Analytic description of an optimization algorithm: Beliefs Inspired Decimation

Federico Ricci-Tersenghi

Physics Department Sapienza University of Rome

in collaboration with Andrea Montanari and Guilhem Semerjian Proc. Allerton conference, 352 (2007) J. Stat. Mech., P09001 (2009)

Les Houches, March 10, 2010

Outline of the talk

- 1. Constraint Satisfaction Problems (CSP) and random CSP (rCSP)
- 2. Phase transitions in rCSP
- 3. Solving algorithms
- 4. Our algorithm
- 5. Analytical results for random *k*-XORSAT
- 6. Numerical results for random *k*-SAT

Constraint satisfaction problems

- Assign *N* variables to satisfy *M* constraints
- Examples with binary variables $\sigma = \pm 1$ and constraints involving *k* variables

$$\sigma_{i_1^a} \dots \sigma_{i_k^a} = J^a \qquad \qquad a = 1, \dots, M$$

– SAT

 $(\sigma_{i_1^a},\ldots,\sigma_{i_k^a}) \neq (J_1^a,\ldots,J_k^a) \quad a=1,\ldots,M$

Random CSP

- For each constraint
 - choose k variables at random

i.e. (i_1^a, \ldots, i_k^a) is a random *k*-tuple

– choose randomly all the "couplings":

 $J^a \text{for XORSAT}$ or (J_1^a,\ldots,J_k^a) for SAT

• Relevant parameter

$$\alpha = M/N$$

Phase transitions in random *k*-XORSAT

More phase transitions in random *k*-SAT (*k* > 3)

Solving algorithms

- Procedure to find a solution (we assume there is at least one)
- Not interested in proving UNSATisfiability (we work with $\alpha < \alpha_s$)

• A much harder problem: sampling solutions **uniformly**

Two broad classes of solving algorithms

Local search

(biased) random walks in the space of configurations E.g. Monte Carlo, WalkSAT, FMS, ChainSAT, ...

- Sequential construction at each step a variable is assigned E.g. UCP, GUCP, BP, SP, ...
 - the order of assignment of variables
 - the information used to assign variables

- Looking for solutions
 - ➡ all constraints must be satified
 - variables may be forced to take a unique value (frozen variables)

- Looking for solutions
 - ➡ all constraints must be satified
 - variables may be forced to take a unique value (frozen variables)

- Looking for solutions
 - ➡ all constraints must be satified
 - variables may be forced to take a unique value (frozen variables)

- Looking for solutions
 - ➡ all constraints must be satified
 - variables may be forced to take a unique value (frozen variables)

- Looking for solutions
 - ➡ all constraints must be satified
 - variables may be forced to take a unique value (frozen variables)

Algorithms performances

Algorithms performances

Analytically solvable algorithms SC 2.25 SCB 5.54 GUC 5.56 BID 9.05 9.38 9.93 $\alpha_d \quad \alpha_s$ 0 α_c 9.55

Algorithms performances

Analytically solvable algorithms **BID 9.05** SCB 5.54 GUC 5.56 SC 2.25 9.38 9.93 α_s α_d α \bigcap 9.55 MCMC? SID Algorithms with no analytic solution **FMS**

Sequential construction (BID / SID)

- while (there are unassigned variables)
 - compute marginals (with BP or SP)
 - choose an unassigned variable (randomly / the most biased)
 - fix it (according to its marginal / to the most probable value)
 - simplify the formula by UCP

BID mimics the perfect algorithm

- Sequential construction: $\{i(t)\}_{t=1,...,N}$
- Suppose to have a perfect marginalizer $\mu\left(\sigma_{i(t)} \middle| \sigma_{i(1)}, \dots, \sigma_{i(t-1)}\right)$
- Assign variables, according to exact marginals

- Every run reaches a solution for sure
- ➡ Solutions are sampled uniformly

Our analysis of the algorithm

- The perfect algorithm is equivalent to:
 - Choose a solution uniformly at random $\underline{\sigma}^*$
 - Assign variables in a random order according to the chosen solution
- The typical behavior after $t = \theta N$ steps can be computed by the average $\mathbb{E}_F \mathbb{E}_{\sigma^*} \mathbb{E}_{V_{\theta}}$

Our analysis of the algorithm

- The perfect algorithm is equivalent to:
 - Choose a solution uniformly at random $\underline{\sigma}^*$
 - Assign variables in a random order according to the chosen solution
- The typical behavior after $t = \theta N$ steps can be computed by the average $\mathbb{E}_F \mathbb{E}_{\sigma^*} \mathbb{E}_{V_{\theta}}$

What we measure (numerically and analytically)

• Residual entropy:

$$\omega(\theta) \equiv \frac{1}{N} \mathbb{E}_F \mathbb{E}_{\underline{\sigma}^*} \mathbb{E}_{V_{\theta}} \ln Z(\underline{\sigma}^*_{V_{\theta}})$$

 $Z(\underline{\sigma}_{V_{\theta}}^{*})$ = number of solutions compatible with the solution "exposed" on V_{θ}

• Fraction of frozen variables:

$$\phi(\theta) \equiv \frac{1}{N} \mathbb{E}_F \mathbb{E}_{\underline{\sigma}^*} \mathbb{E}_{V_{\theta}} |W_{\theta}|$$

 $W_{\theta} = V_{\theta} \cup \{ \text{variables implied by } V_{\theta} \}$

• Full analytic solution (by diferential equations)

$$\phi = \theta + (1 - \theta) \left(1 - e^{-\alpha k \phi^{k-1}} \right)$$

 $\phi(\theta)$

 $\phi(\theta)$

11/10

Phase diagram for random 3-XORSAT

Numerics for random k-SAT

- *k* = 4, *N* = 1e3, 3e3, 1e4, 3e4
- $\begin{aligned} \alpha_d &= 9.38\\ \alpha_c &= 9.55\\ \alpha_s &= 9.93 \end{aligned}$
- integer variables, no approximation
- Run BP

Run WP

- much care for dealing with quasi-frozen variables
- slow convergence (damping and restarting trick)
- maximum number of iterations (1000)

 θ

 α

 θ

 α

Results for random 4-SAT

 θ

 α

Conclusions & open problems

- Analytically solvable algorithm for finding solutions in rCSP
- Works up to close the dynamical threshold α_d
- For large k we have $\alpha_d \sim \frac{\log(k)}{k} 2^k$ $\alpha_c \sim \alpha_s \sim 2^k$
- An algorithm working up to the condensation threshold α_c ?
- Rigorous proof of BP convergence and correctness?