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Outline

• Mean field approx. (MFA) 

• Linear response (LR) 

• Limits of MFA and LR 

• General framework for MFA + LR 
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The main pb. in Stat Mech

• Compute the free-energy 
 
 
 
The sum is over exponentially many terms 

• Resort to mean field approximations (MFA) 

• few parameters to be fixed self-consistently 

• fast to compute, but inexact!

F (J ,h) = logZ(J ,h) = log

X

{si}

exp

 
X

Jijsisj +
X

i

hisi

!



MFA to the free-energy

• naive mean-field (nMF)  
only     parameters

3

I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp

⌥

 
↵

i �=j

Jijsisj +
↵

i

hisi

�

⌦ , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = ⌥si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is

FnMF =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jijmimj , (3)

where H(x) ⇤ �x ln(x) and the mi must be fixed according to the self-consistency equations

⇤FnMF

⇤mi
=
↵

j

Jijmj + hi � atanh(mi) = 0 ⌅ mi = tanh

⌥

 hi +
↵

j

Jijmj

�

⌦ . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations

FTAP =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+

+
↵

i

himi +
↵

i �=j

⇤
Jijmimj +

1

2
J2
ij(1�m2

i )(1�m2
j )

⌅
, (5)

mi = tanh

⌥

 hi +
↵

j

Jij
�
mj � Jij(1�m2

j )mi

⇥
�

⌦ . (6)
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N mi = hsii



MFA to the free-energy

• nMF + Onsager reaction term (TAP)
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reaction term



MFA to the free-energy
Expansion in small J  

(correct at high temperature or in fully connected models)
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MFA to the free-energy

• Bethe approximation (BA)  
nMF + nearest neighbors correlations parameters

4

In the TAP approximation, when computing the marginal probability of spin si (i.e. its mag-

netization mi), the reaction term modifies the marginal probabilities of the neighboring spins,

mj ⇥ (mj � Ji,j(1 � m2
j )mi), in order to try to remove the e�ect of the spin si under study. It

has been recognized [13, 14] that FnMF and FTAP are only the first two terms of the expansion

of F (J ,h) in small couplings J at fixed magnetizations m = {mi}. This expansion contains [14]

both loop terms, like JijJj⇧J⇧i, and terms with higher powers of a single coupling, i.e. Jk
ij : the

latter terms, that correspond to considering recursively the reaction to the reaction between spins

si and sj , can be resummed and lead to the BA.

The BA gives a description of the model in terms of magnetizations mi and connected correla-

tions cij = ⌃sisj⌥ �mimj between neighboring spins (i.e. spins connected by a non-zero coupling

Jij). The BA can be derived in two equivalent ways. The first way consists in finding values of m

and c minimizing the following free-energy

FBA =
↵

i �=j

⇧
H

⇤
(1 +mi)(1 +mj) + cij

4

⌅
+H

⇤
(1�mi)(1�mj) + cij

4

⌅
+

+ H

⇤
(1 +mi)(1�mj)� cij

4

⌅
+H

⇤
(1�mi)(1 +mj)� cij

4

⌅⌃
+

+
↵

i

(1� di)

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jij(cij +mimj) , (7)

where di is the degree of spin si, i.e. the number of its neighboring spins. In Eq.(7) the last two

terms correspond to the average value of the energy at given magnetizations and neighbouring

correlations, while the first two terms correspond to the entropy of the Bethe approximation to the

joint probability distribution of the N spin variables,

P (s1, . . . , sN )
BA⇤
�

(ij)

pij(si, sj)

pi(si)pj(sj)

�

i

pi(si) , (8)

where the first product runs over all pair of neighboring spins and the two-spins and single-spin

marginal probabilities are given respectively by pij(si, sj) = [(1 +misi)(1 +mjsj) + cijsisj ]/4 and

pi(si) = (1 +misi)/2. The conditions ⌅FBA/⌅cij = 0 can be solved analytically and lead to

Jij =
1

4
ln

⌥

 

�
(1 +mi)(1 +mj) + cij

⇥�
(1�mi)(1�mj) + cij

⇥

�
(1 +mi)(1�mj)� cij

⇥�
(1�mi)(1 +mj)� cij

⇥

�

⌦ , (9)

cij(mi,mj , tij) =
1

2tij

�
1 + t2ij �

�
(1� t2ij)

2 � 4tij(mi � tijmj)(mj � tijmi)
⇥
�mimj . (10)

where tij = tanh(Jij). Please note that Eq.(9) is identical to Eq.(26) in Ref. 16 and this is a

further confirmation that resumming all 2-spin terms in the Plefka expansion leads to the BA.

cij = hsisji �mimj
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netization mi), the reaction term modifies the marginal probabilities of the neighboring spins,

mj ⇥ (mj � Ji,j(1 � m2
j )mi), in order to try to remove the e�ect of the spin si under study. It

has been recognized [13, 14] that FnMF and FTAP are only the first two terms of the expansion

of F (J ,h) in small couplings J at fixed magnetizations m = {mi}. This expansion contains [14]

both loop terms, like JijJj⇧J⇧i, and terms with higher powers of a single coupling, i.e. Jk
ij : the

latter terms, that correspond to considering recursively the reaction to the reaction between spins

si and sj , can be resummed and lead to the BA.

The BA gives a description of the model in terms of magnetizations mi and connected correla-

tions cij = ⌃sisj⌥ �mimj between neighboring spins (i.e. spins connected by a non-zero coupling

Jij). The BA can be derived in two equivalent ways. The first way consists in finding values of m

and c minimizing the following free-energy

FBA =
↵

i �=j

⇧
H

⇤
(1 +mi)(1 +mj) + cij

4

⌅
+H

⇤
(1�mi)(1�mj) + cij

4

⌅
+

+ H

⇤
(1 +mi)(1�mj)� cij

4

⌅
+H

⇤
(1�mi)(1 +mj)� cij

4

⌅⌃
+

+
↵

i

(1� di)

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jij(cij +mimj) , (7)

where di is the degree of spin si, i.e. the number of its neighboring spins. In Eq.(7) the last two

terms correspond to the average value of the energy at given magnetizations and neighbouring

correlations, while the first two terms correspond to the entropy of the Bethe approximation to the

joint probability distribution of the N spin variables,

P (s1, . . . , sN )
BA⇤
�

(ij)

pij(si, sj)

pi(si)pj(sj)

�

i

pi(si) , (8)

where the first product runs over all pair of neighboring spins and the two-spins and single-spin

marginal probabilities are given respectively by pij(si, sj) = [(1 +misi)(1 +mjsj) + cijsisj ]/4 and

pi(si) = (1 +misi)/2. The conditions ⌅FBA/⌅cij = 0 can be solved analytically and lead to

Jij =
1

4
ln

⌥

 

�
(1 +mi)(1 +mj) + cij

⇥�
(1�mi)(1�mj) + cij

⇥

�
(1 +mi)(1�mj)� cij

⇥�
(1�mi)(1 +mj)� cij

⇥

�

⌦ , (9)

cij(mi,mj , tij) =
1

2tij

�
1 + t2ij �

�
(1� t2ij)

2 � 4tij(mi � tijmj)(mj � tijmi)
⇥
�mimj . (10)

where tij = tanh(Jij). Please note that Eq.(9) is identical to Eq.(26) in Ref. 16 and this is a

further confirmation that resumming all 2-spin terms in the Plefka expansion leads to the BA.

cij = hsisji �mimj

entropy energy
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Moreover Eq.(9) has been used in the literature [7, 27] as the independent-pair (IP) approximation

for inferring couplings from magnetizations and correlations: such an approximation infers the

coupling Jij by assuming spins si and sj form an isolated pair with magnetizations mi and mj and

correlation cij . Unfortunately under this IP approximation computing the external fields in not

immediate and moreover even the estimates of the couplings are rather poor (see Section V).

By making the substitution cij ⇥ cij(mi,mj , tij) in FBA one can obtain the Bethe free-energy

only in terms of magnetizations, from which the self-consistency equations for the magnetizations

can be derived. However this derivation requires a rather complicated algebra and I prefer to

obtain the same equations in a much simpler alternative way.

In the so-called Cavity Method [2] local magnetizations mi and neighbouring correlations cij

are expressed in terms of some auxiliary variables, the cavity magnetizations m(j)
i (i.e. the mean

value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m
(i)
j

1 +m(j)
i tij m

(i)
j

, (11)

mj =
tij m

(j)
i +m(i)

j

1 +m(j)
i tij m

(i)
j

, (12)

cij =
tij +m(j)

i m(i)
j

1 +m(j)
i tij m

(i)
j

�mimj . (13)

Cavity magnetizations must satisfy the self-consistency equations

m(j)
i = tanh

�

⇤hi +
⇧

k( �=j)

atanh(tik m
(i)
k )

⇥

⌅ . (14)

These equations are often solved by an iterative algorithm known as Belief Propagation (BP) [28]:

in case of convergence, the fixed point of BP gives directly the Bethe free-energy that admits an

expression in terms of cavity magnetizations only [2].

In order to obtain a closed set of self-consistency equations in the magnetizations m, let me

solve eqs.(11-12) for the cavity magnetizations and find

m(j)
i = f(mi,mj , tij) m(i)

j = f(mj ,mi, tij) , (15)

where

f(m1,m2, t) =
1� t2 �

⌃
(1� t2)2 � 4t(m1 �m2t)(m2 �m1t)

2t(m2 �m1t)
. (16)

The sign in front of the square root has been chosen such that f(0, 0, t) = 0 as it should. A

consistency check can be made by substituting expressions (15) in Eq.(13) to obtain again the result

6

in Eq.(10). Finally, combining Eq.(11) and Eq.(14), it is possible to obtain the self consistency

equation for the magnetizations under the BA:

mi = tanh

⇤

⇧hi +
⌥

j

atanh
�
tijf(mj ,mi, tij)

⇥
⌅

⌃ . (17)

It is fair to comment that the use of this formula for finding Bethe magnetizations is not a good

idea: indeed an iterative solution of Eq.(17) is typically more unstable than BP solving Eq.(14).

My interest in this formula is that it involves only physical magnetizations (not cavity ones) and

can be used to obtain correlations (see Section II) and to solve in a fast way the inverse Ising

problem (see Section V).

A series expansion of the exponent in Eq.(17) for small couplings gives

hi +
⌥

j

atanh
�
tijf(mj ,mi, tij)

⇥
⇤ hi +

⌥

j

�
Jijmj � J2

ij(1�m2
j )mi + . . .

⇥
, (18)

and one recognizes that the first two terms of the expansion are the naive MF approximation and

the Onsager reaction term. This expansion should make clearer that the BA is a way of considering

recursively all the reactions between a pair of neighboring variables.

II. COMPUTING CORRELATIONS BY LINEAR RESPONSE

A preliminary step to solve the inverse Ising problem by any MFA is to derive an analytical

expression for the pairwise correlations as a function of the coupling constants. Actually, the MFA

discussed in Section I do not provide information about the correlation between distant variables:

indeed, naive MF and TAP approximations give cij = 0 for any pair of variables, and the BA only

provides an expression for correlation between neighboring spins, see Eq.(10), which is trivially

cij = tij in case of null magnetizations.

Nonetheless, a closed set of equations for the connected correlations1, Cij ⇥ ⌅sisj⇧� ⌅si⇧⌅sj⇧ for

any pair i, j, can be derived from the magnetizations self-consistency equations, Eqs.(4), (6), (17),

through the linear response [8, 12]

Cij =
⇤mi

⇤hj
, (C�1)ij =

⇤hi
⇤mj

. (19)

1 Please do not confuse the correlation Cij with the parameter cij appearing in the BA: the two coincide only when
the BA is exact.
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The Bethe approximation for solving the inverse Ising problem

in finding values of m and c minimizing the following free energy:

FBA =
X

i6=j


H

✓
(1 + mi)(1 + mj) + cij

4

◆
+ H

✓
(1 � mi)(1 � mj) + cij

4

◆

+ H

✓
(1 + mi)(1 � mj) � cij

4

◆
+ H

✓
(1 � mi)(1 + mj) � cij

4

◆�

+
X

i

(1 � di)


H

✓
1 + mi

2

◆
+ H

✓
1 � mi

2

◆�
+

X

i

himi

+
X

i6=j

Jij(cij + mimj), (7)

where di is the degree of spin si, i.e. the number of its neighboring spins. In equation (7)
the last two terms correspond to the average value of the energy at given magnetizations
and neighboring correlations, while the first two terms correspond to the entropy of the
Bethe approximation to the joint probability distribution of the N spin variables,

P (s1, . . . , sN)
BA⇧

Y

(ij)

pij(si, sj)

pi(si)pj(sj)

Y

i

pi(si), (8)

where the first product runs over all pairs of neighboring spins and the two-spin and
single-spin marginal probabilities are given respectively by pij(si, sj) = [(1 + misi)(1 +
mjsj) + cijsisj]/4 and pi(si) = (1 + misi)/2. The conditions ⌅FBA/⌅cij = 0 can be solved
analytically and lead to

Jij =
1

4
ln

✓
((1 + mi)(1 + mj) + cij)((1 � mi)(1 � mj) + cij)

((1 + mi)(1 � mj) � cij)((1 � mi)(1 + mj) � cij)

◆
, (9)

cij(mi, mj, tij) =
1

2tij

⇣
1 + t2ij �

q
(1 � t2ij)

2 � 4tij(mi � tijmj)(mj � tijmi)
⌘

� mimj. (10)

where tij = tanh(Jij). Please note that equation (9) is identical to equation (26) in [16] and
this is a further confirmation that resumming all two-spin terms in the Plefka expansion
leads to the BA. Moreover equation (9) has been used in the literature [7, 27] as the
independent-pair (IP) approximation for inferring couplings from magnetizations and
correlations: such an approximation infers the coupling Jij by assuming that spins si and
sj form an isolated pair with magnetizations mi and mj and correlation cij. Unfortunately
under this IP approximation, computing the external fields is not immediate and moreover
even the estimates of the couplings are rather poor (see section 5).

By making the substitution cij ⌅ cij(mi, mj, tij) in FBA one can obtain the Bethe
free energy only in terms of magnetizations, from which the self-consistency equations for
the magnetizations can be derived. However this derivation requires a rather complicated
algebra and I prefer to obtain the same equations in a much simpler alternative way.

In the so-called cavity method [2], local magnetizations mi and neighboring
correlations cij are expressed in terms of some auxiliary variables, the cavity

magnetizations m(j)
i (i.e. the mean value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m(i)
j

1 + m(j)
i tij m(i)

j

, (11)
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where di is the degree of spin si, i.e. the number of its neighboring spins. In equation (7)
the last two terms correspond to the average value of the energy at given magnetizations
and neighboring correlations, while the first two terms correspond to the entropy of the
Bethe approximation to the joint probability distribution of the N spin variables,

P (s1, . . . , sN)
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where the first product runs over all pairs of neighboring spins and the two-spin and
single-spin marginal probabilities are given respectively by pij(si, sj) = [(1 + misi)(1 +
mjsj) + cijsisj]/4 and pi(si) = (1 + misi)/2. The conditions ⌅FBA/⌅cij = 0 can be solved
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where tij = tanh(Jij). Please note that equation (9) is identical to equation (26) in [16] and
this is a further confirmation that resumming all two-spin terms in the Plefka expansion
leads to the BA. Moreover equation (9) has been used in the literature [7, 27] as the
independent-pair (IP) approximation for inferring couplings from magnetizations and
correlations: such an approximation infers the coupling Jij by assuming that spins si and
sj form an isolated pair with magnetizations mi and mj and correlation cij. Unfortunately
under this IP approximation, computing the external fields is not immediate and moreover
even the estimates of the couplings are rather poor (see section 5).

By making the substitution cij ⌅ cij(mi, mj, tij) in FBA one can obtain the Bethe
free energy only in terms of magnetizations, from which the self-consistency equations for
the magnetizations can be derived. However this derivation requires a rather complicated
algebra and I prefer to obtain the same equations in a much simpler alternative way.

In the so-called cavity method [2], local magnetizations mi and neighboring
correlations cij are expressed in terms of some auxiliary variables, the cavity

magnetizations m(j)
i (i.e. the mean value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m(i)
j

1 + m(j)
i tij m(i)

j

, (11)
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The inverse correlation matrices C�1 for the three MFA discussed above are given by the following

expressions:

naive MF (C�1
nMF)ij =

�ij
1�m2

i

� Jij , (20)

TAP (C�1
TAP)ij =

⇤
1

1�m2
i

+
⇧

k

J2
ik(1�m2

k)

⌅
�ij �

�
Jij + 2J2

ijmimj
⇥
, (21)

Bethe (C�1
BA)ij =

⇤
1

1�m2
i

�
⇧

k

tikf2(mk,mi, tik)

1� t2ikf(mk,mi, tik)2

⌅
�ij �

tijf1(mj ,mi, tij)

1� t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m1 and f2(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) su�ers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where

(��1
nMF)ij

(��1
TAP)ij



Computing correlations 
by linear response in BA

• Analytic expression for the correlations in BA  
(FRT, JSTAT, 2012) 
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!

• Coincide with the fixed point of Susceptibility 
Propagation (no need to run any algorithm!) 

• PROBLEM: estimates of nearest neighbor (NN) 
correlations are inconsistent
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The inverse correlation matrices C�1 for the three MFA discussed above are given by the following

expressions:

naive MF (C�1
nMF)ij =

�ij
1�m2

i

� Jij , (20)

TAP (C�1
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⇤
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, (22)

where f1(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m1 and f2(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) su�ers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where

(��1
BA)ij

�BA
ij 6= C⇤

ij



How loops make MFA fail

• maximum entropy (free energy minimum) 
 
 

• linear response 
 
 
 
ferromagnet

e.g. Bethe approximation, high temperature phase

h⇥i⇥jiBA
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Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe ≃ 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe ≃ 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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Make MFA & LR consistent

Add to the free-energy Lagrange multipliers to 
enforce (at the fixed point)  

“Consistency is more important than truth” (S. Ting)

�ii = 1�m2
i �ij = Cij

free energy 
minimum 
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curvature



General framework (MFA + LR)

Your preferred MFA

F� = FMFA({mi}, {Cij}, . . .) +
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i
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�ijCij

can be set to zero to 
recover known approx. 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General framework (MFA + LR)

FMFA({mi}, {Cij}, . . .) =
X

i

himi +
X

ij

Jij(mimj + Cij)
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+
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General framework (MFA + LR)

F� = FMFA({mi}, {Cij}, . . .) +
X

i

�im
2
i +

X

i<j

�ijCij

Maximum Entropy equations 
from free-energy minimization

Higher order correlation parameters 
are fixed by standard maximum entropy

@miF� = atanh(mi) + @miS
2+ + hi +

X

j

Jijmj + �imi = 0

@CijF� = @CijS
2+ + Jij + �ij = 0

�CijkF� = �CijkS
2+ = 0

�ii = 1�m2
i �ij = Cij



Some comments...

• Bethe/CVM free-energies are not convex  
adding parameters it not obvious to improve! 

•     parameters measure how wrong is the MFA  
e.g. on a random graph with Bethe approx.  

•                           would naively imply stronger  
correlations and also more unstable Susc. Prop. 
but this is not the case!

�

� ! 0

Jij ! Jij + �ij



Models studied so far

• Ising variables 

• 2D topology (square and triangular lattices) 

• ferromagnetic 

• frustrated -> triangular antiferromagnet 

• frustrated & disordered -> random field 



Nearest-neighbor correlation 
(2D square lattice)
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Nearest-neighbor correlation 
(2D triangular lattice)

where ti = tanh(Ji), Ti = 1 − t2i and we define Jijk =
JikJjktitjTk. The response and on-diagonal errors are

LX
i − L∗

i
.
= tiD

X
i ; ΦX

ii − Φ∗
ii

.
= DX

i . (37)

For the NMF and Bethe methods we define respectively

DN
i = −

∑

j( ̸=i)

J2
ijTj ; DB

i = 2
∑

j<k( ̸=i)

JjkJijJikTjTk .

(38)
In the Bethe method where Cij ̸= χij the error on Cij is
dominated by

LB
ij − L∗

ij
.
=

∑

k( ̸=i,j)

JikJjkTk . (39)

In (35) and (36) we demonstrate also the leading order diagram
relevant for high temperature at O(β3) and O(β5) respectively.

We calculate errors for both the weak coupling (small J)
and high temperature (J and H are O(β)) cases solving the
linearized equations. We summarise the consequences for the
error in Ci, χi̸=j and Cij according to constraints introduced
(left label in list). For NMF errors are

∅ From (31) and (37) δCi is determined as O(J2,β3).
The response error δχij is O(J2,β3).

(10) We find λN
i = DN

i , removing the most significant
source of error in δCi, the error on the magnetization
improves to O(J3,β4), the error on δχij remains
limited to O(J2,β3) by the error (35).

For Bethe errors are

∅ δCi and δχij are O(J3,β4).

(10) We find δCi is improved to O(J4,β5), δχij remains
O(J3,β4). Error sources (37) are improved, but (39)
remains a significant constraint on accuracy of δχij .

(12) δCi remains O(J3,β4) but δχij is improved to
O(J4,β4). The errors on δC are made independent
of (39), but the error sources (37) are unimproved.

(10,12) The combined effect is to remove the most signif-
icant sources of error, both δCi and δχij become
O(J4,β5). The remaining error on δχij is limited at
leading order only by (36).

For Bethe introducing the constraint (12) always reduces the
error on δCij , which is O(J2,β2) in the standard method.

B. Iterative scheme

The non-convex nature of the constraints we are introduc-
ing makes algorithm development a challenge, but we can
solve in general these equations for weak-coupling, with a
naive iterative scheme

Ct+1
i = tanh

⎛

⎝Hi +
∑

j

Jijmj + λt
iC

t
i − Lt

i

⎞

⎠ . (40)

If applying the constraint (10), we can simultaneously infer

λt+1
i = λt

i − Φt
ii((1 − (Ct

i )
2) − χt

ii)Φ
t
ii , (41)
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Fig. 1. Full correlations estimates on nearest neighbors based on linear
response bLR

ij , compared to the exact result (black think curve), and the
parameters bij determined for a standadrd implentation of the Bethe approxi-
mation (thin red). Curves are labeled in the legend according to the constraints
introduced. For negative J the new methods perform admirably compared to
standard implementations. All methods perform poorly in the vicinity of the
phase transition, the paramagnetic solutions of the new methods can be stable
even beyond the true critical point J > 0.275, though performance is poor.

otherwise λi = 0. Applying constraint (12), for the Bethe
method,

χt
ij = [(Φt − βJ)−1]ij ; Ct+1

ij = χt
ij . (42)

with λij fixed by (16); otherwise λij = 0 and we fix

bt
ij = argminbij

{bij log bij − JijTr[bijσiσj ] : Ct
i , C

t
j} . (43)

To fix bt
ij at fixed Ct

i and Ct
j is equivalent to fixing Ct

ij .

The instantaneous mean field is used to update the mag-
netization in (40), a linear expansion of (10) is used to deter-
mine (41), a naive iteration matching successively the linear
responses is used in (42). At large |J | (40)-(42) can be unstable
individually or in combination, damping and annealing can be
effective strategies to arrive at a solution for strong coupling.
The procedure (43) is one of convex optimization and doesn’t
contribute to instability.

C. Strong coupling regime experiments

We consider a simple model the triangular lattice model
with uniform couplings Jij = J and zero fields Hi = 0
in the large system limit. This model is problematic for
standard Bethe and NMF for several reasons: it involves short
loops not accounted for by the region selection; there is a
continuous symmetry breaking transition at J = 0.275 with
associated long range correlations [18]; for J < 0 there is
frustration; for J < 0 there are Kosterlitz-Thouless transitions,
but no symmetry breaking transitions [19], [20]. For these
reasons Bethe and NMF estimates for bR or bLR

R can be
poor. The solution can be found for our new methods by
Fourier analysis. Figure 1 presents a comparison of methods.
We present only the solution found continuously from J = 0
by the iterative method, and we do not present the symmetry
breaking solutions at J < 0, where they exist.

(10) �ii = 1�m2
i

(12) �ij = Cij



Random field Ising model 
2D square lattice
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Random field Ising model 
2D square lattice
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Random field Ising model 
2D square lattice
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Random field Ising model 
2D square lattice

NN correlations
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Random field Ising model 2D square lattice hhi = 0.2 �h = 0.5
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Summary
Any MFA (even Cluster Variational Methods) can be 
improved by enforcing consistency between maximum 
entropy and linear response estimates. 

Several improvements achieved 

• Direct problem: better high temperature expansions 
& better correlation estimates 

• Inverse problem: smaller errors in estimating 
couplings and fields 

Still working for a fast message passing algorithm...


