N\Sigma)$ solutions at distance O(N)
- long range correlations: hard to find solutions
- solutions exist as long as $M_c \leq N_c$

For $\alpha \geq \alpha_d$

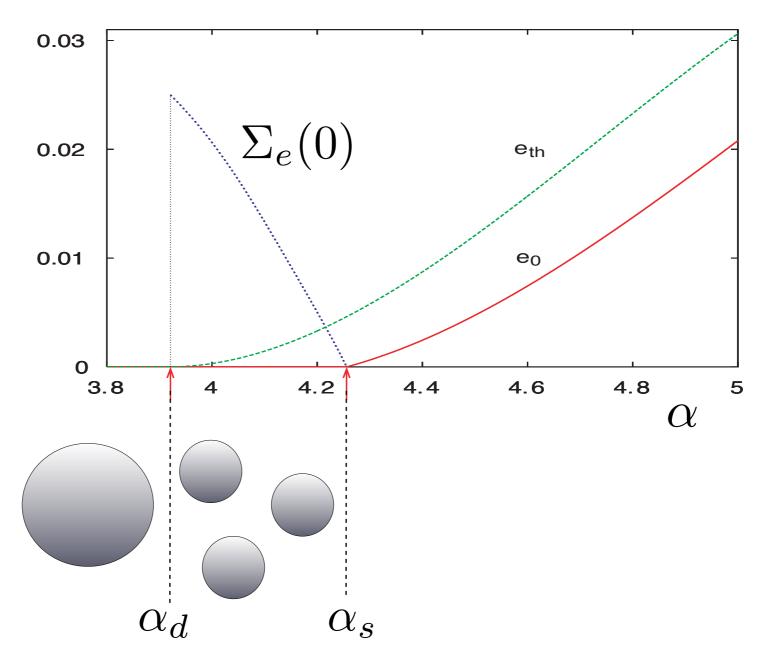
- N_c variables, minimum degree 2, M_c clauses
- $\exp(N\Sigma)$ solutions at distance O(N)
- long range correlations: hard to find solutions
- solutions exist as long as $M_c \leq N_c$

Where are hard instances? (random K-XORSAT)



(random 3-SAT)

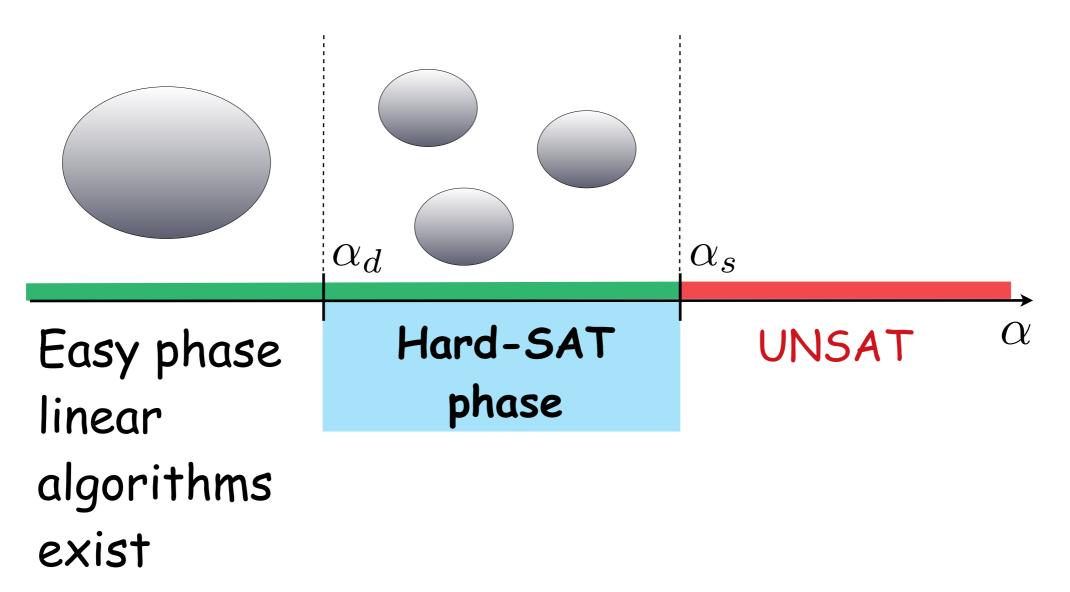
Mézard, Parisi & Zecchina, Science '02



Where are hard instances?

(random 3-SAT)

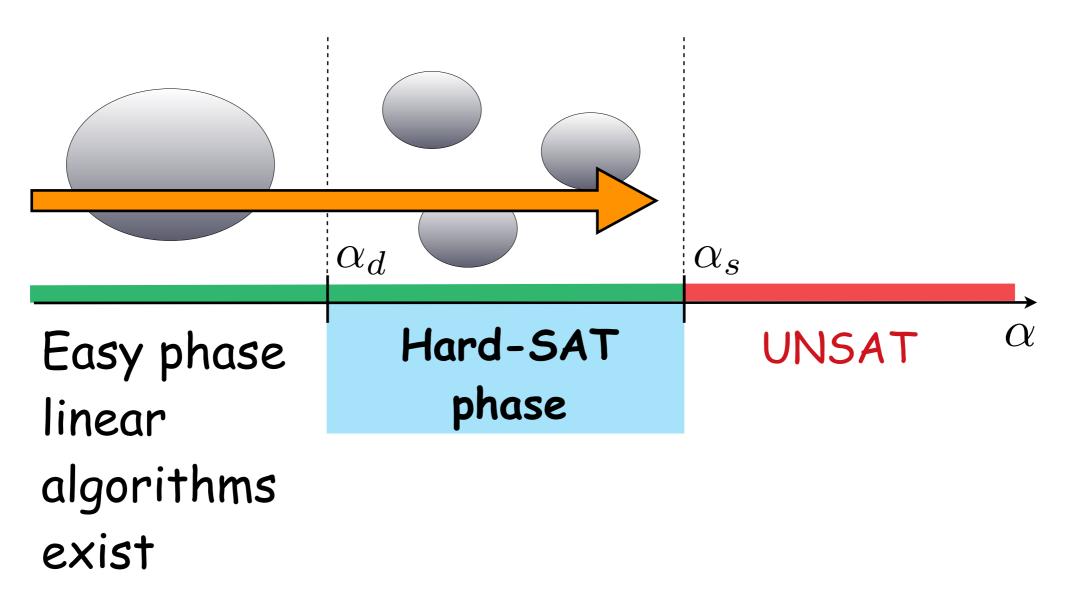
Mézard, Parisi & Zecchina, Science '02



Where are hard instances?

(random 3-SAT)

Mézard, Parisi & Zecchina, Science '02



Counting solutions clusters

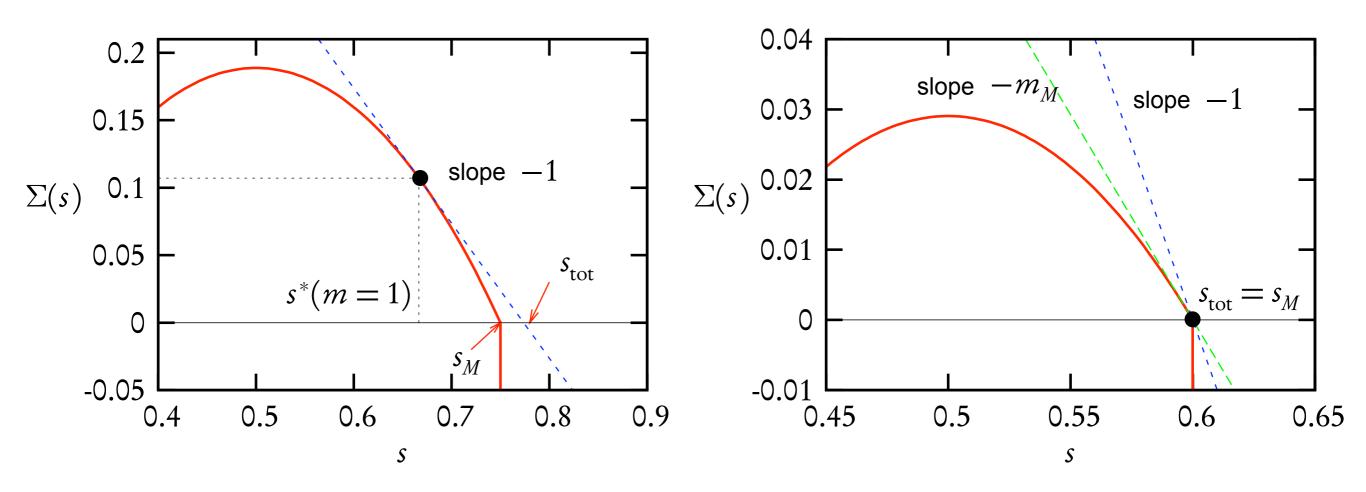
 $e^{N\Sigma(s)}$ = # clusters of size e^{Ns}

$$\sum_{s} e^{N[\Sigma(s)+s]} \simeq \exp\left(N \max_{s:\Sigma(s)\geq 0} [\Sigma(s)+s]\right)$$

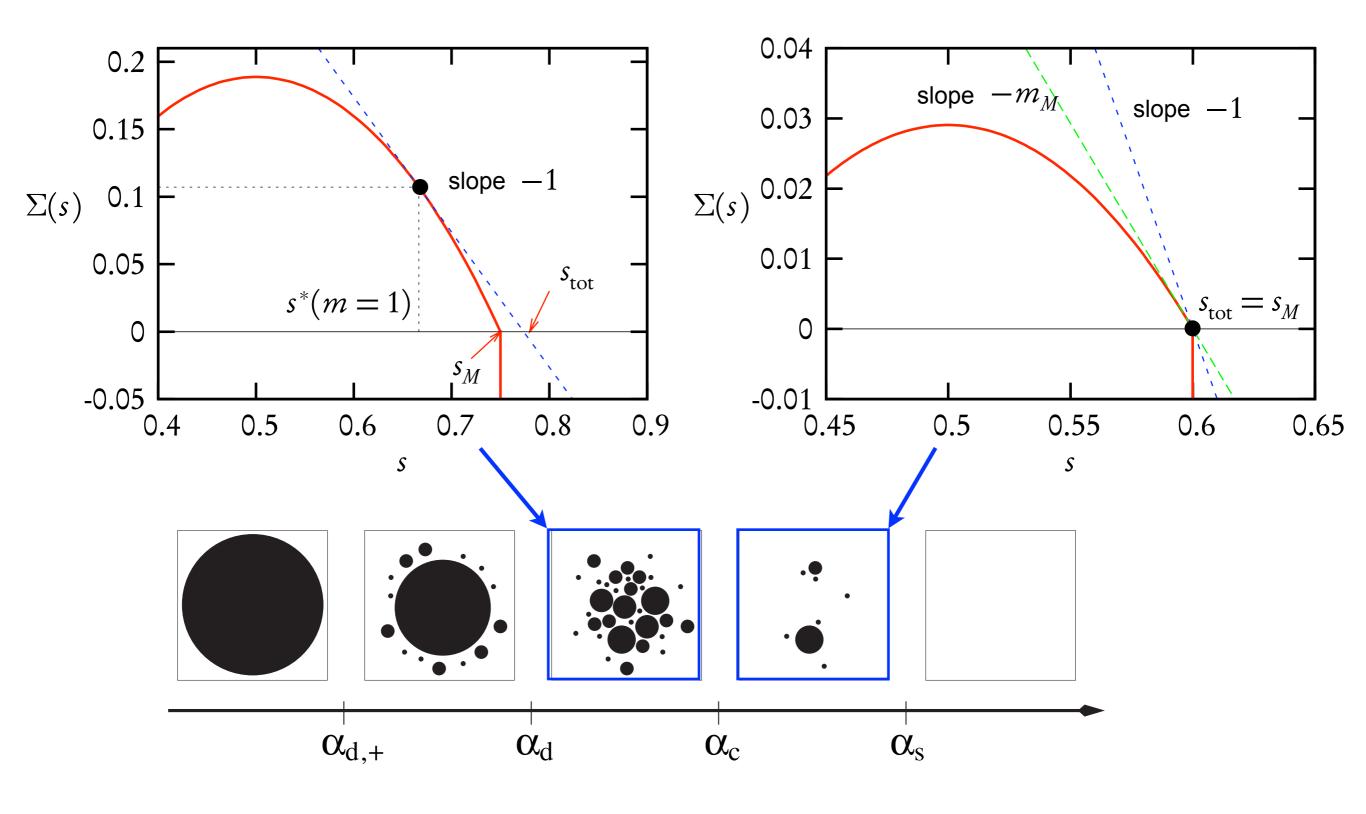
Dominating clusters have size e^{Ns^*}

$$s^* = \underset{s:\Sigma(s)\geq 0}{\arg\max} [\Sigma(s) + s]$$

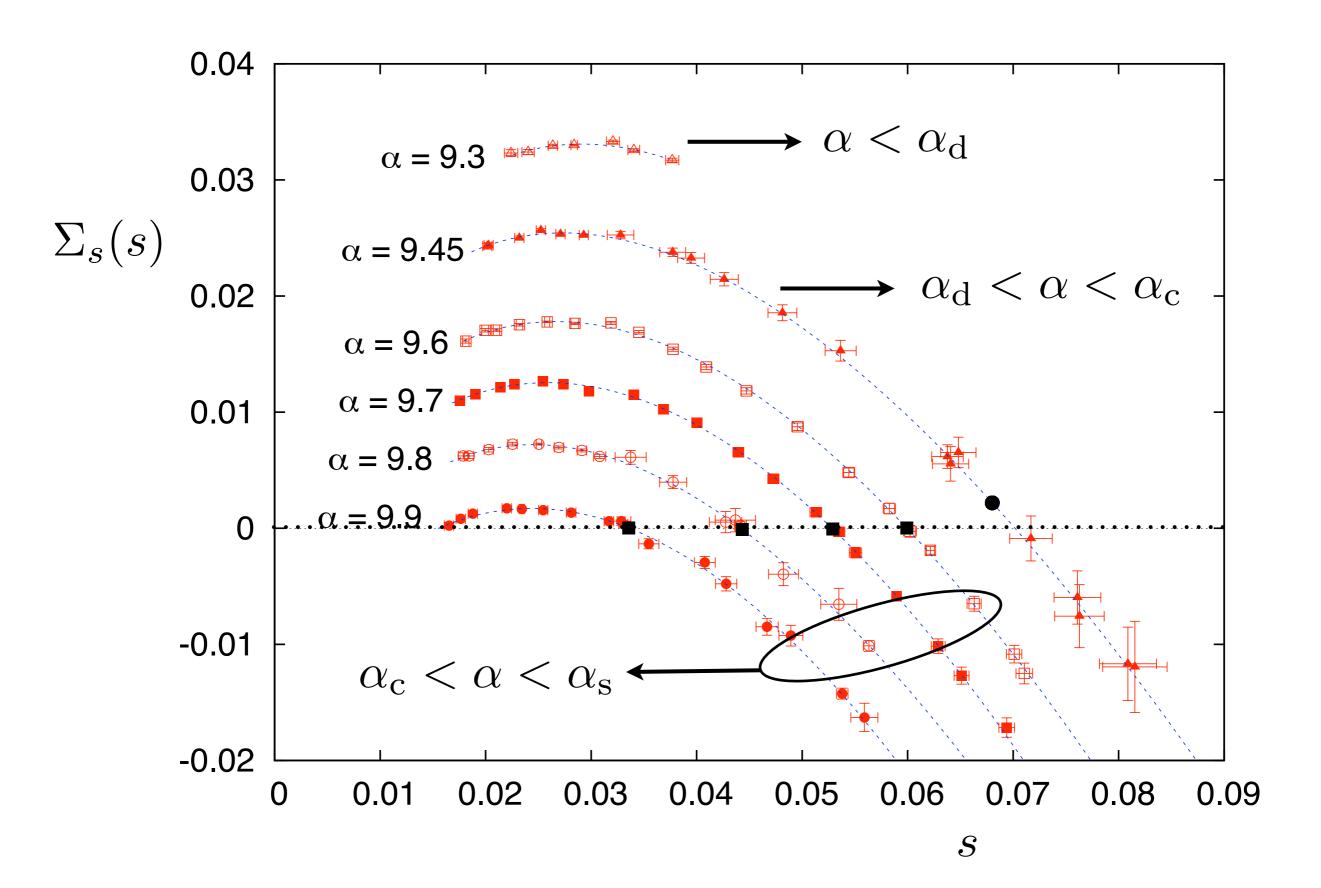
Counting solutions clusters



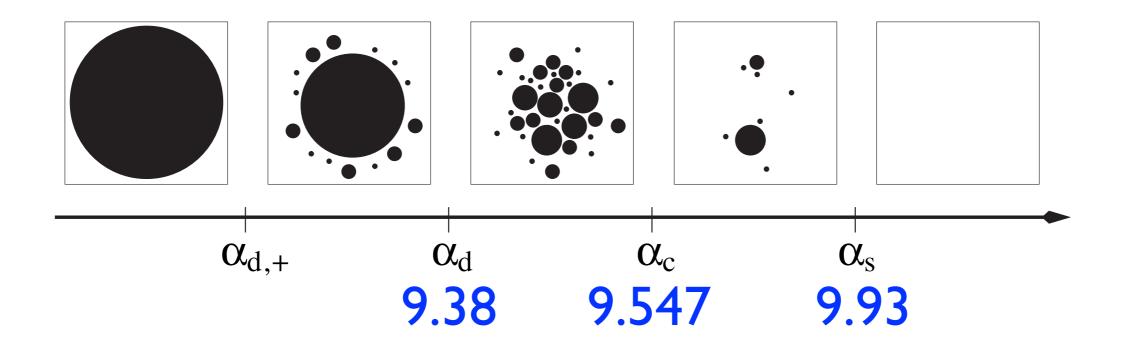
Counting solutions clusters



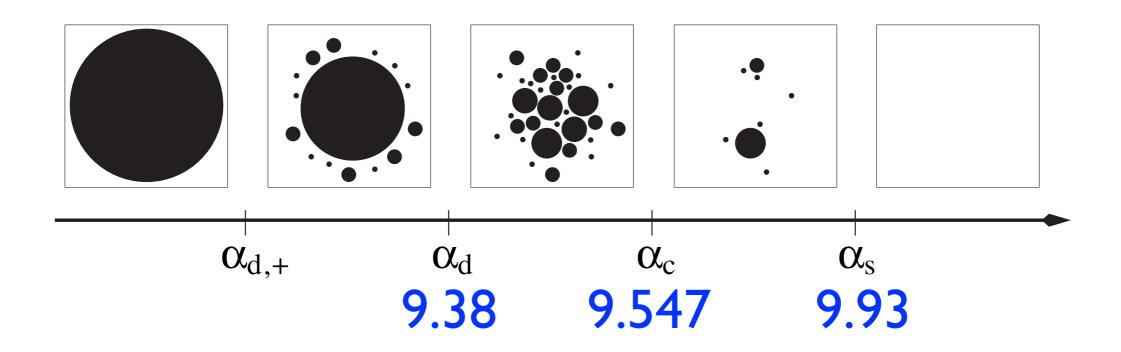
Random 4-SAT



Random 4-SAT



Random 4-SAT

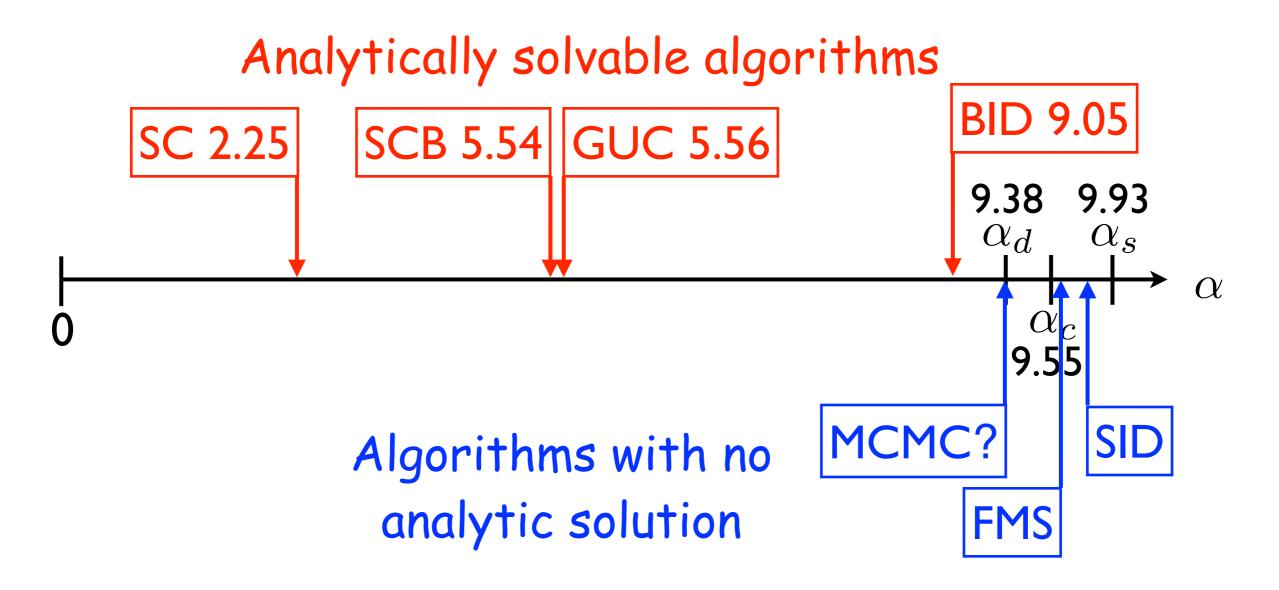


$$5.56 \le \alpha_{\rm a}$$
 rigorous bounds

 $7.91 < \alpha_{\rm s} < 10.23$

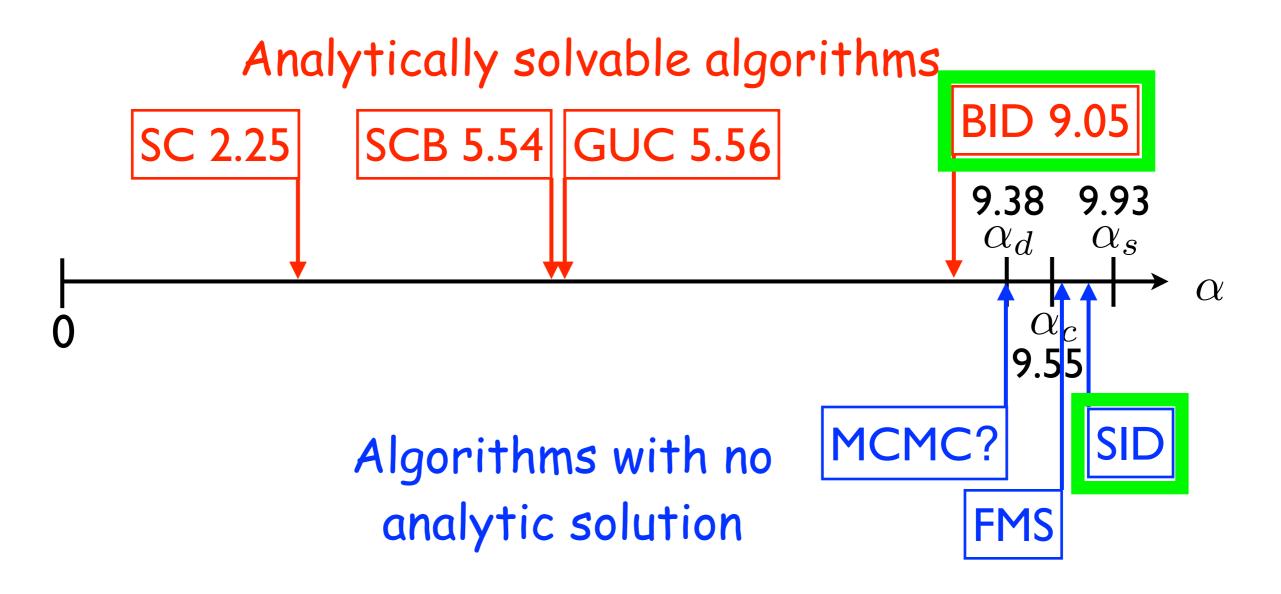
Algorithms performances

(random 4-SAT)



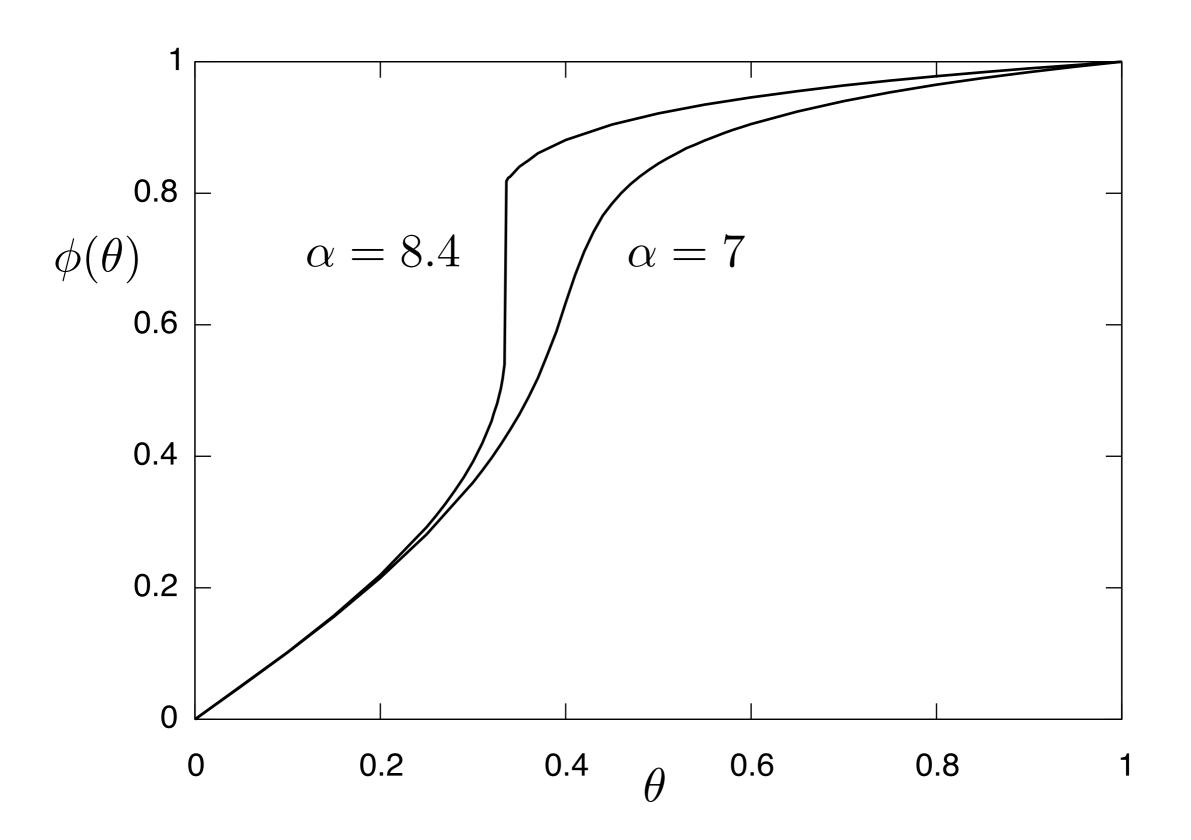
Algorithms performances

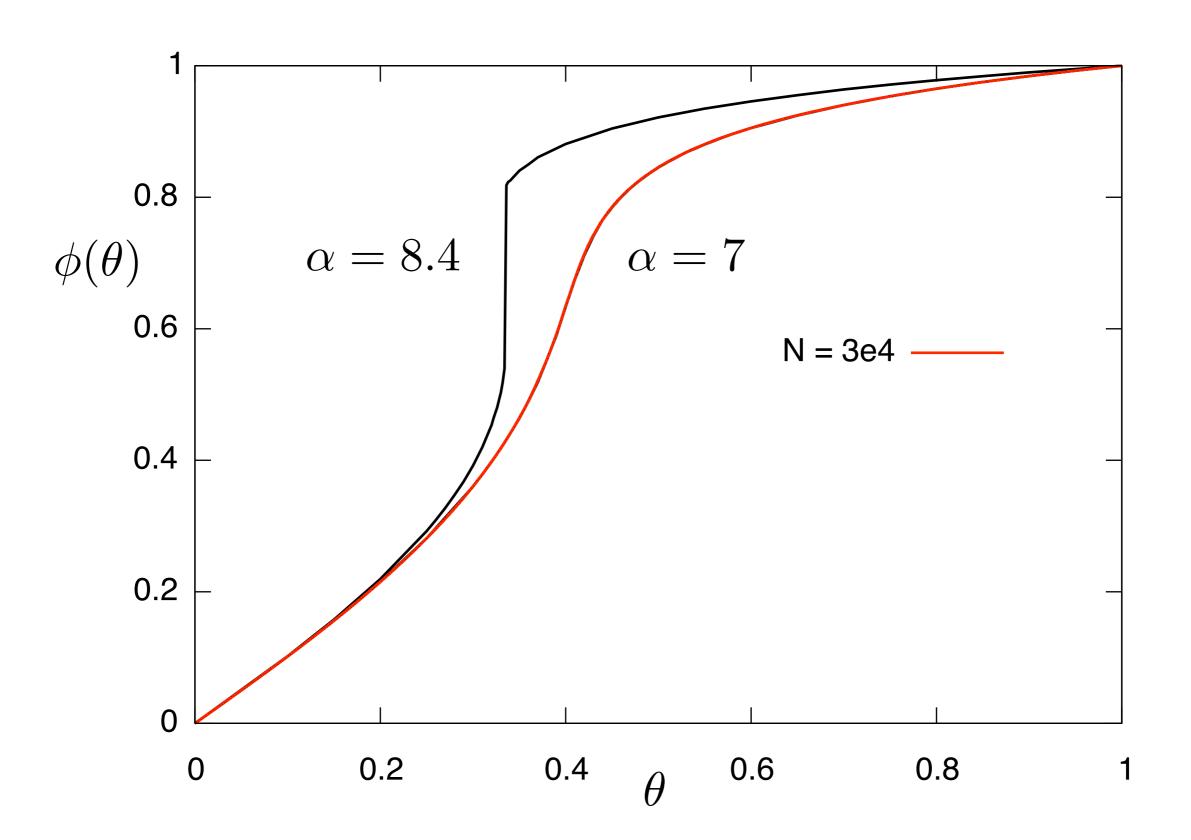
(random 4-SAT)

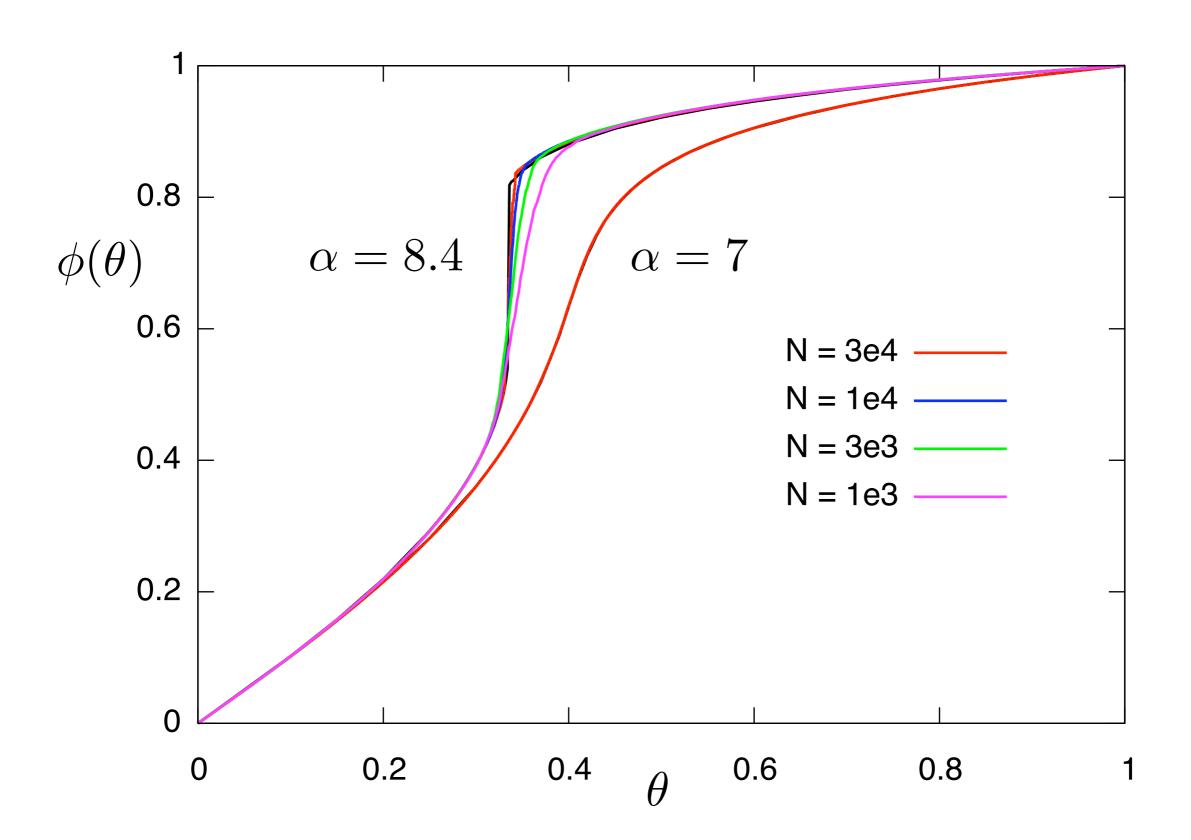


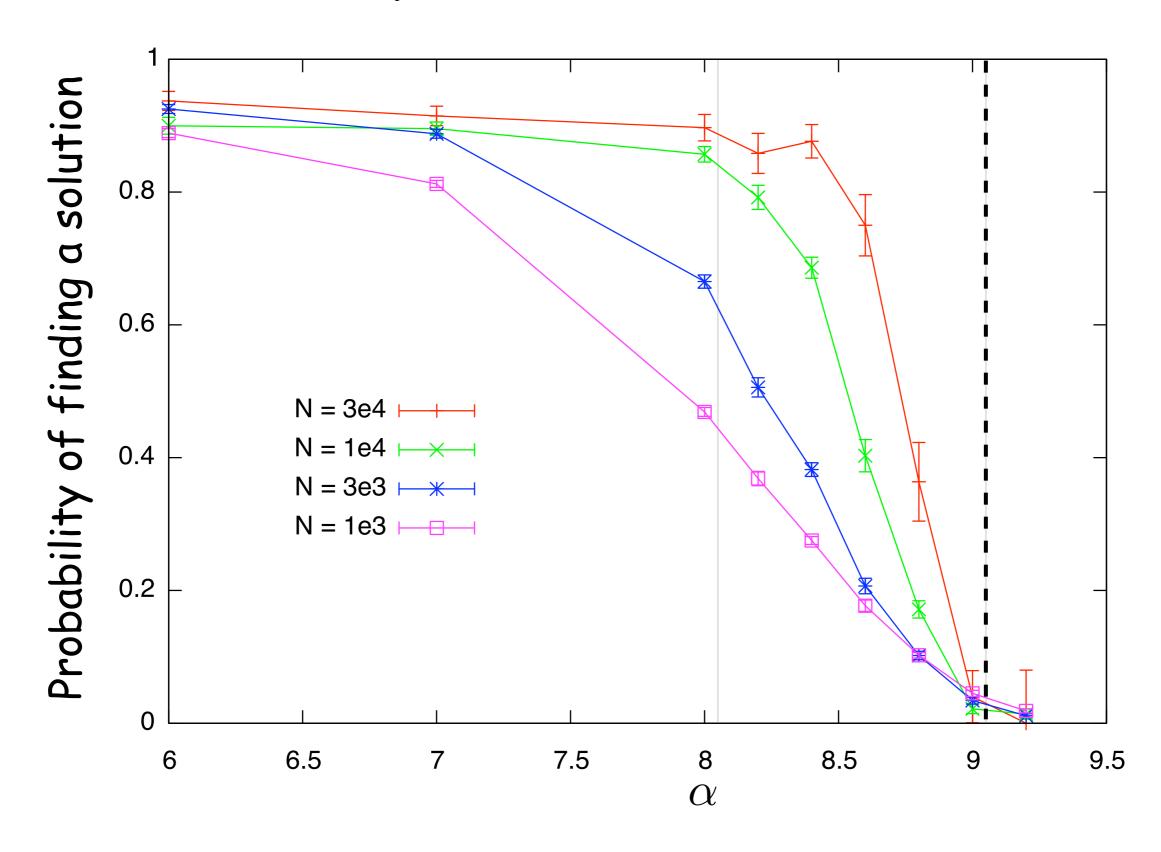
Beliefs/surveys inspired decimation (BID/SID)

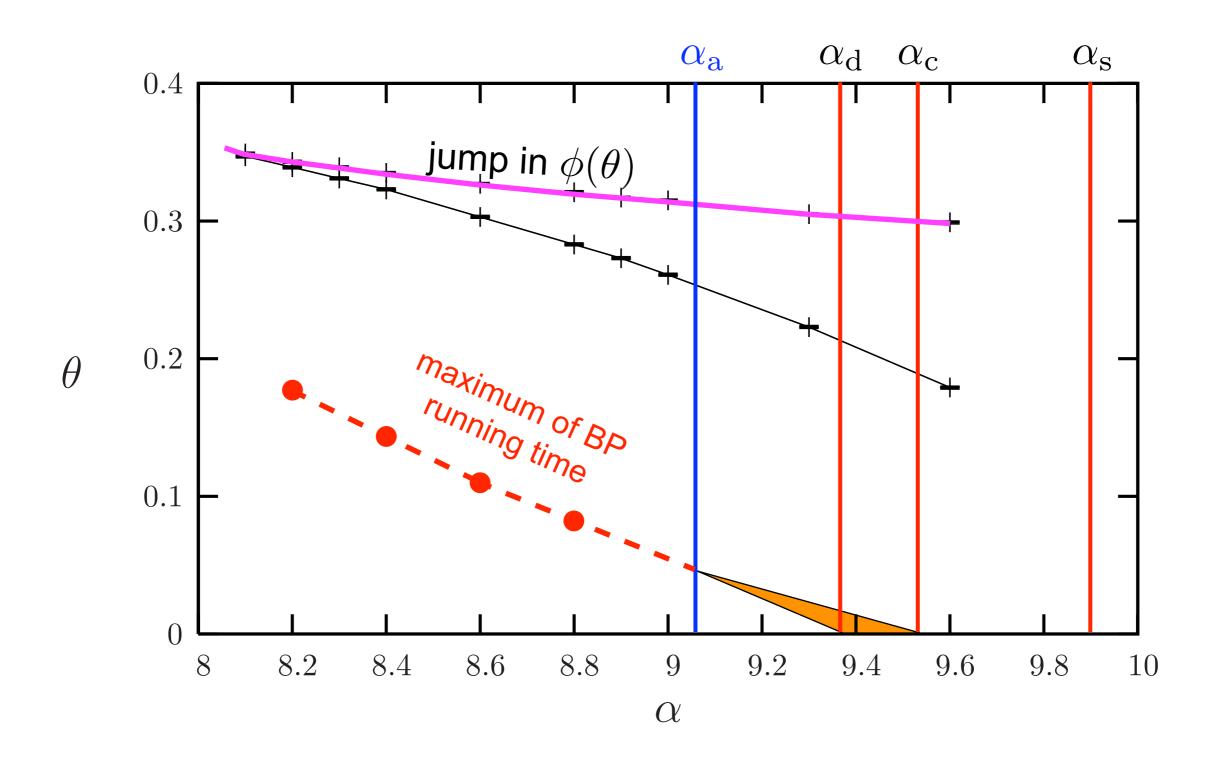
- while (there are unassigned variables)
 - compute marginals (with BP or SP)
 - choose an unassigned variable (randomly / the most biased)
 - fix it (according to its marginal / to the most probable value)
 - simplify the formula by UCP

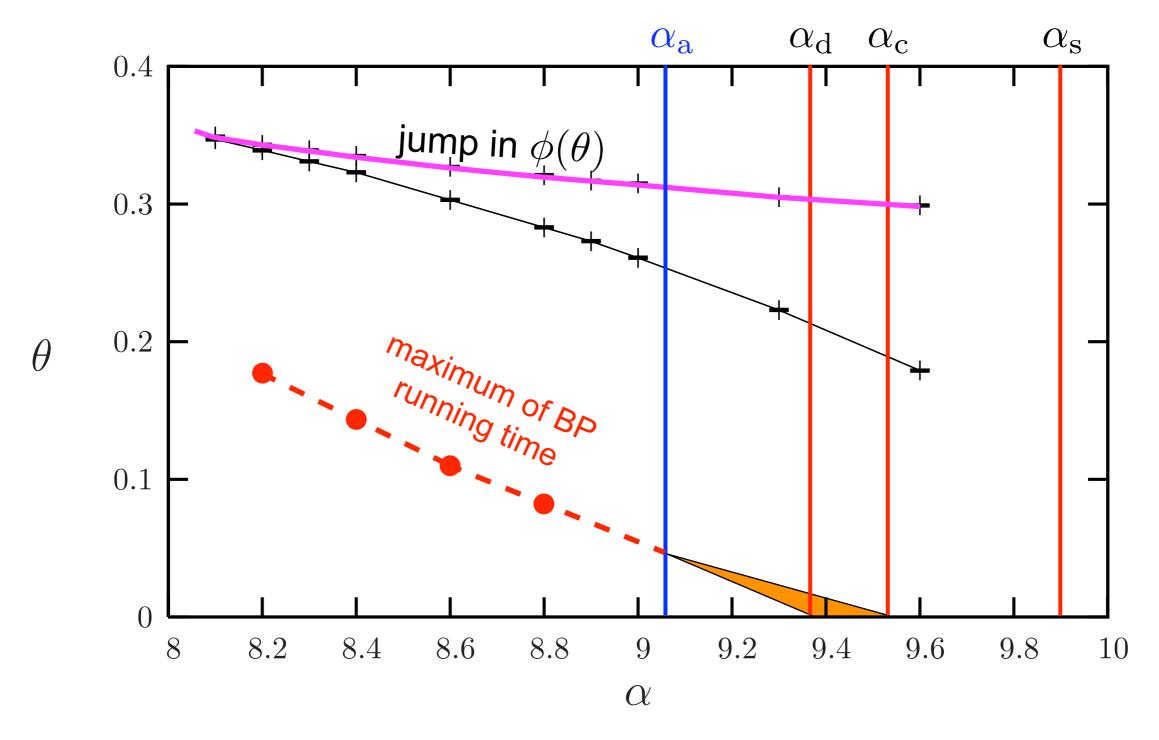












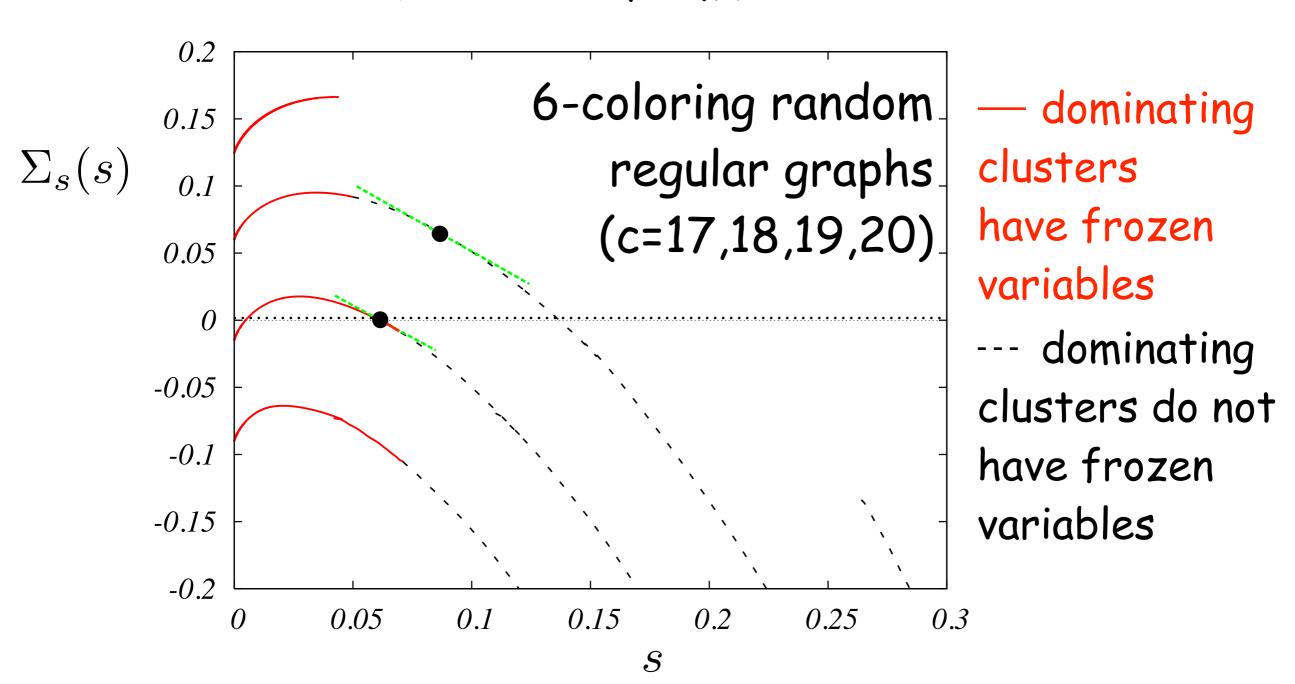
proved for large k in Coja-Oghlan, Pachon-Pinzon, arxiv:1102.3145

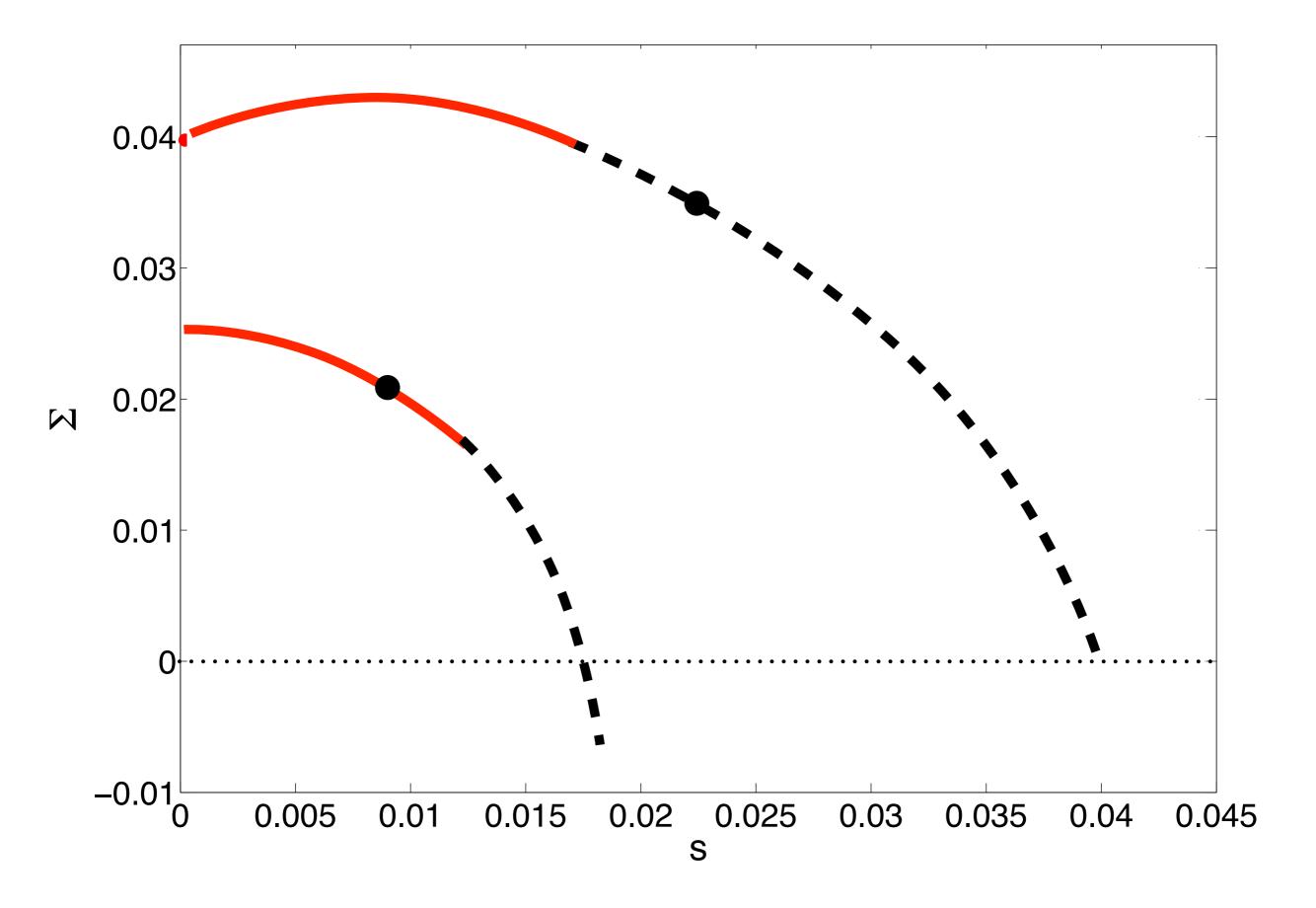
Solution space structure vs. algorithmic behavior

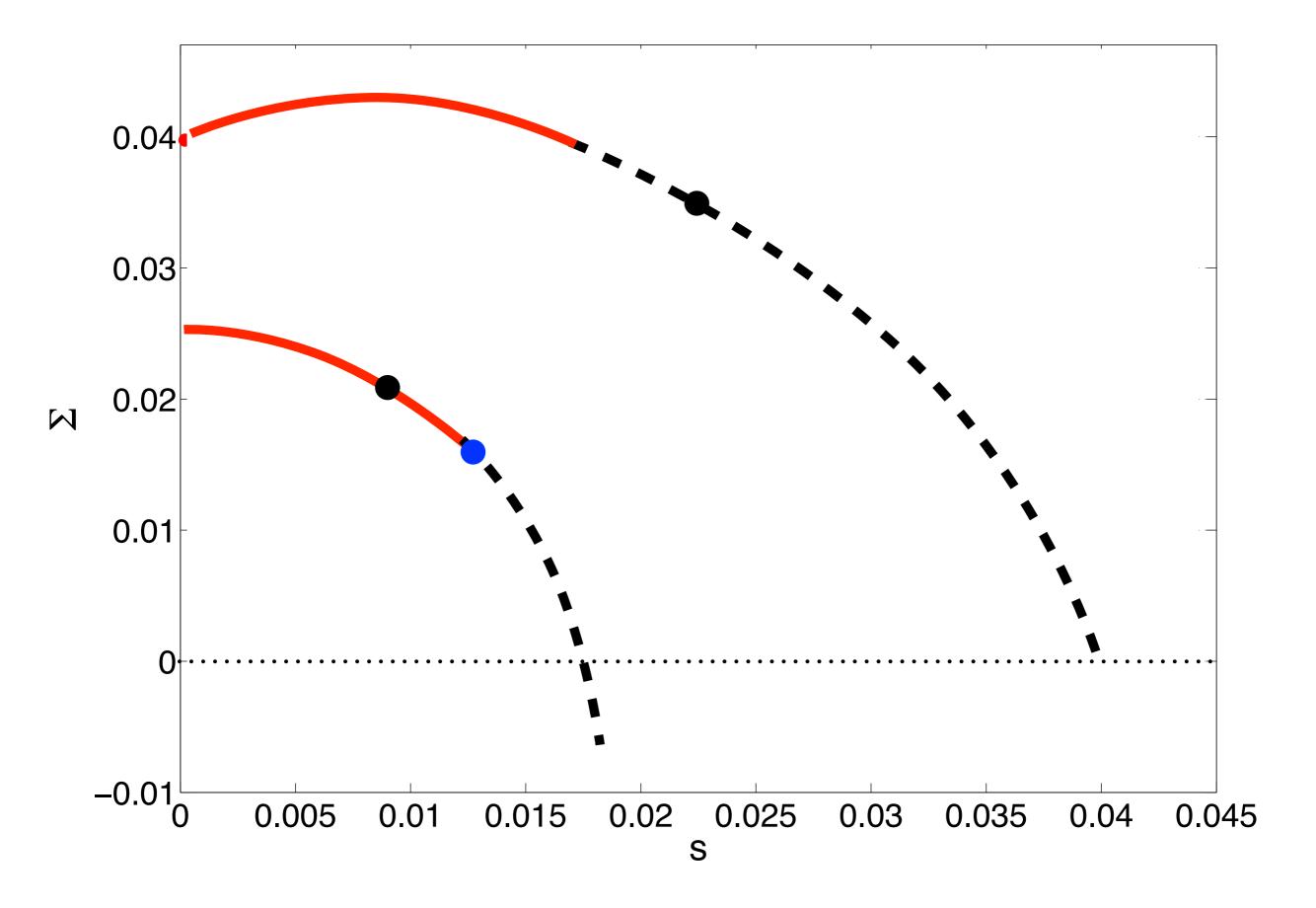
- Most algorithms are <u>local</u>: take decisions looking at a bounded neighbourhood
- If strong correlations develop between <u>distant</u> variables, local algorithms are deemed to fail
- Is the condensation threshold α_c the natural limit for local algorithms ?

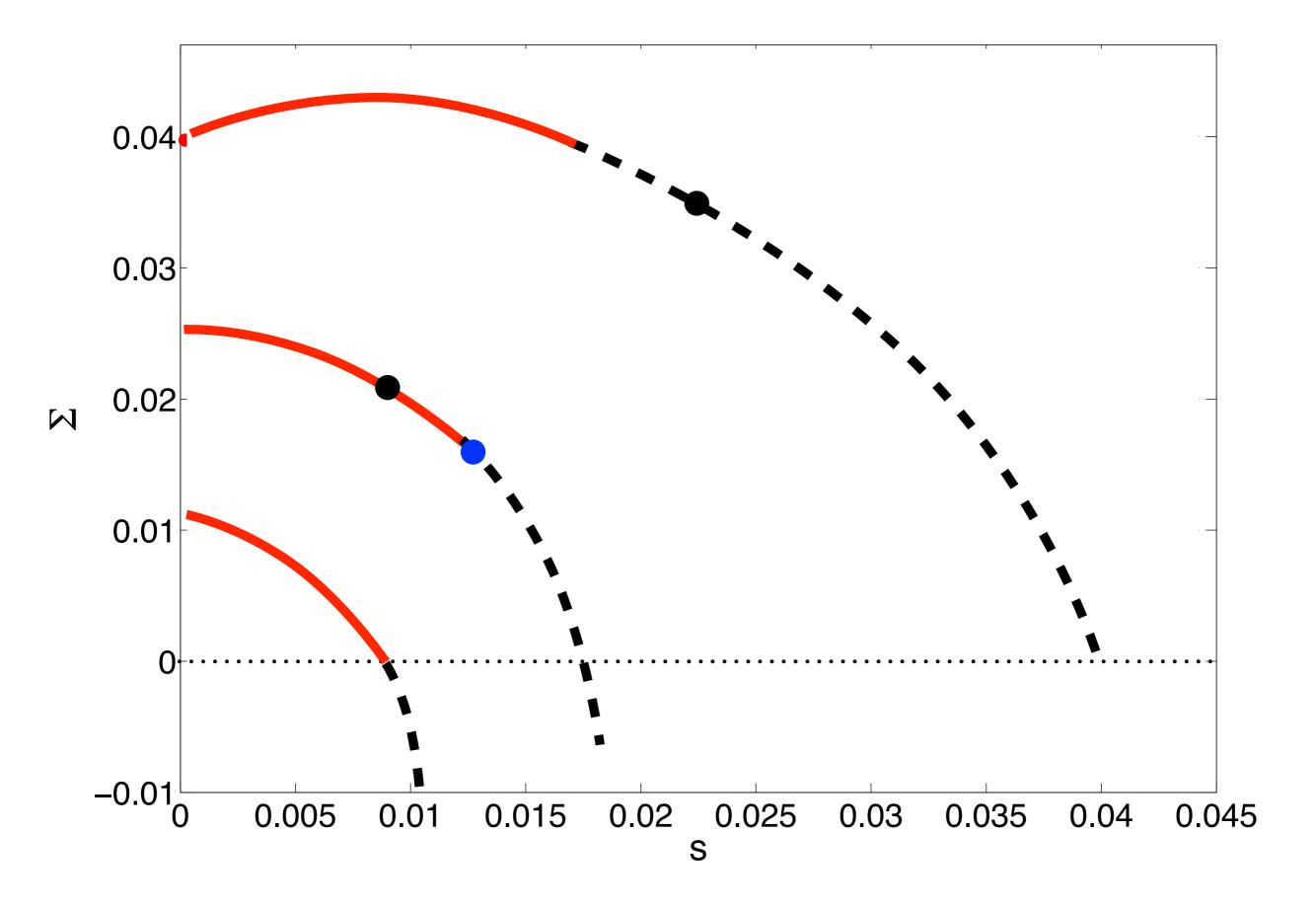
Frozen variables

Must take a specific value in a cluster in order the formula to be SAT









Summary of rigorous results

(random K-SAT)

Achlioptas, Coja-Oghlan, Ricci-Tersenghi, RSA '11

Theorem 2. For every $k \ge 8$, there exists a value of $r < r_k$ and constants $\alpha_k < \beta_k < 1/2$ and $\epsilon_k > 0$ such that w.h.p. the set of satisfying assignments of $F_k(n, rn)$ consists of $2^{\epsilon_k n}$ nonempty cluster regions, such that

- 1. The diameter of each cluster region is at most $\alpha_k n$.
- 2. The distance between every pair of cluster-regions is at least $\beta_k n$.

Theorem 3. For any $0 < \delta < 1/3$, if $r = (1 - \delta)2^k \ln 2$, then for all $k \ge k_0(\delta)$, Theorem 2 holds with

$$\alpha_k = \frac{1}{k}, \quad \beta_k = \frac{1}{2} - \frac{5}{6}\sqrt{\delta}, \quad \epsilon_k = \frac{\delta}{2} - 3k^{-2}.$$

Theorem 8. For every $k \ge 9$, there exists $c_k < r_k$ such that for all $r \ge c_k$, w.h.p. every cluster of $F_k(n, rn)$ has at least $(1 - 2/k) \cdot n$ frozen variables. As k grows,

$$\frac{c_k}{2^k \ln 2} \to \frac{4}{5}.$$

What about non-random CSP?

- The locally tree-like topology is not strictly necessary
- Long range correlations and phase transitions are common to any high dimensional model
- The freezing of (random) subsets of variables in (random) directions can be the general driving mechanism for the onset of NP-hardness

What about non-random CSP?

- Can we identify strongly correlated subset of variables in a general model?
- Algorithmic problems related to short loops
- Loops corrections to mean-field approximations:
 Cluster Variational Methods (CVM),
 Generalized Belief Propagation (GBP), ...

What about the UNSAT phase?

- Clustering structure also in the UNSAT phase
- Succinct UNSAT certificates by uncovering frozen (or strongly correlated) variables
- Message-passing algorithms for determining the probability of being in the UNSAT certificate

Thanks!

References and more info can be found on web pages of

- me --> http://chimera.roma1.infn.it/FEDERICO
- Dimitris Achlioptas (UC Santa Cruz)
- Amin Coja-Oghlan (Univ. Warwick)
- Andrea Montanari (Stanford)
- Riccardo Zecchina (Politecnico Torino)