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Giorgio, me and the computers
• 20 years of intense interactions!
• Mainly mentoring, thanks Giorgio!!
• Computer programming is not writing a code…!

- optimization!
- search for new models and tools of analysis!
- always with a clear physical picture in mind!

• Uncovering new physics with a computer is an “art”… 
…and Giorgio is an artist ;-)!

• Building most powerful computers:  
APE100, APEmille, Janus and Janus II!
- essential for studying non-perturbative effects



Spin glasses in a field
• N Ising variables !

• Interaction network/graph: edge set E!
• Random couplings!
• External field:!

- uniform!
- Gaussian!

• Model justification (not really needed in this context…)!
- many applications, mainly inference problems
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• E is the complete graph!
• rescale J by !
• Parisi solution: full replica symmetry breaking (FRSB)!
• Overlap between 2 configurations s and t is!
• many “states” and broad P(q) below dAT line Tc(h)

Fully connected, SK model
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Sparse random graphs
• Erdos-Renyi (ER), random regular graph (RRG)!
• finite degree -> local fluctuations 

(more similar to low-dimensional lattices)!
• mean-field approx. not valid 

-> Bethe-Peierls approx. 
(Mézard & Parisi, 2001)!

• analytically known:!
- RS & 1RSB solutions !
- critical properties!
- non-diverging dAT line!

• FRSB is a challenging…

We construct the random regular graph in the following way: we attach c legs to
each vertex and then we recursively join a pair of legs, forming a link, until no legs
are left or a dead end is reached (this may happen because we avoid self-linking of a
vertex and double-linking between the same pair of vertices); if a dead end is reached,
the whole construction is started from scratch.

Similarly to the Sherrrington–Kirkpatrick model, the model (2) has a continuous
spin glass phase transition at a critical temperature Tc which depends both on the
value of c and H. At variance with the Sherrrington–Kirkpatrick model, the critical
line in the (T,H ) plane does not diverge when T! 0, but rather reaches a finite value
Hc (see Figure 1). This is due to the finite number of neighbors each spin has on a
random graph of finite mean degree (while this number is divergent with the system
size in the Sherrrington–Kirkpatrick model). In this sense the present model is closer
to finite dimensional models than the Sherrrington–Kirkpatrick model is.

The replica symmetric (RS) phase of model (2) can be solved analytically by the
cavity method [13]. In particular one can find the boundary of the RS phase, beyond
which the model solution spontaneously breaks the replica symmetry [15,16]. In
Figure 1 we show such a critical line in the (T,H ) plane for the model with fixed
degree c¼ 4. The high-temperature and/or high-field region is replica symmetric,
while a breaking of the replica symmetry is required in the low-temperature and low-
field region. We have checked that the phase boundary behaves like
Hc(T )/ (T"Tc)

3/2 close to the zero-field critical point Tc, and the exponent is the
same as that found in the Sherrrington–Kirkpatrick model.

We have carried our Monte Carlo simulations at the point marked with the big
dot in Figure 1, that is H¼ 0.7 and T¼ 0.73536. The uncertainty in the critical
temperature for H¼ 0.7 is 10"5. At that point the value of the thermodynamic
overlap is q0¼ 0.67658(1). Please note that we have chosen a rather large value of the
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Figure 1. (Color online). Phase diagram in the temperature–field plane for the J¼#1 spin
glass model defined on a Bethe lattice of fixed degree c¼ 4. In this work we report data
collected at the critical point marked by the big dot.
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Spin glasses on RRG
• Ideal for comparing analytics and numerics!

- Monte Carlo running time O(N)!
- estimate of the critical temperature via the crossing of the  

scaled susceptibility N� 1
3�SG

�SG =

Z
dr G(r)

G(r) = hs0sri2c

Takahashi, FRT, Kabashima, PRB (2010)

In the last relation, we have used again the scaling relation
for !min, and h!x" is another well-behaved function that is
proportional to x for #x#"1 and converges to a certain con-
stant as x→#. Combining the two contributions, we obtain
the finite-size scaling relation of $SG as

$SG $ N!1−%"/!1+%"g!tN!1−%"/!1+%"" + t−1h!tN!1−%"/!1+%""

= N!1−%"/!1+%"F!tN!1−%"/!1+%"" , !20"

where F!x"%g!x"+h!x" /x. The properties of g!x" and h!x"
guarantee that F!0" is a finite constant and F!x"&1
+O!x−1" for x&1.

For H=0 and C'3, %=1 /2 yields the scaling law $SG
=N1/3F!tN1/3". This relation was often assumed in earlier
studies on SG models of the mean-field type.9,22,23 However,
as far as the authors know, there has been no numerical vali-
dation of this relation, in particular, for the scaling exponent
with respect to t= #T−Tc# /Tc, even for the case of H=0. In
addition, there is no theoretical guarantee that %=1 /2 always
holds for H(0 case. As there are only few analytical
schemes available for dealing with SG models of finite di-
mension, we need to build up a solid basis for numerical
studies. Circumstantially comparing the results of numerical
experiments and theoretical predictions of Eqs. !6" and !20"
for the current system is a great step toward fulfilling this
purpose.

IV. NUMERICAL EXPERIMENTS

In order to verify the above-mentioned behavior around
the AT instability, we performed large numerical experiments
on systems with C=4 and sizes N=25 ,26 , . . . ,210, using the
replica exchange !parallel tempering" Markov chain Monte
Carlo !MC" method.24,25 Apart from some test runs on small
systems with H=0, we ran extensive simulations on fields
H=0.1. 0.2, and 0.3 at, respectively, 33, 34, and 36 different
temperatures distributed around Tc. For equilibrating the sys-
tems, we performed 221 MC sweeps !MCSs" and computed
thermal averages from 221 more MCSs after the equilibration
time. Equilibration was tested by comparing the averages
obtained by using half and one quarter of the total MCSs. To
accelerate equilibration, replicas of adjacent temperatures
were exchanged once every 30 MCSs. We simulated 16 000
samples for each size.

Figure 2 shows the results of runs with H=0. The spin-
glass susceptibility rescaled by a factor N−1/3 !corresponding
to %=1 /2" nicely crosses at the critical temperature, as pre-
dicted analytically. The inset should show the scaling func-
tion !if finite-size effects were absent" but we can clearly see
that the data collapse is good only in the high temperature
!low )=T−1" region.

Next, let us turn to the case of external fields. Expanding
!'SiSj(− 'Si('Sj("2 as

'SiSj('SiSj( − 2'SiSj('Si('Sj( + 'Si('Sj('Si('Sj(

and using different real replicas for computing different ther-
mal averages at the same time, the above equation becomes

'Si
1Sj

1Si
2Sj

2( − 2'Si
1Sj

1Si
2Sj

3( + 'Si
1Sj

2Si
3Sj

4( ,

we can write the spin-glass susceptibility $SG as

$SG = N!'q12
2 ( − 2'q12q13( + 'q13q24("

= N!'q12
2 ( − 2'q12q13( + 'q12(2" , !21"

where qab=N−1)i=1
N Si

aSi
b is the overlap between two replicas.

Actually we computed $SG in Eq. !21" by measuring over-
laps from four different replicas a ,b=1,2 ,3 ,4 evolving in-
dependently, in order to reduce correlations effects and the
noise-to-signal ratio.

Figure 3 compares the susceptibilities $SG measured nu-
merically on systems of sizes N=26 ,28 ,210 with the ones
computed analytically on the Bethe tree for H=0.1, 0.2, and
0.3. We see that the numerical data at high temperatures
converge nicely to the theoretical estimates on the Bethe tree.
Note that the diameter of the regular random graph with C
=4 is only ln!N" / ln!C−1"$6.3 even for the case of N=210.
This indicates that accuracy of the Bethe approximation is
not determined only by the size of the graphs or, more pre-
cisely, by the length of the shortest loops. The relative
strength of the self-interactions compared to the size of the
graphs plays a key role in determining the accuracy. In other
words, even if the graph contains many loops, which may
significantly contribute to self-interaction terms !that are
missing on trees", the lack of correlation in the topology
makes the net contribution of these loops very small. The
final result is that the critical window size for the suscepti-
bilities scales as an inverse power of N rather than 1 / ln N.

Figure 3 !top" shows the analytical curves corresponding
to H=0 and H=0.1. One can see how the H=0.1 data closely
follow the H=0 curve as long as T*Tc!H=0". Only below
Tc!H=0" does the data change its curvature and acquire the
correct linear behavior in T−Tc!H=0.1". Unfortunately, this
change happens at very large values of $SG, and thus, the
asymptotic scaling behavior may be difficult to observe. For
larger fields, H=0.2 and H=0.3, the influence of the H=0
fixed point is weaker and the theoretical susceptibility curves
are qualitatively similar to the H=0 curve, with the linear
part in T−Tc extending over a wider range. Nonetheless, for
these larger fields, the values of $SG are much smaller, and
thus, the asymptotic behavior may be difficult to observe in
this case as well.
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FIG. 2. !Color online" Rescaled spin-glass susceptibility $SG
without external field.
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Spin glasses in field on RRG
• Strong finite size corrections!

- crossing points of  
are far from analytical predictions

We tried to identify the critical point, Tc, from the finite-
size scaling of the numerical data, by using !=1 /2 for any
field value. For this, we plotted N−1/3"SG versus temperature
and looked for a crossing point of data sets having different
N, which should correspond to Tc in the thermodynamic
limit. We see from Fig. 4 that finite-size corrections are
rather large, especially for H=0.1 and H=0.3, and change
sign depending on the value of the field. The insets in Fig. 4
zoom in on the region containing the crossings for all data, to

reveal whether or not the crossings move toward the analyti-
cal Tc value computed under the tree approximation. The
H=0.1 crossing points move in the right direction but they
do so very slowly; most probably due to the H=0 fixed point
at Tc!H=0"#1.52 in the vicinity. The H=0.3 crossing points
also move toward Tc and do so faster than those of H=0.1,
although they come from the low-temperature phase. The
H=0.2 crossing points are more complex, because the cross-
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FIG. 3. !Color online" Inverse of the spin-glass susceptibility
versus temperature for fields H=0.1 !top", H=0.2 !middle", and H
=0.3 !bottom".
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FIG. 4. !Color online" Rescaled spin-glass susceptibility !as-
suming !=1 /2" versus temperature for fields H=0.1 !top", H=0.2
!middle", and H=0.3 !bottom". Errors are smaller than the symbol
size.
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We tried to identify the critical point, Tc, from the finite-
size scaling of the numerical data, by using !=1 /2 for any
field value. For this, we plotted N−1/3"SG versus temperature
and looked for a crossing point of data sets having different
N, which should correspond to Tc in the thermodynamic
limit. We see from Fig. 4 that finite-size corrections are
rather large, especially for H=0.1 and H=0.3, and change
sign depending on the value of the field. The insets in Fig. 4
zoom in on the region containing the crossings for all data, to

reveal whether or not the crossings move toward the analyti-
cal Tc value computed under the tree approximation. The
H=0.1 crossing points move in the right direction but they
do so very slowly; most probably due to the H=0 fixed point
at Tc!H=0"#1.52 in the vicinity. The H=0.3 crossing points
also move toward Tc and do so faster than those of H=0.1,
although they come from the low-temperature phase. The
H=0.2 crossing points are more complex, because the cross-
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FIG. 3. !Color online" Inverse of the spin-glass susceptibility
versus temperature for fields H=0.1 !top", H=0.2 !middle", and H
=0.3 !bottom".
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3�SG

Takahashi, FRT, Kabashima, PRB (2010)
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Spin glasses in field on RRG
• Strong finite size corrections are related to local heterogeneities

Takahashi, FRT, Kabashima, PRB (2010)

!SG "
1 − !"C − 1#e−#$Gmax

1 − "C − 1#e−# , "13#

since G cannot tend to infinity when the system is finite.
Unfortunately, the following considerations indicate that
such a correction is not appropriate for describing the behav-
ior in the vicinity of Tc. The right-hand side of Eq. "13# gives
Gmax when the critical condition 1− "C−1#e−#→0 holds.
Gmax grows monotonically as N increases. However, the
growth rate is only O"ln N# since N%C"C−1#Gmax must hold
for satisfying the constraint concerning the number of nodes.
This rate is obviously too slow since numerical experiments
show that the !SG of finite systems grows as O"N1/3# at the
critical condition, at least, for H=0.9

This discrepancy indicates that effects of self-interactions,
which are ignored in the Bethe tree approximation, must be
taken into account when evaluating the dependence of !SG
on the system size N in the vicinity of Tc. Unfortunately,
such an evaluation requires a complicated calculation and
still does not lead to an accurate expression in general.
Therefore, to avoid these technical difficulties, we shall em-
ploy a phenomenological derivation.

Consider the Hessian A=!−1, where ! denotes a suscep-
tibility matrix with elements !ij = "&SiSj'− &Si'&Sj'#. As a
working hypothesis, we assume that the eigenvalues of A,
$1%$2% . . . %$N, obey a continuous distribution &"$#,
which behaves as

&"$# " "$ − $min#', "14#

close to the lower band edge $min for T(Tc and N→).
Moreover, we shall assume for the moment that $min is not

heavily modified by finite corrections. For H=0, an analysis
of random matrices of fixed weights, in conjunction with
Thouless-Anderson-Palmer theory,2 implies that the distribu-
tion can be expressed as

&"$;*,+# =
1

2,

(4"C − 1#*2 − "$ − +#2

C*2 − "$ − +#2/C
, "15#

using certain parameters * and +,20 which supports '=1 /2
for C-3. However, here, we do not exclude the possibility
that ' may depend on T and H. Equation "14# provides an-
other expression of !SG,

!SG =
1
N)

k=1

N

$k
−2 → *

$min

d$$−2&"$# " $min
−"1−'#, "16#

as N→). Assuming that !SG diverges as O"+t+−1# at critical-
ity, $min" t1/"1−'# holds as T approaches Tc from above in the
limit of N→).

However, the statistical fluctuations of the eigenvalues are
not negligible around Tc for large but finite N. As a first
approximation, therefore, let us regard $k "k=1,2 , . . . ,N# as
i.i.d. random variables extracted from &"$#. Since $1 is the
smallest value among the N i.i.d. random variables, the
theory of extreme value statistics21 indicates that magnitude
of the fluctuation of $1 can be evaluated by a simple equa-
tion,

N*
$min

$1

d$&"$# % O"1# , "17#

which yields a scaling relation $1−$min"N−1/"1+'#.
Replacing $min by its scaling relation in terms of t1/"1−'#,

Eq. "17# leads to the following expression for the smallest
eigenvalue:

$1 = A1t1/"1−'# + N−1/"1+'#.1

= N−1/"1+'#!A1"tN"1−'#/"1+'##1/"1−'# + .1$ , "18#

where A1 is a constant and .1 is a random variable taking
values O"1#. This derivation also indicates that $k can be
expressed similarly to Eq. "18# as long as k%O"1#. Accord-
ingly, all contributions to !SG from $k with k%O"1# can be
summed together in a scaling relation like

1
N )

k%O"1#
$k

−2 % N"1−'#/"1+'#g"tN"1−'#/"1+'## ,

after being averaged with respect to the .k. Here, g"x# is a
well-behaved function which returns O"1# constant for x=0
and decays polynomially as 1 /x for x/1.

The contribution from all larger eigenvalues, $k with k
%O"N#, to !SG can be written in an integral form similar to
Eq. "16# by substituting the lower band edge $min with $min
+O"N−1/"1+'##,

1
N )

k%O"N#
$k

−2 % *
$min+O"N−1/"1+'##

d$$−2&"$#

" !$min + O"N−1/"1+'##$−"1−'#

% t−1h"tN"1−'#/"1+'## . "19#
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FIG. 1. "Color online# Profiles of rate function 0"1# at the
AT criticality for several values of external field H in the case
of C=4. Values of the critical temperatures are shown in Table
I. In order to evaluate 0"1#, we first computed #"s#=
−limG→)"1 /G#ln"&S0SG'− &S0'&SG'#2s by extrapolating numerical
data for G=1,2 , . . . ,20 to G→). Applying a Legendre transforma-
tion to this function yields 0"1# as follows: 1=−"! /!s##"s# and
0=−s1−#"s#, where 0 has been parametrized by a conjugate vari-
able s. For drawing the profiles shown in the figure, we numerically
evaluated "&S0SG'− &S0'&SG'#2s based on 107 samples of Eq. "11#
and varied s in the range of −1%s%9. The profiles for H"0 indi-
cate that the dominant values of 1 for the AT criticality "dots# are
considerably larger than the most probable values of 1 "crosses#.
The physical implication of this is that the AT instability for H
"0 is induced by a small number of atypically large spin
correlations.
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At criticality
has a broad probability!
distribution for h > 0
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h=0.1

h=0.2
h=0.3

h = 0 =) G(r) = tanh(�)r

h > 0 =) G(r) ⇠ exp(⌫ r)

h=0



Spin glasses in field on RRG
• Strong finite size corrections also in global quantities

Parisi, FRT, PhilMag (2012)

external field, which is roughly half of the largest critical field value Hc(T¼ 0)’ 1.53,
in order to avoid crossover effects that could be due to the vicinity of the zero-field
critical point.

Monte Carlo simulations have been performed by using the Metropolis
algorithm and the parallel tempering method: we used 20 temperatures equally
spaced between Tmax¼ 2.0 and Tc¼ 0.73536, and we attempted the swap of
configurations at nearest temperatures every 30 Monte Carlo sweeps (MCS). Each
sample (of any size) has been thermalized for 224 MCS and then 1024 measurements
have been taken during another 226 MCS: so there are 216 MCS between two
successive measurements and we have checked this number to be larger than the
autocorrelation time. We study systems of sizes ranging from N¼ 26 to N¼ 214, with
the number of samples ranging from 5120 for N¼ 26 to 1280 for N¼ 214. We are
going to present only the data for sizes N" 212 for which we have simulated at least
2560 samples; indeed the data for N¼ 213 and N¼ 214 are more noisy (due to the
limited number of samples); moreover we fear that some samples may not be
perfectly thermalized even after 226 MCS. By restricting to N" 212 we are fully
confident about the numerical data.

3. Results

We start by showing in Figure 2 the disorder averaged P(q) for different sizes. The
exponential tail on the left side is evident from the plot (which is on a logarithmic
scale): this tail goes far into the negative overlap region for small sizes. In the
following we are going to show that this exponential tail is not a feature of typical
samples, but it is completely due to very rare and atypical samples.

The vertical line at q¼ q0 in Figure 2 marks the location of the delta peak in the
thermodynamic limit. By looking at the mean and the variance of P(q) we have
checked how finite size effects decay to zero. We see in Figure 3 that while hq2ic
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Figure 2. (Color online). Disorder averaged overlap probability distributions P(q) show an
exponential tail for q< q0.
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c=4 h=0.7 at criticality

qEA

shown in the upper right inset this effective field is larger thanH and thus the overlap
distribution is narrower and centered on a value greater than q0, while the atypical
samples shown in the upper left inset look as if they were below the critical line, i.e.
with a field smaller than H.

Since samples with different effective fields will have different critical temper-
atures, it is possible that the main source of sample-to-sample fluctuations can be
well described by a random temperature (or field) term in the effective Hamiltonian
as in the case of ferromagnets in a random magnetic field [19–21].

It is also worth noticing that the tails of the distributions shown in the insets of
Figure 5 are Gaussian or even steeper, as expected [22,23]. Indeed, the interpolating
curves superimposed to the bimodal distributions (lower left and upper right insets)
have been obtained by assuming q¼ tanh(h) with a Gaussian distributed local field h.
The nonlinear transformation is necessary (and sufficient) to take into account the
small skewness of the distributions.

In Figure 5 we have presented data only for size N¼ 212, but a natural question is
how sample-to-sample fluctuations vary with the system size. We have found that by
increasing the system size the distribution of the moments shrinks towards the
thermodynamic limits (hqi¼ q0 and hq2ic¼ 0) with the expected N"1/3 scaling
behavior. However it is not true that all samples become typical in the thermody-
namic limit. In other words, the fraction of atypical samples (e.g. those with a
bimodal distribution) remains roughly constant. In Figure 6 we show the average
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Figure 5. (Color online). Mean and variance of the 2560 samples of size N¼ 212. Insets show
the overlap probability distribution averaged over a small fraction, 1/128, of samples (those in
the corresponding circle). Solid curves in the insets are Gaussian fits to the data (see text for
details).
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in the presence of a magnetic field (see Materials and Methods
for details). Then, ξ is just the characteristic length for the long-
distance decay of GðrÞ. In order to arrive at an appropriate de-
finition for finite lattice systems, one typically considers the pro-
pagator in Fourier space, ĜðkÞ, and defines the second-moment
correlation length ξ2 from a truncated Ornstein-Zernike expan-
sion -Eqs. 11 and 12.

We have plotted ξ2 in Fig. 1 for all our lattice sizes and h ¼ 0.3.
There is a clear change of regime from the high-temperature be-
havior, where we can see a finite enveloping curve, to the growth
of the correlation length at low temperatures. We intend to show
that this change of regime actually corresponds to a phase transi-
tion, using finite-size scaling (26).

In principle, at the transition point there should be scale invar-
iance in the system, meaning that

ξ2∕L ¼ f ξðL1∕νtÞ þ…; t ¼ T − TcðhÞ
TcðhÞ

; [2]

where ν is the thermal critical exponent and the dots represent
corrections to leading scaling, expected to be unimportant for
large lattice sizes. Therefore, the curves of ξ2∕L for large lattices
should intersect at the critical point t ¼ 0. Previous attempts to
find Tc using this approach, however, have generally concluded
that these intersections cannot be found (or, rather, that the ap-
parent intersection point goes to T ¼ 0 as L grows) (18, 19). In-
deed, if we look at the top box of Fig. 2, we see that either there is
no phase transition or ξ2 is completely in a preasymptotic regime.

Some authors, working with D ¼ 1 models with long-range in-
teractions, have already offered an explanation for this apparent
lack of scale invariance: the propagator behaves anomalously, but
only for the k ¼ 0 mode (25). This irregular behavior results
in very strong corrections to the leading scaling term of Eq. 2,
because the second-moment correlation length depends on
Ĝðk ¼ 0Þ. We have checked numerically that this phenomenon
is also at play in our D ¼ 4 system, which is probably a general
consequence of the presence of Goldstone bosons in the system
(seeMaterials and Methods for a discussion of this phenomenon).

In order to avoid this issue, in this paper we take a different
approach, eschewing ξ2∕L in favor of a new dimensionless ratio
as the basic quantity for our finite-size scaling study. In particular,
we shall consider ratios of higher momenta:

R12 ¼
Ĝðk1Þ
Ĝðk2Þ

; [3]

where k1 ¼ ð2π∕L; 0; 0; 0Þ, k2 ¼ ð2π∕L; 2π∕L; 0; 0Þ (and permu-
tations) are the smallest nonzero momenta compatible with the
periodic boundary conditions. Notice that, while our use ofR12 as
a basic parameter is not standard, this is not in any way a strange
quantity. In fact, it is a universal renormalization-group invariant,
whose value in the large-L limit for a paramagnetic system should
be R12ðT > TcÞ ¼ 1. At the critical point, however, R12ðTcÞ > 1.
For instance, using conformal theory relations (27, 28), we have
computed the critical ratio exactly for the nondisordered D ¼ 2
Ising model: RIsing

12 ðTcÞ ¼ 1.694024….
To leading order, R12 should have the same scaling behavior as

ξ2∕L, namely,

R12 ¼ f 12ðL1∕νtÞ þ ½scaling corrections&: [4]

However, because this quantity avoids the anomalous k ¼ 0
mode, we expect that corrections to scaling be smaller. Indeed,
in the bottom box of Fig. 2 we can see that the improvement in the
scaling from the ξ2 case is dramatic. Even though corrections to
scaling are noticeable, for large sizes the intersections of the
curves seem to converge. Notice as well that the high values of
R12 in the neighborhood of the intersection point are not only
far from the paramagnetic limit of R12 ¼ 1, but also above the
bound R12 ≤ 2 that would result from a smooth behavior of the
propagator (see the discussion following Eq. 11).

Therefore, it is our working hypothesis that there is a phase
transition, but one that is affected by large corrections to scaling.
To substantiate this statement and actually compute the critical
parameters, we must begin by somehow controlling these correc-
tions. This analysis is rather technical, but not critical to our
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Fig. 1. Plot of the secondmoment correlation length ξ2 -Eq. 12- against tem-
perature in an external field h ¼ 0.3. There is a clear crossover from the con-
vergence to a finite envelope at high T to the more rapid growth at low T. As
this paper shows, this crossover is caused by the onset of a spin-glass transi-
tion. The dotted black line is a fit to a critical divergence as ξ∞2 ∝ ½T − T cðhÞ&−ν,
where T c and ν are taken from Table 1. The inset is a sketch of the phase
diagram (the de Almeida-Thouless line), including a fit to the Fisher-Sompo-
linsky scaling h2

c ðTÞ ≃ AjT − T ð0Þ
c jβ ð0Þþγ ð0Þ (17). The quantities with a superindex

ð0Þ are the values for the h ¼ 0 critical point (33, 34), so the only free para-
meter is the amplitude A. In this and all other figures the error bars represent
one standard deviation.
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Fig. 2. Top: plot of ξ2∕L as a function of temperature for all our lattice sizes
at h ¼ 0.15. According to leading-order finite-size scaling, the curves for dif-
ferent sizes should intersect at the phase transition point, but this behavior is
not seen in the plot. This apparent lack of scale invariance has led some
authors to conclude that there is no phase transition in this system. Bottom:
Same plot of the dimensionless ratio R12, Eq. 3, which should have the same
leading-order scaling as ξ2∕L. Unlike the correlation length, however, R12

does exhibit very clear intersections, signalling the presence of a second-or-
der phase transition. The dramatic improvement in the scaling, compared to
the top box, is explained by the pernicious effect on ξ2 of the anomalous
behavior in the correlation function for zero momentum.
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autocorrelation times is ensured. The final product is a set of thermalized and
almost independent configurations. As an example, each L ¼ 16 sample in
h ¼ 0.15 was simulated at least for 5 × 107 heat bath lattice sweeps at each
of the NT ¼ 32 temperatures (we performed a parallel tempering update
every 10 heat baths). However, the hardest sample required as many as 2.6 ×
1010 heat bath sweeps.

The L ¼ 16 lattices were simulated on the Janus computer with an update
speed (for each of its 256 units) of 86 ps per spin flip with a heat bath scheme.
The L ≤ 12 lattices were simulated on Personal Computer (PC) clusters, with a
C code that uses multispin coding (40) with 128-bit words (using the stream-
ing extensions); the update speed in this case is 350 ps per spin flip using a
Metropolis algorithm (on an Intel Core2 processor at 2.40 GHz). With multi-
spin coding, the samples whose simulations have to be extended must be
extracted from the original 128-sample bundles to construct new bundles
that are then extended with the same code. Note finally that, because
the PC spreads the spin flips over 128 samples, the simulation for each sample
is faster on Janus by a factor approximately 500. This difference is significant
when the equilibration time is large.

The Correlation Functions. The main quantities that we compute are the cor-
relation functions. In the presence of a magnetic field, the expectation of
each spin Sx is nonvanishing. Hence we may consider these two correlation
functions:

G1ðrÞ ¼
1

L4
∑

x

ðhSxSxþri − hSxihSxþriÞ2; [9]

G2ðrÞ ¼
1

L4
∑

x

ðhSxSxþri2 − hSxi2hSxþri2Þ : [10]

In the above, the h⋯i stands for the thermal average in a single sample, while
the disorder average is indicated by an overline. Note that the Fourier trans-
form Ĝ1ðk ¼ 0Þ is the spin-glass susceptibility. We simulate four real replicas
fSðaÞ

x g (i.e., four systems with the same couplings evolving independently un-
der the thermal noise) in order to obtain unbiased estimators of the correla-
tion functions. In the main text G stands for either of the G1;2. In the fits we
have combined data from both whenever it was useful to obtain smaller sta-
tistical errors.

The correlation functions were computed off-line over stored configura-
tions. We note that configurations at different Monte Carlo times can be
combined as long as they belong to different replicas (41). This combination

results in small Monte Carlo errors with a modest number of configurations,
so the uncertainty on the final result is dominated by the sample-to-sample
fluctuations. This step is rather time consuming, so we also use multispin cod-
ing to accomplish it.

In order to define the second-moment correlation length (42), we consider
the following Ornstein-Zernike expansion for the propagator in Fourier
space,

1

ĜðkÞ
¼ ξ2

Ĝð0Þ

!
1

ξ2
þ k2 þ a4ðk2Þ2 þ…

"
; [11]

where k2 ¼ 4∑μ sin2ðkμ∕2Þ. Then, the common second-moment correlation
length ξ2 is obtained by truncating the expansion at the k2 term:

ξ2 ¼
1

2 sinðπ∕LÞ

#
Ĝð0Þ
Ĝðk1Þ

− 1

$
1∕2

: [12]

As we comment in the main text, this definition is not well behaved for
our model, due to the anomalous behavior of the k ¼ 0mode. Actually, there
is a simple, yet unexpected explanation for this anomaly. The anomalous be-
havior arises whenever soft excitations (Goldstone bosons) are present in the
low-temperature phase, while an external magnetic field splits excitations
into longitudinal and transversal (43). Familiar examples of Goldstone bosons
are magnons, or the phonons in an acoustical branch. What is most peculiar
about spin glasses is that soft modes are present (44, 45), even if our variables
are discrete.
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in the presence of a magnetic field (see Materials and Methods
for details). Then, ξ is just the characteristic length for the long-
distance decay of GðrÞ. In order to arrive at an appropriate de-
finition for finite lattice systems, one typically considers the pro-
pagator in Fourier space, ĜðkÞ, and defines the second-moment
correlation length ξ2 from a truncated Ornstein-Zernike expan-
sion -Eqs. 11 and 12.

We have plotted ξ2 in Fig. 1 for all our lattice sizes and h ¼ 0.3.
There is a clear change of regime from the high-temperature be-
havior, where we can see a finite enveloping curve, to the growth
of the correlation length at low temperatures. We intend to show
that this change of regime actually corresponds to a phase transi-
tion, using finite-size scaling (26).

In principle, at the transition point there should be scale invar-
iance in the system, meaning that

ξ2∕L ¼ f ξðL1∕νtÞ þ…; t ¼ T − TcðhÞ
TcðhÞ

; [2]

where ν is the thermal critical exponent and the dots represent
corrections to leading scaling, expected to be unimportant for
large lattice sizes. Therefore, the curves of ξ2∕L for large lattices
should intersect at the critical point t ¼ 0. Previous attempts to
find Tc using this approach, however, have generally concluded
that these intersections cannot be found (or, rather, that the ap-
parent intersection point goes to T ¼ 0 as L grows) (18, 19). In-
deed, if we look at the top box of Fig. 2, we see that either there is
no phase transition or ξ2 is completely in a preasymptotic regime.

Some authors, working with D ¼ 1 models with long-range in-
teractions, have already offered an explanation for this apparent
lack of scale invariance: the propagator behaves anomalously, but
only for the k ¼ 0 mode (25). This irregular behavior results
in very strong corrections to the leading scaling term of Eq. 2,
because the second-moment correlation length depends on
Ĝðk ¼ 0Þ. We have checked numerically that this phenomenon
is also at play in our D ¼ 4 system, which is probably a general
consequence of the presence of Goldstone bosons in the system
(seeMaterials and Methods for a discussion of this phenomenon).

In order to avoid this issue, in this paper we take a different
approach, eschewing ξ2∕L in favor of a new dimensionless ratio
as the basic quantity for our finite-size scaling study. In particular,
we shall consider ratios of higher momenta:

R12 ¼
Ĝðk1Þ
Ĝðk2Þ

; [3]

where k1 ¼ ð2π∕L; 0; 0; 0Þ, k2 ¼ ð2π∕L; 2π∕L; 0; 0Þ (and permu-
tations) are the smallest nonzero momenta compatible with the
periodic boundary conditions. Notice that, while our use ofR12 as
a basic parameter is not standard, this is not in any way a strange
quantity. In fact, it is a universal renormalization-group invariant,
whose value in the large-L limit for a paramagnetic system should
be R12ðT > TcÞ ¼ 1. At the critical point, however, R12ðTcÞ > 1.
For instance, using conformal theory relations (27, 28), we have
computed the critical ratio exactly for the nondisordered D ¼ 2
Ising model: RIsing

12 ðTcÞ ¼ 1.694024….
To leading order, R12 should have the same scaling behavior as

ξ2∕L, namely,

R12 ¼ f 12ðL1∕νtÞ þ ½scaling corrections&: [4]

However, because this quantity avoids the anomalous k ¼ 0
mode, we expect that corrections to scaling be smaller. Indeed,
in the bottom box of Fig. 2 we can see that the improvement in the
scaling from the ξ2 case is dramatic. Even though corrections to
scaling are noticeable, for large sizes the intersections of the
curves seem to converge. Notice as well that the high values of
R12 in the neighborhood of the intersection point are not only
far from the paramagnetic limit of R12 ¼ 1, but also above the
bound R12 ≤ 2 that would result from a smooth behavior of the
propagator (see the discussion following Eq. 11).

Therefore, it is our working hypothesis that there is a phase
transition, but one that is affected by large corrections to scaling.
To substantiate this statement and actually compute the critical
parameters, we must begin by somehow controlling these correc-
tions. This analysis is rather technical, but not critical to our
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Fig. 1. Plot of the secondmoment correlation length ξ2 -Eq. 12- against tem-
perature in an external field h ¼ 0.3. There is a clear crossover from the con-
vergence to a finite envelope at high T to the more rapid growth at low T. As
this paper shows, this crossover is caused by the onset of a spin-glass transi-
tion. The dotted black line is a fit to a critical divergence as ξ∞2 ∝ ½T − T cðhÞ&−ν,
where T c and ν are taken from Table 1. The inset is a sketch of the phase
diagram (the de Almeida-Thouless line), including a fit to the Fisher-Sompo-
linsky scaling h2

c ðTÞ ≃ AjT − T ð0Þ
c jβ ð0Þþγ ð0Þ (17). The quantities with a superindex

ð0Þ are the values for the h ¼ 0 critical point (33, 34), so the only free para-
meter is the amplitude A. In this and all other figures the error bars represent
one standard deviation.
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Fig. 2. Top: plot of ξ2∕L as a function of temperature for all our lattice sizes
at h ¼ 0.15. According to leading-order finite-size scaling, the curves for dif-
ferent sizes should intersect at the phase transition point, but this behavior is
not seen in the plot. This apparent lack of scale invariance has led some
authors to conclude that there is no phase transition in this system. Bottom:
Same plot of the dimensionless ratio R12, Eq. 3, which should have the same
leading-order scaling as ξ2∕L. Unlike the correlation length, however, R12

does exhibit very clear intersections, signalling the presence of a second-or-
der phase transition. The dramatic improvement in the scaling, compared to
the top box, is explained by the pernicious effect on ξ2 of the anomalous
behavior in the correlation function for zero momentum.
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in the presence of a magnetic field (see Materials and Methods
for details). Then, ξ is just the characteristic length for the long-
distance decay of GðrÞ. In order to arrive at an appropriate de-
finition for finite lattice systems, one typically considers the pro-
pagator in Fourier space, ĜðkÞ, and defines the second-moment
correlation length ξ2 from a truncated Ornstein-Zernike expan-
sion -Eqs. 11 and 12.

We have plotted ξ2 in Fig. 1 for all our lattice sizes and h ¼ 0.3.
There is a clear change of regime from the high-temperature be-
havior, where we can see a finite enveloping curve, to the growth
of the correlation length at low temperatures. We intend to show
that this change of regime actually corresponds to a phase transi-
tion, using finite-size scaling (26).

In principle, at the transition point there should be scale invar-
iance in the system, meaning that

ξ2∕L ¼ f ξðL1∕νtÞ þ…; t ¼ T − TcðhÞ
TcðhÞ

; [2]

where ν is the thermal critical exponent and the dots represent
corrections to leading scaling, expected to be unimportant for
large lattice sizes. Therefore, the curves of ξ2∕L for large lattices
should intersect at the critical point t ¼ 0. Previous attempts to
find Tc using this approach, however, have generally concluded
that these intersections cannot be found (or, rather, that the ap-
parent intersection point goes to T ¼ 0 as L grows) (18, 19). In-
deed, if we look at the top box of Fig. 2, we see that either there is
no phase transition or ξ2 is completely in a preasymptotic regime.

Some authors, working with D ¼ 1 models with long-range in-
teractions, have already offered an explanation for this apparent
lack of scale invariance: the propagator behaves anomalously, but
only for the k ¼ 0 mode (25). This irregular behavior results
in very strong corrections to the leading scaling term of Eq. 2,
because the second-moment correlation length depends on
Ĝðk ¼ 0Þ. We have checked numerically that this phenomenon
is also at play in our D ¼ 4 system, which is probably a general
consequence of the presence of Goldstone bosons in the system
(seeMaterials and Methods for a discussion of this phenomenon).

In order to avoid this issue, in this paper we take a different
approach, eschewing ξ2∕L in favor of a new dimensionless ratio
as the basic quantity for our finite-size scaling study. In particular,
we shall consider ratios of higher momenta:

R12 ¼
Ĝðk1Þ
Ĝðk2Þ

; [3]

where k1 ¼ ð2π∕L; 0; 0; 0Þ, k2 ¼ ð2π∕L; 2π∕L; 0; 0Þ (and permu-
tations) are the smallest nonzero momenta compatible with the
periodic boundary conditions. Notice that, while our use ofR12 as
a basic parameter is not standard, this is not in any way a strange
quantity. In fact, it is a universal renormalization-group invariant,
whose value in the large-L limit for a paramagnetic system should
be R12ðT > TcÞ ¼ 1. At the critical point, however, R12ðTcÞ > 1.
For instance, using conformal theory relations (27, 28), we have
computed the critical ratio exactly for the nondisordered D ¼ 2
Ising model: RIsing

12 ðTcÞ ¼ 1.694024….
To leading order, R12 should have the same scaling behavior as

ξ2∕L, namely,

R12 ¼ f 12ðL1∕νtÞ þ ½scaling corrections&: [4]

However, because this quantity avoids the anomalous k ¼ 0
mode, we expect that corrections to scaling be smaller. Indeed,
in the bottom box of Fig. 2 we can see that the improvement in the
scaling from the ξ2 case is dramatic. Even though corrections to
scaling are noticeable, for large sizes the intersections of the
curves seem to converge. Notice as well that the high values of
R12 in the neighborhood of the intersection point are not only
far from the paramagnetic limit of R12 ¼ 1, but also above the
bound R12 ≤ 2 that would result from a smooth behavior of the
propagator (see the discussion following Eq. 11).

Therefore, it is our working hypothesis that there is a phase
transition, but one that is affected by large corrections to scaling.
To substantiate this statement and actually compute the critical
parameters, we must begin by somehow controlling these correc-
tions. This analysis is rather technical, but not critical to our
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Fig. 1. Plot of the secondmoment correlation length ξ2 -Eq. 12- against tem-
perature in an external field h ¼ 0.3. There is a clear crossover from the con-
vergence to a finite envelope at high T to the more rapid growth at low T. As
this paper shows, this crossover is caused by the onset of a spin-glass transi-
tion. The dotted black line is a fit to a critical divergence as ξ∞2 ∝ ½T − T cðhÞ&−ν,
where T c and ν are taken from Table 1. The inset is a sketch of the phase
diagram (the de Almeida-Thouless line), including a fit to the Fisher-Sompo-
linsky scaling h2

c ðTÞ ≃ AjT − T ð0Þ
c jβ ð0Þþγ ð0Þ (17). The quantities with a superindex

ð0Þ are the values for the h ¼ 0 critical point (33, 34), so the only free para-
meter is the amplitude A. In this and all other figures the error bars represent
one standard deviation.
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Fig. 2. Top: plot of ξ2∕L as a function of temperature for all our lattice sizes
at h ¼ 0.15. According to leading-order finite-size scaling, the curves for dif-
ferent sizes should intersect at the phase transition point, but this behavior is
not seen in the plot. This apparent lack of scale invariance has led some
authors to conclude that there is no phase transition in this system. Bottom:
Same plot of the dimensionless ratio R12, Eq. 3, which should have the same
leading-order scaling as ξ2∕L. Unlike the correlation length, however, R12

does exhibit very clear intersections, signalling the presence of a second-or-
der phase transition. The dramatic improvement in the scaling, compared to
the top box, is explained by the pernicious effect on ξ2 of the anomalous
behavior in the correlation function for zero momentum.
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D=3 spin glasses in uniform field
• Data from Janus supercomputer:!

- best data currently available!
- approaching the experimental timescales…!
- …and still strong finite size corrections!!

• Standard methods of analysis -> no phase transition in field
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D=3 spin glasses in uniform field
• The largest size L=32 at the lowest temperature T=0.805128 

still shows strong fluctuations (as in RRG)!

• P(q) should be a delta function in the paramagnetic phase!

Janus collaboration, JSTAT (2014)
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The three-dimensional Ising spin glass in an external magnetic field

Figure 2. The probability distribution function P (q) of the overlap q for our
largest lattices (L = 32) at the lowest simulated temperature (T = 0.805 128) for
all our magnetic fields (h = 0.05, 0.1, 0.2, 0.4), see table 1. The order parameter
in the Edwards–Anderson model is the overlap q, and it is defined in the [�1, 1]
interval (see section 4). The supports are wide, with exponential tails similar to
those in the mean-field model at the dAT transition line [47].

Instead, we can see from figure 2 that its distribution P (q) has a very wide support,
with tails that, for small enough magnetic fields, even reach negative values of q. This is
precisely what was observed in the mean-field version of the model on the de Almeida–
Thouless line, and it was attributed to the contribution of a few samples [47].

From these arguments it becomes reasonable to think that we may not be simulating
large enough lattices to observe the asymptotic nature of the system and that there may
be some hidden behaviour that we are not appreciating.

2.4. Giant fluctuations

In fact, we find that the average values we measure are representative of only a small part
of the data set. That is, the average of relevant observables (e.g., the spatial correlation
function) only represents the small number of measurements that are dominating it. The
rest of the measurements are not appreciated by using the average.

Clearly, standard finite-size scaling methods are not adequate for these systems, and
we need to find a way to take all the measurements into account. Recalling the wide
distributions of figure 2, it seems reasonable to sort our measurements according to some
conditioning variable q̂ related to the overlaps between our replicas (see section 6). In this
way, we find that the average values we measure are given by only a small part of the
measurements. For example, in figure 3 we show the correlation function C(r). We plot
four estimators of C(r): the average (which is the standard quantity studied in almost all,
if not all, previous work), the C(r) that corresponds to the median of the q̂ distribution,

doi:10.1088/1742-5468/2014/05/P05014 7



D=3 spin glasses in uniform field
• Conditioning on the value of the overlap we get surprises!

Janus collaboration, JSTAT (2014)

G(r)
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The three-dimensional Ising spin glass in an external magnetic field

Figure 3. Di↵erent instances of the normalized correlation function C(r) (9) for
L = 32, T = 0.805 128. The field is h = 0.1 on the left, and h = 0.2 in the
right plot. We sort the measurements with the help of a conditioning variate q̂ as
described in section 6. In this case q̂ is the median overlap q

med

. We show small sets
of measurements, namely the ones with the 10% lowest (top curve) and highest
(bottom curve) q̂ and those whose q̂ corresponds to the median of the distribution
of q̂ (50% lowest/highest q̂). This sorting reveals extreme di↵erences in the fauna
of measurements. The average and median of the correlation functions are very
di↵erent. The average is very similar to the 10% lowest ranked measures, i.e.,
it is only representative of a very small part of the data. We normalize C(r)
by dividing by C(0) because we measure point-to-plane correlation functions (9).
The correlation functions have zero slope at r = L/2 due to the periodic boundary
conditions.

and the measurements with the 10% highest (lowest) values of q̂. We see that the average
is very close to the 10% lowest q̂, and very far from the two other curves. Therefore, when
we plot the average curve, we are only representing the behaviour of that small set of
data.

Therefore, if we want to understand the behaviour of the whole collection of
measurements, we have to be able to find some criterion to sort them and analyse them
separately.

3. Model and simulations

3.1. The model

We consider a 3D cubic lattice of size L with periodic boundary conditions. In each of the
V = L3 vertices of the lattice there is a spin �

x

= ±1. The spins interact uniquely with
their nearest neighbours and with an external magnetic field h. The Hamiltonian is

H = �
X

hx,yi
J
xy

�
x

�
y

� h
X

x

�
x

, (1)

doi:10.1088/1742-5468/2014/05/P05014 8



D=3 spin glasses in uniform field
• All measurements from different samples together!
• Conditional expectation

Janus collaboration, JSTAT (2014)

E[O|q] = E[O �q̂,q]

E[�q̂,q]
E[O] =

Z
dP (q̂)E[O|q̂]

{(Oi, q̂i)}

conditioning 
variate

V[O] =

Z
dP (q̂)V[O|q̂] +

Z
dP (q̂)

�
E[O|q̂]� E[O]
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D=3 spin glasses in uniform field
• All measurements from different samples together!
• Conditional expectation

Janus collaboration, JSTAT (2014)

E[O|q] = E[O �q̂,q]

E[�q̂,q]
E[O] =

Z
dP (q̂)E[O|q̂]

{(Oi, q̂i)}

conditioning 
variate

V[O] =

Z
dP (q̂)V[O|q̂] +

Z
dP (q̂)

�
E[O|q̂]� E[O]

�2

as small as possible!
(and hopefully!
self-averaging)

as large as possible



D=3 spin glasses in uniform field
• Use of deciles:!

- pros -> constant statistics!
- cons -> values of decile separators    change with size
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Figure 8. Finite-size indicators of a phase transition, computed for h = 0.2.
On the left side we plot, for quantiles 1 (top), 5 (middle) and 9 (bottom), the
correlation length in units of the lattice size ⇠

L

/L (left) versus the temperature,
for all our lattice sizes except L = 6 (we show in appendix D that the quantile
description is not suitable for L = 6 because there is a double peak in the P (q)).
On the right we show analogous plots for R

12

. The vertical line on the left marks
the upper bound T up for a possible phase transition given in [34], while the
one on the right marks the zero-field transition temperature T

c

given in [51].
Quantile 1 has the same qualitative behaviour of the average ⇠

L

/L, shown in
figure 1, while quantiles 5 and 9 suggest a scale invariance at some temperature
T
h

< T up.

whose q
med

is even lower than q̃
1

. Moreover, one can notice that in figure 1 the indicators
⇠
L

/L and R
12

show a di↵erent qualitative behaviour when the lattices are small (R
12

shows
a crossing). This discrepancy vanishes when we look only at the first quantile: separation
of the di↵erent behaviours enhances the consistency between ⇠

L

/L and R
12

.
The behaviour of the fifth quantile is quite di↵erent, since now it appears reasonable

that the curves cross at some T . T up(h). The crossings become even more evident when
we consider the highest quantile.

doi:10.1088/1742-5468/2014/05/P05014 20

D=3 spin glasses in uniform field

• For T>Tc 
 
 
however numerical data 
sensibly depends on the  
decile!

Janus collaboration, JSTAT (2014)
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Figure 8. Finite-size indicators of a phase transition, computed for h = 0.2.
On the left side we plot, for quantiles 1 (top), 5 (middle) and 9 (bottom), the
correlation length in units of the lattice size ⇠

L

/L (left) versus the temperature,
for all our lattice sizes except L = 6 (we show in appendix D that the quantile
description is not suitable for L = 6 because there is a double peak in the P (q)).
On the right we show analogous plots for R

12

. The vertical line on the left marks
the upper bound T up for a possible phase transition given in [34], while the
one on the right marks the zero-field transition temperature T

c

given in [51].
Quantile 1 has the same qualitative behaviour of the average ⇠

L

/L, shown in
figure 1, while quantiles 5 and 9 suggest a scale invariance at some temperature
T
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< T up.
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Long range interacting D=1 spin glasses 
• Original proposal (Kotliar, 1983):!

- computationally expensive, running times O(N2)!
• Our proposal (Leuzzi, Parisi, FRT, Ruiz-Lorenzo, PRL, 2008)!

-              and!
- computationally efficient, running times O(N)!
- mean-field limit (        ) recovers SG on random graphs

Jij ⇠ N(0, |i� j|�⇢)

P[Jij 6= 0] / |i� j|�⇢Jij = ±1

⇢ ! 0

no phase transitionmean-field long range
⇢

De↵ DU = 61 DL

0 4/3 2
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- computationally expensive, running times O(N2)!
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Long range interacting D=1 spin glasses 
• Many pros:!

- very large lattice sizes, up to  L = O(104)!
- we can increase the effective dimension at no cost  

(we are interested in an eventual phase transition for D<6)!
-              and does not renormalize outside mean-field!
- two scaling-invariant 

observables 
 
 
 
that cross at  
the critical point

⌘ = 3� ⇢

�/L2�⌘

⇠/L

transition vanishes [6], though power-law correlations
might still be present [14]; this value of the exponent plays
the role of the lower critical dimension in SR systems. An
approximate relationship between ! and the dimension D
of SR models can be identified as follows. In LR models,
the free theory in the replica space is

H ¼ L

4

Z dk

2"
ðk!#1 þm2

0Þ
X

a!b

j ~QabðkÞj2; (3)

where a and b are replica indices and ~QabðkÞ is the Fourier
transform of the distance-dependent overlap matrix ele-
mentQabðrijÞ. Details can be found in Ref. [7]. Comparing
the critical scaling (m0 / jT # Tcj ¼ 0) of Eq. (3) with
that of the free theory for SR spin-glass models in D
dimensions (H & R

dDkk2TrQ2), the following equation
turns out to hold close to the upper critical dimension ! ¼
1þ 2=D.

We simulate two replicas #ð1;2Þ
i using the parallel tem-

pering algorithm [16,17]. To study the equilibrium prop-
erties, we measure site and link overlaps,

q¼ 1

L

XL

i¼1

#ð1Þ
i #ð2Þ

i ; ql¼
1

zL

X1;L

i;j

J2ij#
ð1Þ
i #ð1Þ

j #ð2Þ
i #ð2Þ

j ; (4)

and $L ¼ ½%sg=~%ð2"=LÞ # 1(1=ð!#1Þ=½2 sinð"=LÞ(, the

correlation length [18]. %sg ¼ Lhq2i is the spin-glass sus-
ceptibility (h) ) )i denotes the thermal average and ) ) )
denotes the average over the disorder), and ~%ðkÞ is the
Fourier transform of the four-point correlation function
(~%ð0Þ ¼ %sg). To compute critical properties and finite
size scaling (FSS) corrections, we have used the quotient
method [19]. We have computed the exponent & from the
scaling of the temperature derivative of $L=L and ' from
the scaling of %sg. As a typical case, we show in Fig. 1 the
temperature and size dependence of %sg and $L. In the
quotient method, the estimates of the critical exponent still
depend on the lattice size: the extrapolation to infinite
volume provides both their asymptotic values and the !
exponent of the leading FSS correction, OðL#!Þ. The
results are summarized in Table II. The ' exponent co-
incides with the theoretical prediction ' ¼ 3# ! (' is not
renormalized in the IRD regime [4,7]). Because of strong
finite size effects, this check failed in previous works [8].
The & exponent is consistent with the theoretical predic-
tion, & ¼ 1=ð!# 1Þ, in the MF case. In the IRD regime,
thermodynamic fluctuations dominate and a renormaliza-

tion is necessary: at present only one-loop calculations are
available [4,7], but their estimates of & are too rough to
compare with numerical data.
In the spin-glass phase (T < Tc), site and link overlap

distributions, PðqÞ and PlðqlÞ, can be used as hallmarks to
discriminate among different theories for finite-
dimensional spin glasses. Indeed, three cases are contem-
plated in the literature. 1. Droplet theory: one state; both
distributions are delta-shaped. 2. TNT scenario: many
states (q fluctuates), but dropletlike excitations (ql fluctua-
tions vanish for large sizes); PðqÞ is broad and PlðqlÞ is
delta-shaped. 3. RSB theory: many states with space-filling
excitations; both distributions are broad.
Distributions PðqÞ and PlðqlÞ for T ’ 0:4Tc are plotted

in Figs. 2 and 3 in a case where MF is exact (! ¼ 5=4) and
in an IRD case (! ¼ 3=2), respectively. In both cases, we
see two peaks in the PlðqlÞ for large sizes. Out of MF, such
a result would have been impossible to observe in this
model with sizes smaller than L ¼ 212.
Both distributions seem to be broad, but their thermody-

namic limits must be taken carefully. While it is easy to
prove that PðqÞ is not bimodal as L! 1 [lower insets in
Figs. 2 and 3 show that Pð0Þ becomes size independent],
the limit of PlðqlÞ is more difficult to extract from finite
size data, since its variance converges to a small value, see
upper insets of Figs. 2 and 3 [20]. We provide, thus, an
alternative method of analysis, testing the hypothesis that
both q and ql are equivalent measures of the distance

among states [21]. The simplest relation is ql ¼ qaux *
Aþ Bq2 þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# q2

p
z, where z is a normal random vari-
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FIG. 1. ! ¼ 3=2, IRD regime. Plot of L'#2%sg vs T. Inset:
$L=L vs T. Sizes are L ¼ 2(, with ( ¼ 8, 10, 12, 14.

TABLE II. Estimates of critical temperature and exponents.

! ‘‘D’’ Tc 1=& ' ' (th.) !

MF 5=4 8 2.191(5) 0.28(2) 1.751(8) 1.75 0.40(2)
IRD 3=2 4 1.758(4) 0.25(3) 1.502(8) 1.5 0.60(6)
IRD 5=3 3 1.36(1) 0.19(3) 1.32(1) 1:3!3 0.8(1)

TABLE I. From infinite range to short-range behavior of the
SG model defined in Eqs. (1) and (2).

!< 1 Bethe lattice like

1< ! + 4=3 2nd order transition, mean-field (MF)
4=3< !< 2 2nd order transition, infrared divergence (IRD)

! ¼ 2 Kosterlitz-Thouless or T ¼ 0 phase transition
!> 2 no phase transition

PRL 101, 107203 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

5 SEPTEMBER 2008

107203-2

Leuzzi et al. PRL (2008)



Long range D=1 spin glasses with field
• Standard tools of analysis:!

- clear phase transition in the mean-field region!
- phase transition outside the mean-field region for small fields!
- no phase transition for larger fields (e.g.                    )

affected. FSE are more evident in the large x tail of CðxÞ
and, thus, at small k in ~CðkÞ, while they decrease as k
increases. The large x part of CðxÞ strongly depends on the
average overlap order parameter hqi, which is known to
have strong sample-to-sample fluctuations in a field and
FSE due to negative overlaps which should disappear in the
thermodynamic limit.

With the aim of reducing FSE, we introduce a method

for estimating Tc using ~CðkÞ data with k > 0. We fit ~CðkÞ#1

by a quadratic function Aþ Byþ Cy2 with y ¼
½sinðk=2Þ=!'"#1: the resulting fits have a #2=d:o:f: <
0:55 (comparable fit qualities have been found in the entire
analysis). As long as T > Tc, we expect limL!1AðL; TÞ ¼
##1
sg > 0: the inset in Fig. 1 shows the size dependence of
~Cð0Þ#1 and AðL; TÞ, with compatible L ! 1 limits.
In Fig. 2 we show the best fitting parameter AðL; TÞ for

" ¼ 1:5 and h ¼ 0:1. For each size we compute the tem-
perature TcðLÞ by solving the equation AðL; TcðLÞÞ ¼ 0 (in
this way only A > 0 data are used, which are the most
reliable). Finally, we estimate Tc ¼ limL!1TcðLÞ (inset of
Fig. 2) and obtain Tc ¼ 1:46ð3Þ. The TcðLÞ scaling in

L#1=$ has an exponent #0:28, in good agreement with
1=$ ¼ 0:25ð3Þ for the h ¼ 0 case [15]. On the same data
(" ¼ 1:5, h ¼ 0:1) the analysis of the crossing points of
#sg=L

2#% and &=L, cf. Eq. (7), is shown in Fig. 3 (right
panel), yielding no evidence for a phase transition, as in
Ref. [24]. A very natural explanation is the presence of
strong corrections to Eq. (7). The case " ¼ 1:4, h ¼ 0:1,
provides a still more useful comparison. Our method re-
turns a critical temperature Tc ¼ 1:67ð7Þ. Figure 3 shows
#sg=L

2#% and &=L vs T: crossings are present, but the

curves seem to merge for T & 1:5 and a precise determi-
nation of Tc is practically unfeasible. For " ¼ 1:2, h ¼
0:2, the estimate based on the scaling of #sg=L

1=3, Eq. (6),

yields Tc ¼ 1:67ð3Þ, while &=L$=3 curves do not show any
crossing for T > 1:2. Since the transition is MF-like in this

case, the behavior of & is clearly caused by large FSE.
Numerical estimates of Tc obtained with the two methods
are reported in Table I and look compatible. It is clear that
for large " our method works better. As " is decreased, this
new estimate becomes poorer, because the scaling expo-
nent "# 1 [cf. Eq. (8)] is too small to yield a robust
extrapolation of AðL; TÞ.
Discussion of experimental results.—A possible objec-

tion to the presence of the SG transition (supported by our
results) is that in experiments on Ising-like SG no dAT line
was detected. Here we consider, in particular, the most
recent experiments on Fe0:55Mn0:45TiO3 [4], where the ac
susceptibilities were accurately measured in the presence
of an external magnetic field. In order to relate external
fields in our model to those used in experiments we look at
how much the zero-field-cooled (ZFC) susceptibility at
Tcðh ¼ 0Þ, #(, decreases as h is increased. In Fig. 4 we
plot TcðhÞ=Tcð0Þ vs #(ðhÞ=#(ð0Þ in our model for " ¼ 1:5.
In experiments on Fe0:55Mn0:45TiO3 [4] with fields of
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FIG. 3 (color online). Scaling functions vs T. Left panels: " ¼ 1:2, #sg=L
1=3 (top) and &=L5=3 (bottom) at h ¼ 0:2. Sizes are L ¼

26; . . . ; 212. Mid panels: " ¼ 1:4, #sg=L
0:4 and &=L at h ¼ 0:1. Lower panels: " ¼ 1:5, #sg=L

0:5 and &=L at h ¼ 0:1.

TABLE I. Estimates of Tc: column 4 from Eqs. (6) and (7) and
column 5 from the extrapolation of AðL; TÞ by Eq. (8).

" h Tc from #sg Tc from AðL; TÞ
1.2 0.0 2.24(1) 2.34(3)
1.2 0.1 2.02(2) 1.9(2)

MF 1.2 0.2 1.67(3) 1.4(2)
1.2 0.3 1.46(3) 1.5(4)
1.25 0.0 2.191(5) 2.23(2)
1.4 0.0 1.954(3) 1.970(2)
1.4 0.1 )1:5 1.67(7)

IRD 1.4 0.2 )1:1 1.2(2)
1.5 0.0 1.758(4) 1.770(5)
1.5 0.1 — 1.46(3)
1.5 0.15 — 1.20(7)
1.5 0.2 — 0.8(2)
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Long range D=1 spin glasses with field
• A new tool of analysis conditioning on the overlap!

• Claim/conjecture:          and        are self-averaging!

• At criticality:

bG(k|q) = FT [G(r|q)] bG(k = 0|q) = q2

�(q) = bG(k =
2⇡

L
|q) �SG =

Z
dP (q)�(q)

G(r|q) = hq0qr|qi = E[s0t0srtr|s · t = N q]

P (q) = �(q � qEA) =) �SG = �(qEA) / L2�⌘

fluctuates much less than�(q) �SG

G(r|q) �(q)



Long range D=1 spin glasses with field
• SG phase transition lowering the conditioning overlap!!
• Even in the paramagnetic phase!
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Long range D=1 spin glasses with field
• SG phase transition lowering the conditioning overlap!!
• Even in the paramagnetic phase!
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Long range D=1 spin glasses with field
• Very robust estimate of the critical temperature
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