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Talk outline

 |Large scale numerical simulations for finite dimensional
spin glasses in a field [with L. Leuzzi, G. Parisi, J. Ruiz-Lorenzo

and the Janus Collaboration]

* Analytic solutions for disordered models with external
fields on random graphs [with F. Morone and G. Perugini]
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Disordered models in a field have a
complex paramagnetic phase
Extracting the right critical behavior is not easy




Models definition

Z J;iSi S]—ZHSZ s;ie{-1,1}

(ij)EE (Ising spins)

e Spin glass models in a field
 random couplings  J;; € {—1,1}, J;; ~N(0,1)
e constant field H =H

« Random field Ising models
 ferromagnetic couplings  J;; = J

e random field  H; ~ N (0, H?)



Models definition

Z Jii8i8 —ZHSZ

(ig)eE

 Different topologies (edge set E)

* Finite dimensional regular lattices (mainly d=3,4)
with short range (i.e. nearest neighbor) interactions

* d=1 chain with long range interactions (mimics any d)

e sparse random graphs (with Poisson or regular degrees)

 All have finite mean degree and constant couplings
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Spin glasses in
finite dimensions



Janus Co
(Zaragoza, Madrid, Bac

laboration
ajoz, Ferrara and

* Reconfigurable FPGA-based

special purpose computer

to simulate finite-dimensional
spin glasses (d=3,4 up to now)

 Thermodynamics

http://www.janus-computer.com/

Can thermalize tens of thousands of samples of sizes up to
L=40 in d=3 [PRB 88 (2013) 224416]
L=16 in d=4 [PNAS 109 (2012) 6452]

* Dynamics

n d=3 systems of size L.=160
for times up to 10" MCS [PNAS 114 (2017) 1838]
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Observables

o Spatial correlation function

G(r) = & 3 (sasarr) — (2){5wr))? (replicon propagaton

xZr

« Fourier transform  G(k) = FT[G(r)]

A

 Spin glass susceptibility xsag = G(0)

* Second-moment correlation length

A 1/2
B 1 G(0) (2
§o = >sin(n /L) (G(kl) 1) ki = <L ,0,0>




Observables

* |nthe paramagnetic phase (T > T.)

lim &(T, L) = &oq(T) lim (T, L)

L—00 L—00 L

=0

e Atthe critical point many scaling invariants
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d=3 spin glass (H=0)

[PRB 88
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d=3 spin glass (H=0)

[PRB 88 (2013) 224416]
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d=4 spin glass in field (H=0.15)

[PNAS 109 (2012) 6452]
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Evidence for lack of phase transition
INn spin glasses with external field?!



Sparse d=1 long range model

[PRL 101 (2008) 107203]

PlJ;; # 0] oc|i — 3|7 " constant mean degree
and Jz'j = 0(1)

simulation times
are linear in N

2 MF non-MF  no phase trans.




d=1 long range SG model with field

[PRL 103 (2009) 267201 ]
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d=1 long range SG model with field

[PRL 103 (2009) 267201]
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d=4 spin glass in field (H=0.15)

[PNAS 109 (2012) 6452]
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Evidence for lack of phase transition
in spin glasses with external field?!
Not really!
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d=4 spin glass in field (H=0.15)

[PNAS 109 (2012) 6452]
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d=3 spin glass in field
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An In-depth data analysis

Take all measurements and order them
according to a conditioning variable ¢

50%| 90%]

In the paramagnetic phase

LA f Lli_{rgo Pr.(q) = (¢ — qo)

Analysis at different deciles
should provide the

f same results in the IImit
\ L — oo




C(r)/C(0)

d=3 spin glass in field

Fluctuations in the paramagnetic phase are huge!
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d=3 spin glass in field
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d=3 spin glass in field (H=0.2)
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d=3 spin glass in field (H=0.2)
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Conditioning on the overlap

 Consider 2 real replicas o, T with overlap
1
g — O T — NZO’@TZ'

Do the analysis conditioning on the overlap ¢

 The physical behavior strongly depends on the condition
value, leading to phase transitions changing ¢



Phase transition for T' > T, varying
the distance among real replicas
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Phase transition for T' > T, varying
the distance among real replicas
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d=1 long range SG model

* Typical overlap ¢ga : Llim Pr(q) = 6(q — qga)

— OO

* Thermodynamic phase transition if gea = ¢.
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d=1 long range SG model
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Evidences from numerical simulations
of spin glass models

 Approaching the critical line from the paramagnetic phase
(the spin glass phase is an even more complicated story...)

* with scaling corrections the critical behavior at H=0 is under
control

* for H>O0 fluctuations are huge and averages may be
dominated by a minority of measurements

* sub-dominant critical configurations are not so rare
and must be taken into account carefully, maybe
conditioning (even in the paramagnetic phase!)



Disordered models
on random graphs



Random graphs
(with constant mean degree )

Poisson RG (Erdos-Renyi):
N vertices
M=cN/2 edges randomly chosen

Regular RG:
N vertices, each with ¢ “legs”
connect randomly the legs

Locally tree-like

1
Small loop are rare O (N)

Typical loops are O(In N)
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Why models on random graphs?

Standard mean-field approximations have limitations

Models on tully connected topologies
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How to solve models on random graphs

.....................................

* Inthelarge N limit a finite graph rooted
on a randomly chosen vertex is a tree »

* Assume correlations between the root
vertex and boundary vertices are small e
(single state o replica symmetric ansatz)

o |[f connected correlations do not decay —> RSB

« Jo compute local marginals (e.g. on the root vertex)
write recursion relations that hold on a tree
and solve them on the actual graph



How to solve models on random graphs

* Recursion relations close on cavity marginals
ni—;(8;): marginal on s; if edge (ij) is removed
Nrk—si(s;): marginal on g, if all edges around s, are removed but (ik)

Nioi(si) oc €% T fsilsi) P N
kedi\j
77@—)] S] Z BJijsis; 772—>]( ) 5&?@; \
| /L O ﬁz‘*j (S
7 Y ( 82.;) ]

o (Cavity marginals can be seen

as messages passing along 0
the edges and carrying local
information to global level



How to solve models on random graphs

 [or Ising models, marginals can be represented by a
single scalar number (e.g. the magnetization)

Mk —i (Sz) X exp(ﬁ Uk —q Si) .....................................................................
Ni—;(8:) o< exp(Blhi—; 5i) “ |
k
e Equations to be solved are N
4 x the number of edges L
1~ QJ
hicj = Hit ) ks
keoi\j hd

Uj—j5 = ﬁB(Jija hz‘—>j) —

— atanh[tanh(B.J;;) tanh(Bh;_,;]/8



Beliet Propagation

e |terative solution
(t+1) _ (1)
hz—)g HZ + Z Up

utt = ug (Jw, h(tﬂ))

11—



Beliet Propagation

e [terative solution

(t+1) _ t
hz—)g HZ_I_ Z ul(cim

kedi\y
(t+1) ( (t—l—.l)) B (t+1) damping (friction)
Uiy =g (Jij hinsy” ) (1 =) +ui; e helps convergence



Beliet Propagation

e [terative solution

hfgt—;'_jl) H; + Z U(t)

(t+1) _ - ( | (t—l—.l)) B (t+1) damping (friction)
Uim” = Up \Jig> I (I—a)+u; a helps convergence

 BP fixed point messages give local marginals

kco
tanh(/5J;;) + tanh(8h;—, ;) tanh(Bh;_;)
1 + tanh(5J;,) tanh(Bh;— ;) tanh(Bh;_;)

Cij = (8i8;) =

 Can be run on a given graph, while cavity method is for
the ensemble average in the thermodynamic limit



Bethe states and BP fixed points

* Bethe approximation P(s) e PH(s) NHb 2 Tl by sz sj
(at least locally) 4 iem (s (s5)



Bethe states and BP fixed points

N 3
* Bethe approximation P(s) = e F7(s) ~ Hb . H bij Sz SJ
(at least locally) Z 4 e Uil )J

Bethe state



Bethe states and BP fixed points

. At —BH(s)
Bethe approximation ps) = © Hb ) 11 bw Sz,sy)

(at least locally)

BP fixed points

e I
>

\

-z

(ij)ekl

J

Bethe state

<+«— Bethe states

minima of
Bethe free-energy



Limits of the RS ansatz

Bethe approximation e~ F7(s) “’Hb o T1 bij sz,sJ
(at least locally) e bitsi)bi(s5)
Many equivalent ways to become critical

e Susceptibility diverges

 Hessian of the Bethe free-energy becomes singular

* BP fixed point becomes unstable

Phase transition on a given sample!
Algorithmic vs thermodynamic phase transitions



Common belief expectations
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Approaching the critical line

RFEIM SG in field
l Para l Para
1 BP f.p.

SG
No conv.




Approaching the critical line

. Without field (H=0) - ——

1e
o Compute Correlations on a tree branch

C(T) SOST H tanh 6Jz z—l—l)

 Sum over all branches (e.g. on a c-RRG)

1 1
P = Z<303i> — Zc(c — 1) C(r) 1 — (¢ — 1) tanh(p)

7 T

XSG = Z<303i>2 — ZC(C _ 1)T—1C(T)2 - 1

1 — (¢ — 1) tanh?(B)

7 T



Approaching the critical line

o Without field (H=0) correlations are similar on all branches
» At the critical condition (c—1)tanh(8) =1 or (¢—1)tanh*(8) =1
* Paramagnetic susceptibility diverges

* Hessian at the paramagnetic state becomes singular

« Paramagnetic BP fixed point ©* = h* =0
becomes unstable



On the critical line in a field

« With field (H>0) correlations strongly depend on the
disorder along the branch (fields and couplings)

e Critical behavior

dominated by a i
minority decaying os|
slower than 0.8
typical ones 0.7}
e At T=0 extreme n(os
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#(C(r)~e | x eV

/
/
/
/
01F
- /
/
/

[PRB 89 (2014) 214202] ol

1
=0.7
H=5:

log(z)

RFIM (z=c-1) ,

/
/
/
/
/
/
/
7/
7/
/

// X -

Phase diagram (z = 2)
1.2 T T T

1 E _
0.8 F i
F 06 -
0.4 F -
0.2 F _

O | | | |

0 0.4 0.8 1.2 1.6
T

2

0.2

0.4

0.6

| | | |
0.8 1 1.2 1.4 1.6

1.8

2



Approaching the critical line at 1=0

e \ery heterogeneous paramagnetic phase!
What are the consequences on the criticality?

« RFIM at T=0: decreasing H <—> increasing J
e Standard scenario at a 2nd order phase transition
Para \/ W Ferro
), 7
e Should we modity it to something rougher?




Number of BP fixed

nts In the RFIM
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Structure of Bethe states (RFIM at J,.)

o 3 kind of samples (at J. each kind appears with a
constant probability in the large N limit)

* Paramagnetic —> 1 BP fixed point

* Ferromagnetic —> 2 BP fixed points
dy ~ N AE ~ N1/2 W

* (Critical —> 2 or more BP fixed points

lowest energy excitation has \,\,W\/
di ~ NY2 AE~N7“ w025

practically degenerate!



Structure of Bethe states (RFIM at J,.)

The limits N — oo, 8 — oo do not commute

Choosing B(N) ~ N¢ (¢ < w) the partition function
ae{BP f.p.}

IS not dominated by the ground state!!

Computing the ground state is enough to understand the
critical behavior of the RFIM?

Can we sample critical excitations efficiently via ground
state computations?



Structure of Bethe states (RFIM at J,.)

Searching for low-energy excited _ |
states via the e-coupling method He(s) =H(s) +e5- s
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Evidences from analytic solutions
on random graphs

* Approaching the critical line from the paramagnetic phase with
H>0:

* fluctuations in correlation functions are severe and averages are
dominated by a minority

* number of Bethe states is larger than expected (in SG models
even more than in the RFIM) and diverges at the critical point

* the ground state is probably not enough for describing fully the
low temperature physics (a sort of weak RSB?)

* criticality is driven by changes in the relative weights between
Bethe states rather than a single state becoming critical



Thank you!



