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Constraint satisfaction problems

® Assign N variables to satisfy M constraints

e Examples with binary variables o = +1
and constraints involving k variables

- XORSAT (parity checks)

Oig ... O = J" a=1,...

1,,Jk) CL:1,




Random CSP

® [or each constraint

- choose k variables at random

i.e. (i{,...,i7) is a random k-tuple

- choose randomly all the “couplings™:

J%or XORSAT or (J7', ..., J; ) for SAT

® Relevant parameter [a = M/N]




Phase transitions
In random k-XORSAT
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More phase transitions
iIn random k-SAT (k > 3)
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Solving algorithms

® Procedure to find a solution
(we assume there is at least one)

e Not interested in proving UNSATIsfiability
(we work with a < «y)

e A much harder problem:
sampling solutions uniformly




Two broad classes of
solving algortinms

® |Local search
(biased) random walks in

the space of configurations
E.g. Monte Carlo, WalkSAT, FMS, ChainSAT, ...

® Sequential construction
at each step a variable is assigned
E.g. UCP, GUCP, BP, SP, ...

= the order of assignment of variables

= the information used to assign variables




Unit Clause Propagation (UCP)
Warning Propagation (WP)

® | ooking for solutions

= 3|l constraints must be satified

= variables may be forced to take a unique value
(frozen variables)
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Unit Clause Propagation (UCP)
Warning Propagation (\WP)
® | ooking for solutions

= 3|l constraints must be satified

= variables may be forced to take a unique value
(frozen variables)
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Algorithms performances

Analytically solvable algorithms
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Sequential construction
( BID / SID )

e while (there are unassigned variables)

compute marginals (with BP or SP)

choose an unassigned variable
(randomly / the most biased)

fix it (according to its marginal /
to the most probable value)

simplify the formula by UCP




BID mimics the perfect algorithm

e Sequential construction: {i(t) };—
® Suppose to have a perfect marginalizer
H (O-i(t)‘gi(l)y Lo an(t—l))

® Assign variables, according to exact marginals

= Every run reaches a solution for sure

= Solutions are sampled uniformly




Our analysis of the algorithm

® The perfect algorithm is equivalent to:
- Choose a solution uniformly at random ¢”

- Assign variables in a random order
according to the chosen solution

® The typical behavior after t = 6N steps can
be computed by the average Er E,- Ey,




Our analysis of the algorithm

® The perfect algorithm is equivalent to:

- Choose a solution uniformly at random ¢”

- Assign variables in a random order
according to the chosen solution

® The typical behavior after ¢ = HN steps can

be computed by the average .
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What we measure
(numerically and analytically)

e Residual entropy:
1 >k
w(f) = ~ Cp Eq« Eyy, In Z(QVQ)
Z (o3, )= number of solutions compatible
with the solution “exposed” on Vj

® [raction of frozen variables:

<1j'17 :O'* 4:‘/6 ‘WQ |

Wy = Vp U {variables implied by Vj}




Results for random 3-XORSAT

e [ull analytic solution (by diferential equations)
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Results for random 3-XORSAT
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Phase diagram for
random 3-XORSAT




Numerics for random k-SAT

(g = 9.38

o k=4 N=1e3, 3e3, 1e4, 3e4 . = 9.55

e Run WP Qs =993,
- Integer variables, no approximation

e Run BP

- much care for dealing with quasi-frozen variables

- slow convergence (damping and restarting trick)

- maximum number of iterations (1000)




Results for random 4-SAT




Results for random 4-SAT




Results for random 4-SAT




Results for random 4-SAT

g e
I I I

jump in ¢ (6




Results for random 4-SAT
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Results for random 4-SAT

02 04 06 038

0

1

1000
800
600
400
200

0

0.6

0.4

0.2
0

I

mean BP
running times

|

0

l

a = &.8
fraction BP runs

exceding 1000
iterations

I _1

02 04 06 038 1

0




Results for random 4-SAT

02 04 06 038

0

1

1000
800
600
400
200

0

0.6

0.4

0.2
0

I

mean BP
running times

|

l

a = &.8
fraction BP runs

exceding 1000
iterations

£ |

I _1

02 04 06 038 1

0




Results for random 4-SAT




¢ (0)

Results for random 4-SAT

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

01 02 03 04 05 06 07 08 09

0



Results for random 4-SAT
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Results for random 4-SAT

1

0.9
0.8
#(0) 4
0.5
0.4

0-3 fraction of

0.2 quasi-frozen
0.1 variables
0 i 1 |(prob < 1e-10)

03 04 05 06 0.7 0.8

0




Conclusions & open problems

Analytically solvable algorithm for finding
solutions in rCSP

Works up to close the dynamical threshold o4
log (k)
k

aCNOzSNQk

For large k we have «y ~ oF

An algorithm working up to the condensation
threshold a.?

Rigorous proof of BP convergence and
correctness”?




