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Communities detection problem

• Detecting communities/partitions/clusters 
in graphs is a widespread problem  
in many different disciplines


• We need fast (linear and scalable) algorithms


• robust (real datasets are very noisy and not random)


• close to optimal (on random ensemble benchmarks)



Benchmark for community detection

Hidden partition model or stochastic block model (SBM)


• Generate a partition of   nodes: e.g.    groups of size


• Add independently edges between any pair of nodes 
according to the following probability


• Assortative model 
Disassortative model
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The hidden partition model
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The hidden partition model

Colors are not provided !



The hidden partition model

The right ordering neither !!



The hidden partition model

Hidden (true) partition ->

Estimated partition ->


Quality of inference

via the overlap ->

Infer the  
hidden


partition

i 6= j. The function (i) returns the cluster vertex i belongs to. Conditioned on the partition
{Vk}k=1,...,q, edges are drawn independent with

P
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The resulting random graph is sparse and has a mean degree equal to c = [c
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+ (q � 1)c
out

]/q.
We will be mainly concerned with the assortative case, where c

in

> c
out

holds strictly. The goal
is to detect the partition {Vk} given the graph G.

The Bayesian approach [5] predicts the existence of a threshold at
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for q  4, separating a phase where detecting the partition is impossible from a phase where the
detection can be achieved, using the best possible algorithms. We defined the signal-to-noise
ratio as

� =
c
in

� c
out

q
p
c

,

such that the phase transition for q  4 takes place at �c = 1. We will mainly be interested in
the q = 2 case, where the existence of the threshold at �c = 1 has been proved rigorously [15, 13].
In this case the planted partition can be conveniently coded in a vector x

0

2 {+1,�1}n, and,
calling x̂(G) the estimate of the partition in graph G obtained by any inference procedure, we
can quantify the success of the detection algorithm computing the overlap with respect to the
planted partition (i.e. the absolute value of the normalized scalar product)

Q =
1

n
|hx̂(G),x

0

i| .

Eventually we can consider also its average value over the ensemble of random graphs, E[Q].
For the SBM Ref. [6] proposed a belief-propagation message-passing algorithm to find the Bayes
optimal estimator, which has indeed a non-zero overlap with the planted partition as soon as
� > �c = 1.

Spectral methods based on the Laplacian (unnormalized or normalized) are known to be
sub-optimal, since they have a threshold which is strictly larger than the optimal one [11], i.e.
�Lap

c =
p
c/(c� 1) > 1. However, a new spectral method based on the non-backtracking matrix

introduced in Ref. [12] achieves optimality in the detection of the planted partition in the SBM,
at the cost of computing the complex spectrum of a non symmetric matrix. Later, such a
spectral method has been strongly simplified by showing its similarity to the computation of the
spectrum of the so-called Bethe Hessian matrix [17], which is a n⇥ n symmetric matrix defined
as

H(r) = (r2 � 1)1� rA�D ,

where A is the adjacency matrix, Aij = Aji = I[(ij) 2 E], and D is a diagonal matrix with
entries equal to the vertex degrees di. In the assortative SBM with q = 2, the planted partition
is detected by computing the negative eigenvalues of H(

p
c) [17] and the best estimator x̂BH(G)

turns out to be given by the vector of signs of the components of the eigenvector corresponding
to the second largest (in absolute value) eigenvalue.

2. Spectral methods versus optimization methods

Although the partition detection based on the Bethe Hessian is optimal for the SBM, it turns
out to be not very robust if the generative model departs even slightly from the random graph
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Assortative SBM with 2 equal-size groups

Relevant parameters and threshold  

• Mean degree


• Signal-to-noise ratio


• Bayes optimal threshold

• Impossible detection for 

•  BP algorithm with         for

�c = 1

� < �c

� > �cQ > 0

d =
c
in

+ c
out

2

� =
c
in

� c
out

2
p
d

[Decelle, Krzakala, Moore, Zdeborova, 2011]  
[Massoulie, 2013] [Mossel, Neeman, Sly, 2013]



Maximum Likelihood (ML)

• If no information on the generative model is given  
(apart being assortative and with 2 equal-size groups) 
a good choice is to maximize the likelihood 
 
                  maximize  
 
 
        subject to                    and


• NP-hard problem

X

i,j

Ai,jxixj

X

i

xi = 0xi 2 {+1,�1}



Spectral relaxation

• Relaxes the constraint


• Compute largest/smallest eigenvalues of a combination of 
adjacency (  ) and degrees (  ) matrices  
Project the corresponding eigenvector to 


• Laplacian


• Normalized Laplacian


• Bethe Hessian  
[Saade, Krzakala, Zdeborova, 2014]


• z-Laplacian  
[Banks, Moore, Newman, Zhang, 2014] 

x 2 {+1,�1}n

H(�) = (�2 � 1)I+D � �A

A D

L = D �A

D�1/2LD�1/2

Lz = zA�D

{+1,�1}n

Eigenvector localization on  
high or low degree nodes

Eigenvector

localization  
on cliques



Spectral relaxation fails on sparse graphs

n = 104 � = 1.2

v1(A
cen)

d = 3 d = 20



Quasi-random graphs  
(SBM + random cliques)

• Generate a graph according to the SBM


• Choose a subset    of vertices of size 


• For each vertex in    connect all its neighbours


• The number of edges increases by  
i.e. by a fraction


• A robust inference method should work also for 
at least in the regime 

S

|S| = ↵nS

⇠ ↵d2n/2
⇠ ↵d

↵ > 0
↵ ⌧ 1/d



Improved spectral methods 
fail on quasi-random graphs

v2(H(
p
d))

↵ = 0

n = 4000 d = 4 � = 1.1

Q = 0.439



Improved spectral methods 
fail on quasi-random graphs

Q ⇡ 0

↵ = 0.001

v2(H(
p
d))

n = 4000 d = 4 � = 1.1



Quasi-random graphs  
(SBM + non adversarial cliques)

• Generate a graph according to the SBM


• Choose a subset    of vertices of size 


• For each vertex in    connect all its neighbours 
belonging to the same community


• Non adversarial cliques provide more information

S

|S| = ↵nS



SBM + cliques
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SDP: a better relaxation?

• Maximize                  over 
 
it is equivalent to maximize  
 
subject to                          (i.e. all eigenvalues >= 0)  
 
          and     being of rank 1


• SDP relaxes the rank and maximizes  
over the convex space of positive semidefinite matrices


• The maximizer is a matrix of rank  
to be projected back on a rank 1 matrix…

x 2 {+1,�1}n

XXii = 1

X 2 Rn⇥n, X ⌫ 0

m 2 [1, n]

X

opt �! x̂

SDP(x̂SDP)T

X

i,j

Ai,jxixj

hA,Xi ⌘
X

i,j

AijXij

hA,Xi



SDP-based algorithm

• Maximize           over rank-m matrices = correlation 
matrices between m-components variables of unit norm  

• Maximize               subject to

In order to approximate this problem with a more tractable version it is customary to relax
it as semidefinite programming (SDP) over the set of n⇥ n real and symmetric matrices C [8]

maximize
X

i,j

AijCij subject to C ⌫ 0 , Cii = 1 ,
X

j

Cij = 0 8i . (2)

The positive semidefinite condition, C ⌫ 0, requires all the eigenvalues of C to be non-negative
and makes the feasible set convex, thus ensuring the existence of a tractable maximizer of (2).

The maximum-likelihood problem (1) is recovered from the formulation in (2) by enforcing
the matrix C to be of rank 1: Cij = xixj . So, in general, willing to solve the non-convex problem
in (2) with rank 1 matrices, one may search for a solution to the convex problem with generic
rank n matrices, and then project back this solution to the space of rank 1 matrices.

A convenient way to represent a n ⇥ n real and symmetric positive semidefinite matrix of
rank m is to consider it as a correlation matrix between n real vectors of m components each:

Cij = xi · xj , with xi 2 Rm , kxik2 = xi · xi = 1 . (3)

3. Our community detection algorithm and it performances

In order to solve problem (2) over the set of rank m matrices we have recently proposed the
following procedure [10]. First of all search for a configuration of the n unit-lengthm-components
vectors xi 2 Rm, kxik = 1, optimizing the following objective function

maximize
X

(ij)2E

xi · xj , subject to
X

i

xi = 0 . (4)

Let us call x⇤ = {x⇤
1

, . . . , x⇤n} the maximizer. To project back the maximizer to a vector of n reals,
we first compute the matrix ⌃ 2 Rm⇥m measuring the correlations among the m components of
the maximizer averaged over the entire graph

⌃jk =
1

n

nX

i=1

(x⇤i )j(x
⇤
i )k , (5)

whose principal component we call v
1

, and then we project each xi over v
1

. Thus the rank m
SDP estimator x̂SDP(G) has components

x̂SDP
i (G) = sign(xi · v1) . (6)

As before we measure the success of our detection algorithm by computing the overlap with
respect to the planted partition

QSDP =
1

n
|hx̂SDP,x

0

i| .

In Ref. [10] we have shown that the above algorithm, in the m ! 1 limit, is optimal for
synchronization problems defined on dense graphs and almost optimal for solving the SBM. By
‘almost optimal’ we mean that the overlap QSDP shows a phase transition at �SDP

c slightly larger
than the optimal �c = 1: for example for c = 3 we have �SDP

c ' 1.017, with QSDP > 0 for
� > �SDP

c . Just for comparison, we remind that for c = 3 the spectral methods based on the
Laplacian are unable to detect the planted partition as long as � <

p
3/2 ' 1.22.

The algorithm we use to find the maximizer in (4) is nothing but a zero temperature dynamics
for a model with m-component spins xi placed on the vertices of the graph G, with the addition
of an external field that self adapt in order to keep the global magnetization null. In practice
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Greedy T=0 dynamics (very fast! no gradient used)
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SDP-based algorithm

• Given the maximizer 
compute the empirical covariance matrix (m x m)


• Project on its principal eigenvector

In order to approximate this problem with a more tractable version it is customary to relax
it as semidefinite programming (SDP) over the set of n⇥ n real and symmetric matrices C [8]

maximize
X

i,j

AijCij subject to C ⌫ 0 , Cii = 1 ,
X

j

Cij = 0 8i . (2)

The positive semidefinite condition, C ⌫ 0, requires all the eigenvalues of C to be non-negative
and makes the feasible set convex, thus ensuring the existence of a tractable maximizer of (2).

The maximum-likelihood problem (1) is recovered from the formulation in (2) by enforcing
the matrix C to be of rank 1: Cij = xixj . So, in general, willing to solve the non-convex problem
in (2) with rank 1 matrices, one may search for a solution to the convex problem with generic
rank n matrices, and then project back this solution to the space of rank 1 matrices.

A convenient way to represent a n ⇥ n real and symmetric positive semidefinite matrix of
rank m is to consider it as a correlation matrix between n real vectors of m components each:

Cij = xi · xj , with xi 2 Rm , kxik2 = xi · xi = 1 . (3)

3. Our community detection algorithm and it performances

In order to solve problem (2) over the set of rank m matrices we have recently proposed the
following procedure [10]. First of all search for a configuration of the n unit-lengthm-components
vectors xi 2 Rm, kxik = 1, optimizing the following objective function

maximize
X

(ij)2E

xi · xj , subject to
X

i

xi = 0 . (4)

Let us call x⇤ = {x⇤
1

, . . . , x⇤n} the maximizer. To project back the maximizer to a vector of n reals,
we first compute the matrix ⌃ 2 Rm⇥m measuring the correlations among the m components of
the maximizer averaged over the entire graph

⌃jk =
1

n

nX

i=1

(x⇤i )j(x
⇤
i )k , (5)

whose principal component we call v
1

, and then we project each xi over v
1

. Thus the rank m
SDP estimator x̂SDP(G) has components

x̂SDP
i (G) = sign(xi · v1) . (6)

As before we measure the success of our detection algorithm by computing the overlap with
respect to the planted partition

QSDP =
1

n
|hx̂SDP,x

0

i| .

In Ref. [10] we have shown that the above algorithm, in the m ! 1 limit, is optimal for
synchronization problems defined on dense graphs and almost optimal for solving the SBM. By
‘almost optimal’ we mean that the overlap QSDP shows a phase transition at �SDP

c slightly larger
than the optimal �c = 1: for example for c = 3 we have �SDP

c ' 1.017, with QSDP > 0 for
� > �SDP

c . Just for comparison, we remind that for c = 3 the spectral methods based on the
Laplacian are unable to detect the planted partition as long as � <

p
3/2 ' 1.22.

The algorithm we use to find the maximizer in (4) is nothing but a zero temperature dynamics
for a model with m-component spins xi placed on the vertices of the graph G, with the addition
of an external field that self adapt in order to keep the global magnetization null. In practice
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SDP-based algorithm

• Algorithm complexity                and 
quality of inference do depend on m


• m=1 -> ML, very rough objective function, NP-hard


• m=n -> SDP, convex objective function  
no local maxima for              [Burer, Monteiro, 2003] 


• m>1, but small -> smooth enough objective function ? 
local minima are “close enough” 
to global minimum [Montanari, 2016]


• Running times grows very mildly with m and n  
e.g. if stopping rule is max variation <       ->

O(nm t
conv

)

m >
p
2n

t
conv

/ n0.2210�3

O(m�1/2)



Small m values are fine!
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The algorithm is very fast!
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Figure 5. Inferred overlap by our SDP-based greedy algorithm as a function of the real wall clock time. The two
problems have been generated according to the SBM with n = 105, c = 3 and � = 1.1 (left) and � = 1.2 (right).
Times have been measured in seconds on a personal laptop with a 2 GHz Intel Core i7 processor. Dependence on
m in running times is very weak.

simulation of a single clone on a personal laptop with a 2 GHz Intel Core i7 processor. Looking
at Fig. 5 we notice that the di↵erences in the real running time by varying the value of m are
not very significant, and so maybe working with a moderate value of m is preferred, especially
because the actual running time is very small: few seconds on a laptop to solve a problem with
about 105 variables!
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Figure 6. The objective function and the maximum variation in a variable during the last step, �max, as
a function of the number of algorithm steps. At each time we plot 100 points corresponding to di↵erent clones
(although in the left panel they are hardly visible, because almost perfectly superimposed). The problem has size
n = 40 000 and � = 1.1 (and is the same studied in Fig. 7).

In Figs. 3, 4 and 5 we have always considered the overlap with the planted partition; however
in practice such an overlap is unknown. The only information available to us are the value of the
objective function, �

max

and the distances between clones (if we run more than one clone). The
first two quantities are shown in Fig. 6 for a graph generated with n = 40 000 and � = 1.1 (at
each time we report the 100 measurements taken in di↵erent clones). From the previous analysis
we known that m = 16 may be a good value, while m = 4 is definitely too small (see green and
cyan lines in Fig. 4). However looking at the data in Fig. 6 we do not see large di↵erences in
the objective function and only the fluctuations in t

conv

, given by the time where �
max

= 10�4

n = 105 d = 3

� = 1.1 � = 1.2



The algorithm is very robust!
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The algorithm is very robust!
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A real-world network (political blogs)

1222 nodes, 16714 edges

overlap cut size

Bethe Hessian 
z-Laplacian 0.865794 1271

Adjacency 0.86743 1268

X-Laplacian 0.918167 1250

Low rank SDP 0.903437 1221

“ground truth” 1.0 1575



A quantitative comparison
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SDP quasi-optimality

• We estimate       by solving the statistical physics of 
models with m-component spin variables, in           limit


• Running the SDP-based algorithm for very large m 
values (= solve the exact cavity equations)


• Solving analytically via an approximate ansatz

m ! 1

�SDP
cQSDP ⇡ 0 QSDP > 0

undetectable detectable

�c = 1

�SDP
c



SDP quasi-optimality

Semidefinite Programming. Neither the Bayes nor the maximum
likelihood approaches can be implemented efficiently. In par-
ticular, solving the combinatorial optimization problem in Eq. 5
is a prototypical NP-complete problem. Even worse, approximat-
ing the optimum value within a sublogarithmic factor is com-
putationally hard (28) (from a worst case perspective). SDP
relaxations allow us to obtain tractable approximations. Specifi-
cally, and following a standard lifting idea, we replace the problem
[5] by the following semidefinite program over the symmetric
matrix X ∈Rn×n (18. 29, 30):

maximize  hX , Y i,
subject  to    X ≽ 0, Xii = 1∀i∈ ½n". [6]

We use h · , · i to denote the scalar product between matrices,
namely, hA,Bi≡TrðApBÞ, and A≽ 0 to indicate that A is positive
semidefinite§ (PSD). If we assume X = xx*, the SDP [6] reduces
to the maximum-likelihood problem [5]. By dropping this condi-
tion, we obtain a convex optimization problem that is solvable in
polynomial time. Given an optimizer Xopt = XoptðY Þ of this convex
problem, we need to produce a vector estimate. We follow a
different strategy from standard rounding methods in computer
science, which is motivated by our analysis below. We compute
the eigenvalue decomposition Xopt =

Pn
i=1ξi   viv

*
i , with eigenvalues

ξ1 ≥ ξ2 ≥⋯≥ ξn ≥ 0 and eigenvectors vi = viðXoptðY ÞÞ, with kvik2 = 1.
We then return the estimate

x̂ SDPðY Þ=
ffiffiffi
n

p
  c SDPðλÞ  v1

"
XoptðYÞ

#
, [7]

with cSDPðλÞ a certain scaling factor (SI Appendix).
Our analytical prediction for MSEðx̂  SDPÞ is plotted as blue

solid line in Fig. 1. Dots report the results of numerical simu-
lations with this relaxation for increasing problem dimensions.
The asymptotic theory appears to capture these data very well
already for n= 200. For further comparison, alongside the above
estimators, we report the asymptotic prediction for MSEðx̂  PCAÞ,
the mean square error of principal component analysis (PCA).
This method simply returns the principal eigenvector of Y, suit-
ably rescaled (SI Appendix).
Fig. 1 reveals several interesting features.
First, it is apparent that optimal estimation undergoes a phase

transition. Bayes optimal estimation achieves nontrivial accuracy
as soon as λ> λBayesc = 1. The same is achieved by a method as
simple as PCA (blue-dashed curve). On the other hand, for λ< 1,
no method can achieve MSEðx̂Þ< 1 strictly [whereas MSEðx̂Þ= 1
is trivial by x̂= 0].
Second, PCA is suboptimal at large signal strength. PCA can

be implemented efficiently but does not exploit the information
x0,i ∈ f+1,−1g. As a consequence, its estimation error is signifi-
cantly suboptimal at large λ (SI Appendix).
Third, the SDP-based estimator is nearly optimal. The trac-

table estimator x̂  SDPðY Þ achieves the best of both worlds. Its
phase transition coincides with the Bayes optimal one λBayesc = 1,
and MSEðx̂  SDPÞ decays exponentially at large λ, staying close to
MSEðx̂  BayesÞ and strictly smaller than MSEðx̂  PCAÞ, for λ≥ 1.
We believe that the above features are generic: as shown in SI

Appendix, Uð1Þ synchronization confirms this expectation.
Fig. 2 illustrates our results for the community detection

problem under the hidden partition model of Eq. 2. Recall that
we encode the ground truth by a vector x0 ∈ f+1,−1gn. In the
present context, an estimator is required to return a partition of
the vertices of the graph. Formally, it is a function on the space
of graphs with n vertices Gn, namely, x̂ :Gn → f+1,−1gn, G↦x̂ðGÞ.

We will measure the performances of such an estimator through
the overlap,

Overlapnðx̂Þ=
1
n
Efjhx̂ðGÞ, x0ijg, [8]

and its asymptotic n→∞ limit (for which we omit the subscript).
To motivate the SDP relaxation we note that the maximum like-
lihood estimator partitions V in two sets of equal size to mini-
mize the number of edges across the partition (the minimum
bisection problem). Formally,

x̂ MLðGÞ≡ arg max
x∈f+1,−1gn

8
<

:

X

ði, jÞ∈E
xixj : hx, 1i= 0

9
=

;, [9]

where 1= ð1,1, . . . , 1Þ is the all-ones vector. Once more, this
problem is hard to approximate (31), which motivates the fol-
lowing SDP relaxation:

maximize 
X

ði, jÞ∈E
Xij,

subject  to  X ≽ 0, X1= 0,     Xii = 1  ∀i∈ ½n".
[10]

Given an optimizer Xopt =XoptðGÞ, we extract a partition of the
vertices V as follows. As for the Z2 synchronization problem, we
compute the principal eigenvector v1ðXoptÞ. We then partition V
according to the sign of v1ðXoptÞ. Formally,

x̂  SDPðGÞ= sign
"
v1
"
X   optðGÞ

##
. [11]

Let us emphasize a few features of Fig. 2:
First, both the GOE theory and the cavity method are accu-

rate. The dashed curve of Fig. 2 reports the analytical prediction
within the Z2 synchronization model, with Gaussian noise (the
GOE theory). This can be shown to capture the large degree
limit: d= ða+ bÞ=2→∞, with λ= ða− bÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða+ bÞ

p
fixed, and is

an excellent approximation already for d= 5. The continuous
curve is our prediction for d= 5, obtained by applying the cavity
method from statistical mechanics to the community detection
problem (see next section and SI Appendix). This approach de-
scribes very accurately the empirical data and the small dis-
crepancy from the GOE theory.

Fig. 2. Community detection under the hidden partition model of Eq. 2, for
average degree ða+bÞ=2= 5. Dots indicate performance of the SDP re-
construction method (averaged over 500 realizations). Dashed curve indi-
cates asymptotic analytical prediction for the Gaussian model (which
captures the large-degree behavior). Solid curve indicates analytical pre-
diction for the sparse graph case (within the vectorial ansatz; SI Appendix).

§Recall that a symmetric matrix A is said to be PSD if all of its eigenvalues are nonnegative.
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Computing the threshold

• Crossing of the Binder cumulants to locate exactly �SDP
c
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Computing the threshold

• Crossing of the Binder cumulants to locate exactly �SDP
c
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Statistical physics analytical approach

• Unified framework: statistical physics models with 
m-component variables:  

• Bayes:


• ML:


• SDP:

m = 1, � ! 1

m ! 1, � ! 1

xi 2 Rm
, ||xi|| = 1

P (x) =

1

Z

exp

h
�

X

(ij)2E

xi · xj

i

m = 1, tanh(�) = �/
p
d



Statistical physics analytical approach

• Ansatz for the marginals in m-component dense models


• Self consistency equations in the dense case

⇠
i
⇠ N (µ,Q) Ci = C

Pi(xi) =
1

Zi
exp

h
2m�(⇠

T
i
xi + x

T
i Cixi)

i

xi 2 Fm
, ||xi|| = 1

µ =�E[hxi]
Q =E[hxihxTi]
C =�mE[hxxTi � hxihxTi]



Analytical solution: dense real case
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Fig. 1. Estimating x0 2 {+1,�1}n under the noisy Z2 synchronization
model of [1 ]. Curves correspond to (asymptotic) analytical predictions, and dots to
numerical simulations (averaged over 100 realizations).

U(1)-synchronization. This is again an instance of the syn-
chronization problem. However, we take G = U(1). This is the
group of complex number of modulus one, with the operation
of complex multiplication G = ({x 2 C : |x| = 1}, · )

As in the previous case, we assume observations to be dis-
torted by Gaussian noise, i.e. for each i < j we observe
Yij = (�/n)x0,ix0,j + Wij , where z denotes complex conju-
gation1 and Wij ⇠ CN(0, 1/n).

In matrix notations, this model takes the same form [1],
provided we interpret x0

⇤ as the conjugate transpose of vec-
tor x0 2 Cn, with components x0,i, |x0,i| = 1. We will follows
this convention throughout.

U(1) synchronization has been used as a model for clocks
synchronization over networks [37, 5]. It is also closely related
to the phase-retrieval problem in signal processing [10, 41]. An
important qualitative di↵erence with respect to the previous
example (Z2 synchronization) lies in the fact that U(1) is a
continuous group. We regard this as a prototype of synchro-
nization problems over compact Lie groups (e.g. SO(3))

Hidden partition (a.k.a. community detection). The
hidden (or planted) partition model is a statistical model for
the problem of finding clusters in large network datasets (see
[25, 28, 34] and references therein for earlier work). The
data consist of graph G = (V,E) over vertex set V = [n] ⌘
{1, 2, . . . , n} generated as follows. We partition V = V+ [ V�
by setting i 2 V+ or i 2 V� independently across vertices with
P(i 2 V+) = P(i 2 V�) = 1/2. Conditional on the partition,
edges are independent with

P
�

(i, j) 2 E
�

�V+, V�
 

=

(

a/n if {i, j} ✓ V+ or {i, j} ✓ V�,
b/n otherwise.

[2]
Here a > b > 0 are model parameters that will be kept of
order one as n ! 1. This corresponds to a random graph
with bounded average degree d = (a + b)/2, and a cluster
(a.k.a. ‘block’ or ‘community’) structure corresponding to the
partition V+ [V�. Given a realization of such a graph, we are
interested in estimating the underlying partition.
We can encode the partition V+, V� by a vector x0 2

{+1,�1}n, letting x0,i = +1 if i 2 V+ and x0,i = �1 if
i 2 V�. An important insight –that we will develop below–
is that this problem is analogous to Z2-synchronization,
with signal strength � = (a � b)/

p

2(a+ b). The pa-
rameters’ correspondence is obtained, at a heuristics level,
by noting that, if AG is the adjacency matrix of G, then
Ehx0,AGx0i/(nEkAGk2F )1/2 ⇡ (a� b)/

p

2(a+ b).
A generalization of this problem to the case of more than

two blocks has been studied since the eighties as a model for

social network structure [21], under the name of ‘stochastic
block model.’ For the sake of simplicity, we will focus here on
the two-blocks case.

Illustrations
As a first preview of our results, Figure 1 reports our analytical
predictions for the estimation error in the Z2 synchronization
problem, comparing them with numerical simulations using
SDP. An estimator is a map x̂ : Rn⇥n ! Rn, Y 7! x̂(Y ). We
compare various estimators in terms of their per-coordinate
mean square error:

MSEn(x̂) ⌘
1
n
E
�

min
s2{+1,�1}

kx̂(Y )� sx0

�

�

2

2

 

, [3]

where expectation is with respect to the noise model [1] and
x0 2 {+1,�1}n uniformly random. Note the minimization
with respect to the sign s 2 {+1,�1} inside the expectation:
because of the symmetry of [1], the vector x0 can only be es-
timated up to a global sign. We will be interested in the high-
dimensional limit n ! 1 and will omit the subscript n –thus
writing MSE(x̂)– to denote this limit. Note that trivial esti-
mator that always returns 0 has error MSEn(0) = 1, and hence
for every other method we should achieve MSE(x̂) 2 [0, 1],

Classical statistical theory suggests two natural reference
estimators: the Bayes-optimal and the maximum likelihood
estimators. We will discuss these methods first, in order to
set the stage for SDP relaxations.

Bayes-optimal estimator (a.k.a. minimum MSE). This
provides a lower bound on the performance of any other ap-
proach. It takes the conditional expectation of the unknown
signal given the observations:

x̂

Bayes(Y ) = E
�

x

�

� (�/n)xx⇤ +W = Y

 

. [4]

Explicit formulas are given in Supplementary Information
(SI). We note that x̂

Bayes(Y ) assumes knowledge of the prior
distribution. The red-dashed curve in Fig. 1 presents our an-
alytical prediction for the asymptotic MSE for x̂Bayes( · ). No-
tice that MSE(x̂Bayes) = 1 for all �  1 and MSE(x̂Bayes) < 1
strictly for all � > 1, with MSE(x̂Bayes) ! 0 quickly as � ! 1.
The point �Bayes

c = 1 corresponds to a phase transition for op-
timal estimation, and no method can have non-trivial MSE
for �  �Bayes

c .

Maximum likelihood (MLE). The estimator x̂

ML(Y ) is
given by the solution of

x̂

ML(Y ) = c(�) argmax
x2{+1,�1}n hx,Y xi . [5]

Here ha, bi =
P

i aibi is the standard scalar product between
vectors, and c(�) is a scaling factor2 that is chosen according
to the asymptotic theory as to minimize the MSE. The black-
dashed curve reports our prediction for the asymptotic MSE.
As for the Bayes-optimal curve, we obtain MSE(x̂ML) = 1
for �  �ML

c and MSE(x̂ML) < 1 (and rapidly decaying to 0)
for � > �ML

c . The critical signal strength is predicted to be
�ML

c ⇡ 1.25: again, we refer to the SI for analytical expres-
sions.

1Here and below CN(µ,�2), with µ = µ
1

+ i µ
2

and �2 2 R�0

denotes the complex nor-

mal distribution. Namely, X ⇠ CN(µ,�2) if X = X
1

+ iX
2

with X
1

⇠ N(µ
1

,�2/2),

X
2

⇠ N(µ
2

,�2/2) independent Gaussian random variables.
2 In practical applications, � might not be known. We are not concerned by this at the moment,
since maximum likelihood is used as a idealized benchmark here.
Note that, strictly speaking, this is a ‘scaled’ maximum likelihood estimator. We prefer to scale

x̂

ML(Y ) in order to keep MSE(x̂ML) 2 [0, 1].
3Recall that a symmetric matrix A is said to be PSD if all of its eigenvalues are non-negative.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



Phase diagrams in the sparse case (SBM d=4)
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Phase diagrams in the sparse case (SBM d=4)
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Approximate analytical solution (SBM)

• In the recovery phase we assume the O(m) symmetry to 
break along the first component, while preserving O(m-1)


• We write the marginal for     as  
 
 
 
with


• Approximate because the    are correlated


• It should be valid in the limits         and
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6 1.0147± 0.0004
7 1.0131± 0.0004
8 1.0124± 0.0004
10 1.0115± 0.0004
20 1.0055± 0.0004
40 1.0029± 0.0004

Table 1: Numerical determination of the critical point �̃SDP

c (d) (within the vectorial ansatz) for a few values
of d.
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Approximate analytical solution (SBM)

• Cavity method -> self consistency equation for marginals


• Solve by population dynamics


• At the fixed point 

d �̃SDP

c

(d)
1.25 1.0059± 0.0002
1.5 1.0100± 0.0002
2 1.0143± 0.0002
3 1.0169± 0.0004
4 1.0168± 0.0004
5 1.0162± 0.0004
6 1.0147± 0.0004
7 1.0131± 0.0004
8 1.0124± 0.0004
10 1.0115± 0.0004
20 1.0055± 0.0004
40 1.0029± 0.0004

Table 1: Numerical determination of the critical point �̃SDP

c (d) (within the vectorial ansatz) for a few values
of d.

This is also the curve reported in the main text.

5.4 The recovery phase (broken O(m) symmetry)

In this section we describe an approximate solution of the cavity equations within the region
� > �SDP

c

(d). In this regime the SDP estimator has positive correlation with the ground truth
(in the n ! 1 limit). We will work within a generalization of the vectorial ansatz introduced in
Section 5.2. Namely, we look for a solution which breaks the O(m) symmetry to O(m � 1) along
the first direction, as follows. Letting �

i

= (s
i

, ⌧
i

), s
i

2 R, ⌧
i

2 Rm�1, we adopt the ansatz

⌫
i

(d�
i

) ⇠= exp
n

2�
p
mc

i

hz
i

, ⌧
i

i+ 2�mh
i

s
i

� �mr
i

s2
i

+O
m

(1)
o

�
⇣

s2
i

+ k⌧
i

k2
2

� 1
⌘

dm�

i

, (227)

where we will assume z

i

⇠ N(0, I
m�1

). In the following, we let P
1

= e

1

e

T
1

be the projector along
the first direction and P?

1

= I� P
1

denote the orthogonal projector.
Recalling the cavity equations (170), and using the Fourier representation of the delta function,

we get

b⌫
i

(�
0

) ⇠=
Z

exp
n

�m⇢� �m
�

(⇢+ r
i

)s2
i

+ ⇢k⌧
i

k2
2

�

(228)

+ 2�m
�

s
0

s
i

+ h⌧
0

, ⌧
i

i�+ 2�mh
i

s
i

+ 2�
p
mc

i

hz
i

, ⌧
i

i
o

d⇢ dm�1

⌧

i

ds
i

⇠=
Z

⇢�m/2 exp
n

�m⇢+
(2�ms

0

+ 2�mh
i

)2

4�m(⇢+ r
i

)
+

k2�m⌧

0

+ 2�
p
mc

i

z

i

k2
2

4�m⇢

o

d⇢ (229)

⇠=
Z

exp
n

�mS
i

(⇢; s
0

) +
2�

p
mc

i

⇢
hz

i

, ⌧
0

i
o

d⇢ , (230)

34

where

S
i

(⇢; s
0

) = S
i,0

(⇢) + S
i,1

(⇢) s
0

+
1

2
S
i,2

(⇢) s2
0

, (231)

S
i,0

(⇢) ⌘ ⇢� 1

2�
log ⇢+

h2
i

⇢+ r
i

+
1 + c

i

⇢
, (232)

S
i,1

(⇢) =
2h

i

⇢+ r
i

, (233)

S
i,2

(⇢) =
2

⇢+ r
i

� 2

⇢
. (234)

where we approximated kz
i

k2
2

/m ⇡ 1, and used the identity k⌧
0

k2
2

= 1� s2
0

. In the m ! 1 limit,
we approximate the integral over ⇢ by its saddle point. In order to obtain a set of equations for
the parameters of the ansatz (227), we will expand the exponent to second order in s

0

. The saddle
point location is given by

⇢
i,⇤(s0) ⌘ arg min

⇢2R>0

S
i

(⇢; s
0

) = ⇢
i

+ ⇢
i,1

s
0

+O(s2
0

) . (235)

Here ⇢
i

solves the equation S0
i,0

(⇢
i

) = 0. Henceforth we shall focus on the � ! 1 limit, in which
the equation S0

i,0

(⇢
i

) = 0 reduces to

1 =
h2
i

(⇢
i

+ r
i

)2
+

1 + c
i

⇢2
i

. (236)

The first order correction is given by ⇢
i,1

= �S0
i,1

(⇢
i

)/S00
i,0

(⇢
i

). Substituting in Eq. (231), we get
the saddle point value of S

i

(⇢
i

; s
0

):

min
⇢2R>0

S
i

(⇢; s
0

) = S
i,0

(⇢
i

) + S
i,1

(⇢
i

) s
0

+�
2

s2
0

+O(s3
0

) , (237)

�
2

=
1

2

"

S
i,2

(⇢
i

)� S0
i,1

(⇢
i

)2

S00
i,0

(⇢
i

)

#

(238)

= � 1

⇢
i

+
1

⇢
i

+ r
i

�
✓

h2
i

(⇢
i

+ r
i

)3
+

1 + c
i

⇢3
i

◆�1

h2
i

(⇢
i

+ r
i

)4
(239)

= � 1

⇢
i

+
1

⇢
i

+ r
i

�
✓

1 +
(1 + c

i

)r
i

⇢3
i

◆�1 h2
i

(⇢
i

+ r
i

)3
, (240)

where in the last expression we used Eq. (236). Substituting in Eq. (170), we get a recursion for
the triple h

i

, c
i

, r
i

:

c
0

=
k

X

i=1

c
i

⇢2
i

, (241)

h
0

=
k

X

i=1

h
i

⇢
i

+ r
i

, (242)

r
0

=
k

X

i=1

(

1

⇢
i

� 1

⇢
i

+ r
i

+

✓

1 +
(1 + c

i

)r
i

⇢3
i

◆�1 h2
i

(⇢
i

+ r
i

)3

)

(243)

35

where

S
i

(⇢; s
0

) = S
i,0

(⇢) + S
i,1

(⇢) s
0

+
1

2
S
i,2

(⇢) s2
0

, (231)

S
i,0

(⇢) ⌘ ⇢� 1

2�
log ⇢+

h2
i

⇢+ r
i

+
1 + c

i

⇢
, (232)

S
i,1

(⇢) =
2h

i

⇢+ r
i

, (233)

S
i,2

(⇢) =
2

⇢+ r
i

� 2

⇢
. (234)

where we approximated kz
i

k2
2

/m ⇡ 1, and used the identity k⌧
0

k2
2

= 1� s2
0

. In the m ! 1 limit,
we approximate the integral over ⇢ by its saddle point. In order to obtain a set of equations for
the parameters of the ansatz (227), we will expand the exponent to second order in s

0

. The saddle
point location is given by

⇢
i,⇤(s0) ⌘ arg min

⇢2R>0

S
i

(⇢; s
0

) = ⇢
i

+ ⇢
i,1

s
0

+O(s2
0

) . (235)

Here ⇢
i

solves the equation S0
i,0

(⇢
i

) = 0. Henceforth we shall focus on the � ! 1 limit, in which
the equation S0

i,0

(⇢
i

) = 0 reduces to

1 =
h2
i

(⇢
i

+ r
i

)2
+

1 + c
i

⇢2
i

. (236)

The first order correction is given by ⇢
i,1

= �S0
i,1

(⇢
i

)/S00
i,0

(⇢
i

). Substituting in Eq. (231), we get
the saddle point value of S

i

(⇢
i

; s
0

):

min
⇢2R>0

S
i

(⇢; s
0

) = S
i,0

(⇢
i

) + S
i,1

(⇢
i

) s
0

+�
2

s2
0

+O(s3
0

) , (237)

�
2

=
1

2

"

S
i,2

(⇢
i

)� S0
i,1

(⇢
i

)2

S00
i,0

(⇢
i

)

#

(238)

= � 1

⇢
i

+
1

⇢
i

+ r
i

�
✓

h2
i

(⇢
i

+ r
i

)3
+

1 + c
i

⇢3
i

◆�1

h2
i

(⇢
i

+ r
i

)4
(239)

= � 1

⇢
i

+
1

⇢
i

+ r
i

�
✓

1 +
(1 + c

i

)r
i

⇢3
i

◆�1 h2
i

(⇢
i

+ r
i

)3
, (240)

where in the last expression we used Eq. (236). Substituting in Eq. (170), we get a recursion for
the triple h

i

, c
i

, r
i

:

c
0

=
k

X

i=1

c
i

⇢2
i

, (241)

h
0

=
k

X

i=1

h
i

⇢
i

+ r
i

, (242)

r
0

=
k

X

i=1

(

1

⇢
i

� 1

⇢
i

+ r
i

+

✓

1 +
(1 + c

i

)r
i

⇢3
i

◆�1 h2
i

(⇢
i

+ r
i

)3

)

(243)

35

QSDP = E[sign(h⇤)]



Approximate analytical solution (SBM)

Semidefinite Programming. Neither the Bayes nor the maximum
likelihood approaches can be implemented efficiently. In par-
ticular, solving the combinatorial optimization problem in Eq. 5
is a prototypical NP-complete problem. Even worse, approximat-
ing the optimum value within a sublogarithmic factor is com-
putationally hard (28) (from a worst case perspective). SDP
relaxations allow us to obtain tractable approximations. Specifi-
cally, and following a standard lifting idea, we replace the problem
[5] by the following semidefinite program over the symmetric
matrix X ∈Rn×n (18. 29, 30):

maximize  hX , Y i,
subject  to    X ≽ 0, Xii = 1∀i∈ ½n". [6]

We use h · , · i to denote the scalar product between matrices,
namely, hA,Bi≡TrðApBÞ, and A≽ 0 to indicate that A is positive
semidefinite§ (PSD). If we assume X = xx*, the SDP [6] reduces
to the maximum-likelihood problem [5]. By dropping this condi-
tion, we obtain a convex optimization problem that is solvable in
polynomial time. Given an optimizer Xopt = XoptðY Þ of this convex
problem, we need to produce a vector estimate. We follow a
different strategy from standard rounding methods in computer
science, which is motivated by our analysis below. We compute
the eigenvalue decomposition Xopt =

Pn
i=1ξi   viv

*
i , with eigenvalues

ξ1 ≥ ξ2 ≥⋯≥ ξn ≥ 0 and eigenvectors vi = viðXoptðY ÞÞ, with kvik2 = 1.
We then return the estimate

x̂ SDPðY Þ=
ffiffiffi
n

p
  c SDPðλÞ  v1

"
XoptðYÞ

#
, [7]

with cSDPðλÞ a certain scaling factor (SI Appendix).
Our analytical prediction for MSEðx̂  SDPÞ is plotted as blue

solid line in Fig. 1. Dots report the results of numerical simu-
lations with this relaxation for increasing problem dimensions.
The asymptotic theory appears to capture these data very well
already for n= 200. For further comparison, alongside the above
estimators, we report the asymptotic prediction for MSEðx̂  PCAÞ,
the mean square error of principal component analysis (PCA).
This method simply returns the principal eigenvector of Y, suit-
ably rescaled (SI Appendix).
Fig. 1 reveals several interesting features.
First, it is apparent that optimal estimation undergoes a phase

transition. Bayes optimal estimation achieves nontrivial accuracy
as soon as λ> λBayesc = 1. The same is achieved by a method as
simple as PCA (blue-dashed curve). On the other hand, for λ< 1,
no method can achieve MSEðx̂Þ< 1 strictly [whereas MSEðx̂Þ= 1
is trivial by x̂= 0].
Second, PCA is suboptimal at large signal strength. PCA can

be implemented efficiently but does not exploit the information
x0,i ∈ f+1,−1g. As a consequence, its estimation error is signifi-
cantly suboptimal at large λ (SI Appendix).
Third, the SDP-based estimator is nearly optimal. The trac-

table estimator x̂  SDPðY Þ achieves the best of both worlds. Its
phase transition coincides with the Bayes optimal one λBayesc = 1,
and MSEðx̂  SDPÞ decays exponentially at large λ, staying close to
MSEðx̂  BayesÞ and strictly smaller than MSEðx̂  PCAÞ, for λ≥ 1.
We believe that the above features are generic: as shown in SI

Appendix, Uð1Þ synchronization confirms this expectation.
Fig. 2 illustrates our results for the community detection

problem under the hidden partition model of Eq. 2. Recall that
we encode the ground truth by a vector x0 ∈ f+1,−1gn. In the
present context, an estimator is required to return a partition of
the vertices of the graph. Formally, it is a function on the space
of graphs with n vertices Gn, namely, x̂ :Gn → f+1,−1gn, G↦x̂ðGÞ.

We will measure the performances of such an estimator through
the overlap,

Overlapnðx̂Þ=
1
n
Efjhx̂ðGÞ, x0ijg, [8]

and its asymptotic n→∞ limit (for which we omit the subscript).
To motivate the SDP relaxation we note that the maximum like-
lihood estimator partitions V in two sets of equal size to mini-
mize the number of edges across the partition (the minimum
bisection problem). Formally,

x̂ MLðGÞ≡ arg max
x∈f+1,−1gn

8
<

:

X

ði, jÞ∈E
xixj : hx, 1i= 0

9
=

;, [9]

where 1= ð1,1, . . . , 1Þ is the all-ones vector. Once more, this
problem is hard to approximate (31), which motivates the fol-
lowing SDP relaxation:

maximize 
X

ði, jÞ∈E
Xij,

subject  to  X ≽ 0, X1= 0,     Xii = 1  ∀i∈ ½n".
[10]

Given an optimizer Xopt =XoptðGÞ, we extract a partition of the
vertices V as follows. As for the Z2 synchronization problem, we
compute the principal eigenvector v1ðXoptÞ. We then partition V
according to the sign of v1ðXoptÞ. Formally,

x̂  SDPðGÞ= sign
"
v1
"
X   optðGÞ

##
. [11]

Let us emphasize a few features of Fig. 2:
First, both the GOE theory and the cavity method are accu-

rate. The dashed curve of Fig. 2 reports the analytical prediction
within the Z2 synchronization model, with Gaussian noise (the
GOE theory). This can be shown to capture the large degree
limit: d= ða+ bÞ=2→∞, with λ= ða− bÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða+ bÞ

p
fixed, and is

an excellent approximation already for d= 5. The continuous
curve is our prediction for d= 5, obtained by applying the cavity
method from statistical mechanics to the community detection
problem (see next section and SI Appendix). This approach de-
scribes very accurately the empirical data and the small dis-
crepancy from the GOE theory.

Fig. 2. Community detection under the hidden partition model of Eq. 2, for
average degree ða+bÞ=2= 5. Dots indicate performance of the SDP re-
construction method (averaged over 500 realizations). Dashed curve indi-
cates asymptotic analytical prediction for the Gaussian model (which
captures the large-degree behavior). Solid curve indicates analytical pre-
diction for the sparse graph case (within the vectorial ansatz; SI Appendix).

§Recall that a symmetric matrix A is said to be PSD if all of its eigenvalues are nonnegative.
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Approximate analytical solution (SBM)

• Linearize the cavity equations to locate the threshold


• To linear order in 
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we approximate the integral over ⇢ by its saddle point. In order to obtain a set of equations for
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where in the last expression we used Eq. (236). Substituting in Eq. (170), we get a recursion for
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Recall that the graph G
n

converges locally to a two-types Galton-Watson tree, whereby each
vertex has Poisson(a/2) vertices of the same type, and Poisson(b/2) vertices of the opposite type.
We look for solutions that break the symmetry +1 $ �1. If (c

i

, h
i

) is the pair of random variables

introduced above, for vertex i, we therefore assume (c
i(+)

, h
i(+)

)
d

= (c
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i(�)

) for i(+) 2 V
+

,
i(�) 2 V�. This leads to the following distributional recursion for the sequence of random vectors
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where L
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, . . . , s
L

+

+L� = �1, and
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)} are i.i.d. copies of (ct, ht)
Let us pause for two important remarks:

1. The recursion (204) is invariant under the rescaling ht ! a ht for a 2 R. Hence, only
properties that are invariant under thus rescaling are meaningful.

2. It admits the fixed point (ct, ht)
d

= (c⇤,
p
c⇤ Z) where c⇤ is the distributional fixed point of

the symmetric phase, constructed in the previous section, and Z ⇠ N(0, 1) is independent of
c⇤. This is a fixed point2 that corresponds to the symmetric phase, and does not break the
+1 $ �1 symmetry.

Therefore, in order to investigate stability, we initialize the above recursion in a way that breaks
the symmetry, (c0, h0) = (1, 1). Note that by monotonicity property (185), starting with c0 = 1,

we have ct
d) c⇤. We ask whether this perturbation grows, by computing the exponential growth

rate

G
↵

(d,�) ⌘ lim inf
t!1

1

t↵
logE(|ht|↵) , (205)

where d = (a + b)/2, and � = (a � b)/
p

2(a+ b) parametrize the model. We define the critical
point as the smallest � such that the growth rate is strictly positive:

�̃SDP

c

(d) ⌘ inf
�

� 2 [0,
p
d] : G

2

(d,�) > 0
 

. (206)

Notice that in the definition we used the second moment, i.e. set ↵ = 2. However, the result appear
to be insensitive to the choice of ↵. In the next section we will discuss the numerical solution of
the above distributional equations and our analytical prediction for �SDP

c

(d).
In the rest of this section we analyze the behavior of �̃SDP

c

(d) for large d. Along the way, we
analyze the behavior of perturbation ht, which in turn clarifies why the critical point �̃SDP

c

is defined
based on the exponential growth rate of the perturbation.

2

Indeed, by the scaling invariance, (ct, ht
)

d

= (c⇤, a
p
c⇤ Z) is a fixed point for any fixed scale factor a 2 R.

29



Approximate analytical solution (SBM)

E{ct}

c

Figure 1: Solution of the recursive distributional equation (184) using the population dynamics algorithm.
Left frame: evolution of the mean E{ct} versus the number of iterations t, as estimated by the algorithm.
Various curves refer (from bottom to top) to d = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2. Here sample size is N = 5·103.
Right frame: histogram of the samples at convergence, for d = 2. Here N = 5 · 103.

bG
2

(d = 6,�)

�̃SDP

c (d = 6)

Figure 2: Local stability of the O(m) symetric phase. We evaluate G
2

(d,�) defined by Eq. (205) using
the population dynamics algorithm. Data here reder to average degree d = 6. The phase transition point
�̃SDP

c (d) (within the vectorial ansatz) is determined by a local linear fit to the estimated G
2

(d,�), when it is
significantly larger than 0.

The behavior in Figure 2 is generic. For small �, the estimate bG
2

(d,�) is statistically indistin-
guishable from 0. Above a critical point, that we identify with �̃SDP
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(d), bG
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(d,�) is strictly positive,
and essentially linear in �, close to �̃SDP
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(d). In order to estimate �̃SDP
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(d) we use a local linear fit,
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Analytical solution: sparse case (SBM)

• SDP at most 2% sub-optimal!


• Red points: numerical solution of the replica/cavity 
equations (crossing of Binder cumulants)


• Black line: approximated analytical solution

�SDP
c

d



Some conclusions…

• SDP relaxations are very effective:


• robust and quasi-optimal


• may outperform spectral relaxations


• Better than SDP are SDP-inspired algorithms (small m)  
http://web.stanford.edu/~montanar/SDPgraph/


• It is worth studying the statistical physics of models 
with m-component variables:


• unifying framework to study and solve several 
estimators in statistical inference


• different physics, better algorithms


