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Outline of the talk

1. Constraint Satisfaction Problems (CSP) and 
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2. Phase transitions in rCSP
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Constraint satisfaction problems

• Assign N variables to satisfy M constraints

• Examples with binary variables
and constraints involving k variables

- XORSAT (parity checks)

- SAT
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Random CSP

• For each constraint

- choose k variables at random

i.e.                     is a random k-tuple

- choose randomly all the “couplings”:

    for XORSAT or                       for SAT

• Relevant parameter

(ia1 , . . . , iak)

(Ja
1 , . . . , Ja

k )Ja

α = M/N



Structure of solutions space
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Fig. 11. Total entropy S(c) and configurational entropy S(c) for p=3.

of (2), spontaneously form clusters. By definition, two solutions having a
finite Hamming distance d, i.e., d/NQ 0 for NQ., are in the same
cluster, while two solutions in different clusters must have an extensive
distance, that is d/N ’ O(1) for large N.
In virtue of the property stated at the beginning of this subsection, all

the clusters have the same size. Their number is eNS(c), where S(c) is called
complexity or configurational entropy. We will show that the number of
clusters equals the number of solution in the core, that is

S(c)=Sc(c). (45)

The intra-cluster entropy, i.e., the normalized logarithm of the cluster size,
is then given by the non-core entropy Snc(c)=S(c)−Sc(c)=S(c)−S(c).
For p=3 these entropies are shown in Fig. 11.
The proof of Eq. (45) is given in 2 steps. First we show that all the

solution assignments of the core variables xFc are ‘‘well separated’’, that is
the distance among any pair of them is extensive. This is what gives rise to
the clustering, with a number of clusters which is at least as large as the
number of core solutions (S \ Sc). Then we show that, for any fixed xFc, all
possible assignments of non-core variables xFnc belong to the same cluster,
and so S=Sc.
The first step is accomplished by calculating the probability distribu-

tion of the distance among any two solutions in the core. Thanks to the
group property, we can restrict the calculation fixing one solution to the
null vector 0F. For simplicity we have performed an annealed average

S(d, c)= lim
Nc Q.

1
Nc
log C

sF

d 1C
i
si=Nc−2d2 DMc

m=1
d(sim1 · · ·simp=1), (46)

Two Solutions to Diluted p-Spin Models and XORSAT Problems 525

α

αs
αd

total entropy

complexity
Σ

S

E = 0

each cluster contains

solutionseN(S−Σ)

Phase transitions
in random k-XORSAT

Cocco, Dubois, Mandler, Monasson

Mézard, Ricci-Tersenghi, Zecchina

clustering
phase

transition

Mézard, Parisi, Zecchina



More phase transitions
in random k-SAT (k > 3)

Phase transitions in random CSP

Random instances :

for each constraint a take the indices i1a . . . , ika uniformly at random

take the J ’s ±1 with equal probability

Large size (thermodynamic) limit, N, M → ∞ with α = M/N

Satisfiability phase transition :

for α < αs there are solutions (with high probability)

for α > αs there is no solution (with high probability)

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 5 / 34

Phase transitions in random CSP

XORSAT : [Cocco, Dubois, Mandler, Monasson]

[Mézard, Ricci-Tersenghi, Zecchina]

αd αs α

Clustering Satisfiability

For α < αs, there are exp[Nω(α)] solutions

For αd < α < αs, splitting of the entropy, ω(α) = ωint(α) + Σ(α)

Clusters of “close” solutions

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 6 / 34

Phase transitions in random CSP

SAT [Biroli, Monasson, Weigt]

[Mézard, Parisi, Zecchina]

More transitions (for k ≥ 4)

[Krzakala, Montanari, Ricci-Tersenghi, GS, Zdeborova]

αd,+ αd αc αs

Exponential number of relevant clusters only in [αd,αc],
then “condensation”

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 7 / 34

Random factor graphs

are locally acyclic

have Poisson distributions of mean αk for the variable degrees

Branching process :

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 8 / 34

SAT/UNSAT
condensation

clustering

Krzakala, Montanari,
Ricci-Tersenghi,

Semerjian, Zdeborova



Solving algorithms

• Procedure to find a solution
(we assume there is at least one)

• Not interested in proving UNSATisfiability
(we work with            )

• A much harder problem:
sampling solutions uniformly

α < αs



Two broad classes of
solving algortihms

• Local search
(biased) random walks in
the space of configurations
E.g. Monte Carlo, WalkSAT, FMS, ChainSAT, ...

• Sequential construction
at each step a variable is assigned
E.g. UCP, GUCP, BP, SP, ...

- the order of assignment of variables

- the information used to assign variables
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Unit Clause Propagation (UCP)
Warning Propagation (WP)

• Looking for solutions

➡ all constraints must be satified

➡ variables may be forced to take a unique value
(frozen variables)
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Unit Clause Propagation (UCP)
Warning Propagation (WP)

• Looking for solutions

➡ all constraints must be satified

➡ variables may be forced to take a unique value
(frozen variables)
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Unit Clause Propagation (UCP)
Warning Propagation (WP)

• Looking for solutions

➡ all constraints must be satified

➡ variables may be forced to take a unique value
(frozen variables)
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Unit Clause Propagation (UCP)
Warning Propagation (WP)

• Looking for solutions

➡ all constraints must be satified

➡ variables may be forced to take a unique value
(frozen variables)
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Warning Propagation (WP)

• Looking for solutions

➡ all constraints must be satified

➡ variables may be forced to take a unique value
(frozen variables)
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Algorithms performances

9.55

9.939.38

0
α

αs

αc

αd

SC 2.25 GUC 5.56SCB 5.54 BID 9.05
Analytically solvable algorithms

MCMC?
FMS

SIDAlgorithms with no
analytic solution



Sequential construction
( BID / SID )

•  while (there are unassigned variables)

- compute marginals (with BP or SP)

- choose an unassigned variable
(randomly / the most biased)

- fix it (according to its marginal /
 to the most probable value)

- simplify the formula by UCP



BID mimics the perfect algorithm

• Sequential construction: 

• Suppose to have a perfect marginalizer

• Assign variables, according to exact marginals

➡ Every run reaches a solution for sure

➡ Solutions are sampled uniformly

{i(t)}t=1,...,N

µ
(
σi(t)

∣∣σi(1), . . . ,σi(t−1)

)



Our analysis of the algorithm

• The perfect algorithm is equivalent to:

- Choose a solution uniformly at random

- Assign variables in a random order
according to the chosen solution

• The typical behavior after              steps can 
be computed by the average

t = θN

σ∗

EF Eσ∗ EVθ



Our analysis of the algorithm

• The perfect algorithm is equivalent to:

- Choose a solution uniformly at random

- Assign variables in a random order
according to the chosen solution

• The typical behavior after              steps can 
be computed by the average

t = θN

σ∗

EF Eσ∗ EVθ

α

θ

0

1

αsαd αc



What we measure
(numerically and analytically)

• Residual entropy:

• Fraction of frozen variables:

Wθ = Vθ ∪ {variables implied by Vθ}

ω(θ) ≡ 1
N

EF Eσ∗ EVθ lnZ(σ∗
Vθ

)

φ(θ) ≡ 1
N

EF Eσ∗ EVθ |Wθ|

Z(σ∗
Vθ

)= number of solutions compatible
 with the solution “exposed” on Vθ



Results for random 3-XORSAT

• Full analytic solution (by diferential equations)

φ = θ + (1− θ)
(
1− e−αkφk−1

)

α < αa α > αa
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φ(θ)

Results for random 3-XORSAT
α > αa =

1
k

(
k − 1
k − 2

)k−2

Phase transition for

Jump in
and

cusp in ω(θ)

φ(θ)

φ(θ)φ(θ)

αa(k = 3) =
2
3



ω(θ)

Results for random 3-XORSAT
α > αa =

1
k

(
k − 1
k − 2

)k−2

Phase transition for

Jump in
and

cusp in ω(θ)

φ(θ)

φ(θ)φ(θ)

αa(k = 3) =
2
3



Results for random 3-XORSAT

ω(θ)



Results for random 3-XORSAT

ω(θ)



Results for random 3-XORSAT

ω(θ)

Σ > 0



Results for random 3-XORSAT

ω(θ)

Σ > 0

θd θc



Results for XORSAT - Analysis

Discontinuity in φ(θ) for α ≥ α∗ = 1
k

(
k−1
k−2

)k−2
2
3
for k = 3

phase

diagram

in (α, θ):

α

θ

0.950.90.850.80.750.70.650.6

0.3

0.2

0.1

0

Relevant branch in φ(θ) is the lowest one (from rigorous solution)

⇒ discontinuity on the solid line

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 22 / 34

Results for XORSAT - Analysis

Residual entropy :

ω(θ) = (ln 2)




(1− φ(θ))

︸ ︷︷ ︸
variables

− α
(
1− φ(θ)k − k(1 − φ(θ))φ(θ)k−1

)

︸ ︷︷ ︸
constraints





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Results for XORSAT - Analysis
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Results for XORSAT - Analysis
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Phase diagram for
random 3-XORSAT
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Σ > 0

UNSATjump in φ(θ)

αa

αd αc



Numerics for random k-SAT

• k = 4,   N = 1e3, 3e3, 1e4, 3e4

• Run WP

- integer variables, no approximation

• Run BP

- much care for dealing with quasi-frozen variables

- slow convergence (damping and restarting trick)

- maximum number of iterations (1000)

αd = 9.38
αc = 9.55
αs = 9.93
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B. The computation of ω(θ)

By analogy with xorsat one could think that the above computed lines θ± are (at least bounds on) the limits of
the region of the (α, θ) where the reduced measure µ(·|σD) gets clustered. This does not seem to be the case. At
α = 8.4 as well as α = 7.0, there are no trace of long-range point-to-set correlation in the reduced measure, the
residual entropy goes down smoothly with no complexity arising, see Fig. 8.

In fact non-trivial long-range correlations and complexities arise for larger values of α. Above αt
∗ > α∗, the average

long range point-to-set correlation is non-trivial in a range [θt
−, θt

+], see Fig. 9 for the plots of the correlation, and
Fig. 10 for the values of θt

±. By definition θt
− vanishes at αd, the dynamic transition threshold of the original ensemble.

A condensation transition occurs at some value θc(α) ∈ [θt
−, θt

+]. In the interval [θt
−, θc] the complexity of the

relevant clusters is positive, given by the difference between the solid and dashed line of Fig. 11. In [θc, θt
+] one should
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Conclusions & open problems

• Analytically solvable algorithm for finding 
solutions in rCSP

• Works up to close the dynamical threshold

• For large k we have

• An algorithm working up to the condensation 
threshold    ?

• Rigorous proof of BP convergence and 
correctness?

αd

αd ∼
log(k)

k
2k

αc ∼ αs ∼ 2k

αc


