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Two very old problems...

• DIRECT problem:
given model parameters              , compute 
average values        and correlations
(or equivalently marginal probabilities)

• INVERSE problem:
given measured mean values and correlations, 
estimate model parameters
(previously known as Boltzmann machine learning)
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I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp


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�

i

hisi



 , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = �si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is
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where H(x) ≡ −x ln(x) and the mi must be fixed according to the self-consistency equations
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=

�

j

Jijmj + hi − atanh(mi) = 0 ⇒ mi = tanh
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hi +
�

j

Jijmj



 . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations
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j )
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mi = tanh
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j )mi
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 . (6)
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...with a common difficulty

• Compute the free-energy

The sum is over exponentially many terms

• Resort to mean field approximations (MFA)

• few parameters to be fixed self-consistently

• fast to compute, but inexact!

F (J ,h) = logZ(J ,h) = log
�

{si}

exp

�
�

Jijsisj +
�

i

hisi

�



MFA to the free-energy

• naive mean-field (nMF)
only     parameters
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N mi = �si�



MFA to the free-energy

• nMF + Onsager reaction term (TAP)
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reaction term



MFA to the free-energy

• Plefka expansion in small J
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nice discussion in T. Tanaka, PRE, 1998



MFA to the free-energy

• Bethe approximation (BA)
nMF + nearest neighbors correlations parameters
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In the TAP approximation, when computing the marginal probability of spin si (i.e. its mag-

netization mi), the reaction term modifies the marginal probabilities of the neighboring spins,

mj → (mj − Ji,j(1 − m
2
j )mi), in order to try to remove the effect of the spin si under study. It

has been recognized [13, 14] that FnMF and FTAP are only the first two terms of the expansion

of F (J ,h) in small couplings J at fixed magnetizations m = {mi}. This expansion contains [14]

both loop terms, like JijJj�J�i, and terms with higher powers of a single coupling, i.e. Jk
ij : the

latter terms, that correspond to considering recursively the reaction to the reaction between spins

si and sj , can be resummed and lead to the BA.

The BA gives a description of the model in terms of magnetizations mi and connected correla-

tions cij = �sisj� −mimj between neighboring spins (i.e. spins connected by a non-zero coupling

Jij). The BA can be derived in two equivalent ways. The first way consists in finding values of m

and c minimizing the following free-energy

FBA =
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where di is the degree of spin si, i.e. the number of its neighboring spins. In Eq.(7) the last two

terms correspond to the average value of the energy at given magnetizations and neighbouring
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where tij = tanh(Jij). Please note that Eq.(9) is identical to Eq.(26) in Ref. 16 and this is a

further confirmation that resumming all 2-spin terms in the Plefka expansion leads to the BA.

cij = �sisj� −mimj
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Moreover Eq.(9) has been used in the literature [7, 27] as the independent-pair (IP) approximation

for inferring couplings from magnetizations and correlations: such an approximation infers the

coupling Jij by assuming spins si and sj form an isolated pair with magnetizations mi and mj and

correlation cij . Unfortunately under this IP approximation computing the external fields in not

immediate and moreover even the estimates of the couplings are rather poor (see Section V).

By making the substitution cij → cij(mi,mj , tij) in FBA one can obtain the Bethe free-energy

only in terms of magnetizations, from which the self-consistency equations for the magnetizations

can be derived. However this derivation requires a rather complicated algebra and I prefer to

obtain the same equations in a much simpler alternative way.

In the so-called Cavity Method [2] local magnetizations mi and neighbouring correlations cij

are expressed in terms of some auxiliary variables, the cavity magnetizations m(j)
i (i.e. the mean

value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m
(i)
j

1 +m(j)
i tij m

(i)
j

, (11)

mj =
tij m

(j)
i +m(i)

j

1 +m(j)
i tij m

(i)
j

, (12)

cij =
tij +m(j)

i m(i)
j

1 +m(j)
i tij m

(i)
j

−mimj . (13)

Cavity magnetizations must satisfy the self-consistency equations

m(j)
i = tanh



hi +
�

k( �=j)

atanh(tik m
(i)
k )



 . (14)

These equations are often solved by an iterative algorithm known as Belief Propagation (BP) [28]:

in case of convergence, the fixed point of BP gives directly the Bethe free-energy that admits an

expression in terms of cavity magnetizations only [2].

In order to obtain a closed set of self-consistency equations in the magnetizations m, let me

solve eqs.(11-12) for the cavity magnetizations and find

m(j)
i = f(mi,mj , tij) m(i)

j = f(mj ,mi, tij) , (15)

where

f(m1,m2, t) =
1− t2 −

�
(1− t2)2 − 4t(m1 −m2t)(m2 −m1t)

2t(m2 −m1t)
. (16)

The sign in front of the square root has been chosen such that f(0, 0, t) = 0 as it should. A

consistency check can be made by substituting expressions (15) in Eq.(13) to obtain again the result

6

in Eq.(10). Finally, combining Eq.(11) and Eq.(14), it is possible to obtain the self consistency

equation for the magnetizations under the BA:

mi = tanh



hi +
�

j

atanh

�
tijf(mj ,mi, tij)

�


 . (17)

It is fair to comment that the use of this formula for finding Bethe magnetizations is not a good

idea: indeed an iterative solution of Eq.(17) is typically more unstable than BP solving Eq.(14).

My interest in this formula is that it involves only physical magnetizations (not cavity ones) and

can be used to obtain correlations (see Section II) and to solve in a fast way the inverse Ising

problem (see Section V).

A series expansion of the exponent in Eq.(17) for small couplings gives

hi +
�

j

atanh

�
tijf(mj ,mi, tij)

�
� hi +

�

j

�
Jijmj − J2

ij(1−m2
j )mi + . . .

�
, (18)

and one recognizes that the first two terms of the expansion are the naive MF approximation and

the Onsager reaction term. This expansion should make clearer that the BA is a way of considering

recursively all the reactions between a pair of neighboring variables.

II. COMPUTING CORRELATIONS BY LINEAR RESPONSE

A preliminary step to solve the inverse Ising problem by any MFA is to derive an analytical

expression for the pairwise correlations as a function of the coupling constants. Actually, the MFA

discussed in Section I do not provide information about the correlation between distant variables:

indeed, naive MF and TAP approximations give cij = 0 for any pair of variables, and the BA only

provides an expression for correlation between neighboring spins, see Eq.(10), which is trivially

cij = tij in case of null magnetizations.

Nonetheless, a closed set of equations for the connected correlations1, Cij ≡ �sisj�− �si��sj� for

any pair i, j, can be derived from the magnetizations self-consistency equations, Eqs.(4), (6), (17),

through the linear response [8, 12]

Cij =
∂mi

∂hj
, (C−1

)ij =
∂hi
∂mj

. (19)

1 Please do not confuse the correlation Cij with the parameter cij appearing in the BA: the two coincide only when
the BA is exact.
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Small J expansion gives nMF, TAP, ...
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The inverse correlation matrices C−1 for the three MFA discussed above are given by the following

expressions:

naive MF (C−1
nMF)ij =

δij
1−m2

i

− Jij , (20)

TAP (C−1
TAP)ij =

�
1

1−m2
i

+
�

k

J2
ik(1−m2

k)

�
δij −

�
Jij + 2J2

ijmimj
�
, (21)

Bethe (C−1
BA)ij =

�
1

1−m2
i

−
�

k

tikf2(mk,mi, tik)

1− t2ikf(mk,mi, tik)2

�
δij −

tijf1(mj ,mi, tij)

1− t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m1 and f2(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) suffers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where
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are correlated

(e.g. form a clique
or a loop)

bi(σi) =
1 +miσi

2

bij(σi,σj) =
(1 +miσi)(1 +mjσj) + Cijσiσj

4
bijk(σi,σj ,σk) = . . .

bijkl(σi,σj ,σk,σl) = . . .



MFA to the free-energy
Cluster Variational Method (CVM) or Region Graph Approx.

F = E − S

E(b, J,H) = −
�

i<j

Tr bijJijσiσj −
�

i

Tr biHiσi

= −
�

i<j

Jij(Cij +mimj)−
�

i

Himi

S(b) = −
�

R

cRTr bR log bR



Limits of MFA

• Impossible to use large regions in CVM
(too many parameters to optimize over)
in general the largest region used is the smallest 
loop/clique in the graph

• Strong need for corrections to MFA that are 
able to take into account the effect of short 
loops and small local structures
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Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe ! 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe ! 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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Make MFA more consistent

• Add to the free-energy Lagrange multipliers to 
enforce (at the fixed point)

• The entropy term changes to (for nMF and Bethe)

“Consistency is more important than truth” (S. Ting)

χii = 1−m2
i χij = cij

The theory of junction trees provides a justification for the
selection of regions and counting numbers [5], if one selects
regions according to a junction tree then one can recover the
exact free energy by a constrained minimization

FCV M = min
b

{E(b) − S(b)} , (7)

subject to 0 ≤ bR ≤ 1 and constraints
1 = Tr[bR(σR)] , ∀R ; (8)

bR′(σR′) = Tr\σR′
[bR(σR)] , ∀R′, R : R′ ⊂ R ;

where Tr\ is a trace over all variables excluding those listed in
the subscript. The beliefs recovered for a correct region selec-
tion are exactly the marginal probabilities, and are consistent
with those determined by linear response bR = bLR

R .
The regions prescribed by a junction tree have a maximum

size that depends on the graph width, if this topological
attribute is small then CVM can be an efficient way to calculate
the free energy. If the graph is uncorrelated (J = 0) then the
NMF approximation is exact, with cR = 1 for single variable
regions and cR = 0 for all other regions. For purposes of
evaluating the energy (6) we take bs =

∏

i∈s bi in NMF.
If the graph is a tree (or forest) the Bethe approximation is
exact, with edge regions for every element in I , in addition
to all vertex regions. In the Bethe case: cs = 1 ,∀s ∈ I;
ci = 1 −

∑

R⊂I:i∈R cR; and cR = 0 otherwise.
Unfortunately, junction trees are also impractical in gen-

eral. Typically the width of the graph is large, requiring
large regions for an exact solution, so that the evaluation
of the entropy (5) is impractical. One is therefore interested
in approximations; fortunately NMF and Bethe are found
to be good, or asymptotically exact in many circumstances.
Given that we resort to these methods in cases where the
method is not exact, how should one construct the marginal
probabilities? Two options exist for the regions exploited in the
approximation: one can use the maximum entropy estimate
PR ≈ bR; or one can use the linear response estimtate
PR ≈ bLR

R about the minima of FCV M . In general these
estimates differ; one measure of the quality of the variational
approach is the amount of agreement between these values.
This paper discusses a modification to FCV M that allows for
exact agreement.

Let us parameterize the beliefs over single variables in a
manner comparable to (4), using the set of magnetization (Ci),
and in the case of Bethe symmetric pair correlation parameters
(Cij = Cji)

bi(σi) =
(1 + Ciσi)

2
; bij(σi,σj) = bibj +

Cijσiσj

4
, (9)

where Cij = 0 for NMF. By this construction the constraints
(8) are made redundant and we have an unconstrained param-
eter space, subject to a parameter range 0 < bR(σR) < 1.
We exclude the possibility of boundary values {0, 1} since to
apply linear response we will assume a minima in which all
parameters can fluctuate.

In this paper we consider the following modification to the
entropy approximation: we introduce, in the case of NMF the
constraint that the self-response and magnetization agree as
per the exact free energy

χii = 1 − C2
i , ∀i . (10)

We can introduce a Lagrange multiplier in the standard form
to write the entropy approximation for NMF 1

SN
λ = −

∑

i

Tr [bi log bi] −
∑

i

λi

((

1 − C2
i

)

− χii

)

/2 .

(11)
Within the Bethe approximation agreement between bij =

bLR
ij requires the additional constraint

χij = Cij ; ∀ij ∈ I , (12)
the entropy approximation for Bethe becomes

SB
λ = SN

λ −
∑

ij∈I

{

Tr

[

bij log

(

bij

bibj

)]

− λij (Cij − χij)

}

.

(13)

B. Saddle-point equations and linear response identities

A minima of the free energy requires that the derivatives
with respect to the variational parameters are zero. The deriva-
tive with respect to Ci is

0 = atanh(Ci) − Hi −
∑

j( $=i)

JijCj + Li − λiCi , (14)

where Li = LN
i = 0 for NMF, and for Bethe

LB
i =

∑

j:(i,j)∈I

Tr

[

bj
σi

2
log

(

bij

bi

)]

. (15)

For the Bethe method we must also consider the derivative
with respect to Cij

0 = LB
ij − Jij = Tr

[σiσj

4
log bij

]

+ λij − Jij . (16)

Note that both the entropic term λiCi and the leading
order of Li, are reaction terms (proportional to Ci); for fully
connected models these reaction terms are well understood in
the large system limit [2]. When λ is taken to be non-zero
and fixed by linear response, we find that quite generally we
recover the Onsager reaction term, as later discussed. When
the constraint (10) is not enforced λi = 0, in applying the
Bethe approximation the Onsager reaction term is recovered
for the case of independent identically distributed couplings.

When considering variation of the free energy we will treat
both χ and λ as fixed external parameters, the variation is
restricted to C. The Hessian, with components

Qs,s′ =
∂2FCV M (b)

∂Cs∂Cs′

, (17)

is required to be positive definite at the minima.
Supposing C = C∗ describes the minimizing arguments for

{H,J}, in response to a small variation in the fields H + δH
the new minima C = C∗ + δC can be determined from the
quadratic order expansion of the free energy

FX
λ (H + δH,J) = min

δC

{

FX
λ (H,J) + δCQXδC/2

−
∑

i

δizδHz(Ci + δCi)

}

, (18)

1An identical proposal for an on-diagonal consistency constraint was very
recently proposed [14].
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with those determined by linear response bR = bLR
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eral. Typically the width of the graph is large, requiring
large regions for an exact solution, so that the evaluation
of the entropy (5) is impractical. One is therefore interested
in approximations; fortunately NMF and Bethe are found
to be good, or asymptotically exact in many circumstances.
Given that we resort to these methods in cases where the
method is not exact, how should one construct the marginal
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where Cij = 0 for NMF. By this construction the constraints
(8) are made redundant and we have an unconstrained param-
eter space, subject to a parameter range 0 < bR(σR) < 1.
We exclude the possibility of boundary values {0, 1} since to
apply linear response we will assume a minima in which all
parameters can fluctuate.

In this paper we consider the following modification to the
entropy approximation: we introduce, in the case of NMF the
constraint that the self-response and magnetization agree as
per the exact free energy
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Note that both the entropic term λiCi and the leading
order of Li, are reaction terms (proportional to Ci); for fully
connected models these reaction terms are well understood in
the large system limit [2]. When λ is taken to be non-zero
and fixed by linear response, we find that quite generally we
recover the Onsager reaction term, as later discussed. When
the constraint (10) is not enforced λi = 0, in applying the
Bethe approximation the Onsager reaction term is recovered
for the case of independent identically distributed couplings.

When considering variation of the free energy we will treat
both χ and λ as fixed external parameters, the variation is
restricted to C. The Hessian, with components
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∂Cs∂Cs′
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is required to be positive definite at the minima.
Supposing C = C∗ describes the minimizing arguments for

{H,J}, in response to a small variation in the fields H + δH
the new minima C = C∗ + δC can be determined from the
quadratic order expansion of the free energy
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Previous proposals for fixing
the diagonal terms 

• Kappen, Rodriguez (Neur. Comp., 1998)
MF + self-couplings

• Opper, Winter (PRL, PRE, 2001)
TAP + 

• FRT (JSTAT, 2012)
normalized correlations 
useful for inverse pb.

• Yasuda, Tanaka (PRE, 2013)
Bethe + 

χii

Jii

λi

λi

�χij ≡
χij√
χiiχjj



Improvement by normalizing 
correlations (diluted 2D Ising) 12
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FIG. 3: Same as in Figure 1 for a typical sample of the 2D diluted ferromagnet of size N = 52. The error

∆C has been computed with respect to the exact correlation matrix and with respect to the one measured

in MC simulations. Full points show the error obtained with the normalization trick.

are negative. This is the problem of the BA fixed point becoming (strongly) unphysical, already

discussed in Section II: indeed by running SuscProp on this sample one would observe convergence

only for β smaller than the peak location. I would like to stress again that checking the physical

consistency of a solution based on a MFA is very important: for the sample shown in Figure 3,

even without knowing the exact correlations, one should switch from the BA to TAP, when the

former reaches the singularity (that manifests e.g. in SuscProp not converging or in self-correlations

diverging)2.

Moreover there are cases (e.g. homogeneous FC models) where the spurious singularity induced

by the MFA in a system of finite size is such that Cii and Cij diverge with the same law at the

spurious critical point, while the normalized correlation �Cij stays finite (and much closer to the true

one). For example for the FC ferromagnetic model the normalized correlation �CMFA estimates the

true correlation with an error roughly half than the one of CMFA for any of the 5 MFA considered

here.

2
Actually for a ferromagnet one knows how to break the up-down symmetry and let BP converge even at low

temperatures: once BP returns non-zero magnetizations mi, the correlation matrix can be computed by mean of

Eq.(22). However in the general case, BP does not converge in presence of long range correlations, i.e. after the

singularity, and one must resort to other MFA.



General framework

Your preferred MFA can be set to zero to
recover known approx.

or to satisfy
χii = 1−m2

i χij = cij

Fλ = FMFA({mi}, {Cij}, . . .) +
�

i

λim
2
i +

�

i<j

λijCij



General framework

Fλ = FMFA({mi}, {Cij}, . . .) +
�

i

λim
2
i +

�

i<j

λijCij

∂miFλ = atanh(mi) + ∂miS
2+ −Hi −

�

j

Jijmj + λimi = 0

∂CijFλ = ∂CijS
2+ − Jij + λij = 0

Maximum Entropy equations
from free-energy minimization

∂CijkFλ = ∂CijkS
2+ = 0 Higher order correlation parametrs

are fixed by standard maximum entropy



General framework

Fλ = FMFA({mi}, {Cij}, . . .) +
�

i

λim
2
i +

�

i<j

λijCij

Linear Response equations from quadratic exp.
around the free-energy mininum

∂2Fλ ⇒ [χ−1]ij = Φij − Jij



Some comments before
showing results...

• Bethe/CVM free-energies are not convex
adding parameters it not obvious to improve!

•     parameters measure how wrong is the MFA
e.g. on a random graph with Bethe approx. 

•                           would naively imply stronger
correlations and also more unstable Susc. Prop.
but this is not the case!

λ

λ → 0

Jij → Jij + λij



Models studied

We are starting with exactly solvable models
to check the new method

• Ising variables

• 2D topology (square and triangular lattices)

• homogeneous -> Fourier transform solution

• both ferromagnetic and frustrated

...willing to arrive to a general purpose algorithm!



Ferromagnet on a 2D square lattice

u = �uJ+λ(h) ≡ atanh[tanh(J + λ) tanh(h)]

h = 3u+ (λ0 − 4λ)m

m = tanh(h+ u)

Modified BP

Modified SuscP leading to

χx =
1−m2

(2π)2

� π

−π
dq1

� π

−π
dq2

cos(q1)x

φ0 − 2φ1[cos(q1) + cos(q2)]

φ0 = 1 + 4
�u�2

1− �u�2 − (1−m2)λ0

φ1 =
�u�

1− �u�2 − (1−m2)λ



Nearest-neighbor correlation
(2D square lattice)
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Nearest-neighbor correlation
(2D triangular lattice,         )

c = 1i

c   = 1ijk

c  = 1ijc = !5i c  = !1ijc = 1i
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c
NMF Bethe Plaquette

FIG. 1: Regions and counting numbers for a triangular lat-
tice. {a, c} are nearest neighbors (nn), {a, b} are next-nearest
neighbors (nnn). We abbreviate χ and C indices accordingly.
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FIG. 2: (color online) Nearest neighbors correlation estimates
for the HTL L → ∞. Magnetized branches are shown only for
Bethe and Plaquette (λ = 0, β > 0) correlation parameters.

methods in red (label χ), standard methods minimizing
F in the variational parameters in green (label C) and
our new method in blue. All methods perform well at
high temperature (small |β|), and magnetized solutions
are accurate for β ! βc. Standard methods undergo con-
tinuous transitions for β ∼ βc, and in some cases even
for β < 0. LR estimates diverge at these points. The
standard (λ = 0) P3 method performs well in the esti-
mate of Cnn, for the unmagnetized solutions, but only
in the stable range β ∈ (−1.01, 0.255), while our new
P3 method performs well in the entire frustrated region
β < 0 (see the inset of Fig. 2). The unmagnetized solu-
tion does not exhibit continuous phase transitions for the
new methods, as it should. At low temperature conver-
gence problems hinder the construction of solutions, the
unmagnetized P3 solution is constructed only for β < 0.3,
certainly this solution disappears at β = 0.35, where the
Hessian becomes singular for any Cnn < 1.

Long range correlations are not amongst the CVM pa-
rameters, LR is required to determine correlations out-
side plaquette regions. For β ∈ (−∞,βc] the new method
improves upon standard implementations for many sig-
nificant terms in χ and χ−1. Figure 3 shows the next
nearest correlations calculated on a finite model L = 5,
the new method estimates are superior to their coun-
terparts for most β. The values calculated for L = 5 are
close to those for L → ∞ for β < βc, although in the case
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FIG. 3: Next nearest neighbor correlations for the HTL L = 5,
unmagnetized branches. Curves as figure 2.
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of L = 5 the tripartite lattice symmetry is broken so that
for β < 0 there is extra frustration, and the paramagnetic
solutions are more stable. The NMF paramagnetic solu-
tion is unstable for β < −0.382 , but other paramagnetic
solutions are stable for −1.2 < β < 0. An interesting fea-
ture of the new method is that it overcompensates the
error of the standard method; so a combination of the
two can lead to even better results.

Inverse problem

A simpler application of our method is for the in-
verse problem: given sample statistics, determine J and
H [17, 21]. With ignorance of the distribution of cou-
plings (and topology), we must have unbiased region se-
lection: all edges for Bethe, and all (triangular) Plaque-
ttes for P3. In the new method we take C and χ equal to
the correlation statistics and solve first (15) for Jij , and
then (12) for H. In standard mean field methods the
same assumptions are made on region selection, but only
χ and {Ci} are determined from the statistics, all other
C obey the saddle point equations (13) with λ = 0 (thus
making equations solvable for Bethe and TAP [17]).

Figure 4 demonstrates the results for estimation of ma-
trix J in the HTL L = 5 based on exact data. The im-
proved scaling at small |β| is as anticipated in Eqs. (19),
(20). However, even at low temperature reconstruction
is significantly improved by the new methods. Although
Φnn determines the error, note that the approximation is
different to that used in the direct problem: the 2D trian-

λ0 = 0
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of L = 5 the tripartite lattice symmetry is broken so that
for β < 0 there is extra frustration, and the paramagnetic
solutions are more stable. The NMF paramagnetic solu-
tion is unstable for β < −0.382 , but other paramagnetic
solutions are stable for −1.2 < β < 0. An interesting fea-
ture of the new method is that it overcompensates the
error of the standard method; so a combination of the
two can lead to even better results.
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then (12) for H. In standard mean field methods the
same assumptions are made on region selection, but only
χ and {Ci} are determined from the statistics, all other
C obey the saddle point equations (13) with λ = 0 (thus
making equations solvable for Bethe and TAP [17]).

Figure 4 demonstrates the results for estimation of ma-
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proved scaling at small |β| is as anticipated in Eqs. (19),
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methods in red (label χ), standard methods minimizing
F in the variational parameters in green (label C) and
our new method in blue. All methods perform well at
high temperature (small |β|), and magnetized solutions
are accurate for β ! βc. Standard methods undergo con-
tinuous transitions for β ∼ βc, and in some cases even
for β < 0. LR estimates diverge at these points. The
standard (λ = 0) P3 method performs well in the esti-
mate of Cnn, for the unmagnetized solutions, but only
in the stable range β ∈ (−1.01, 0.255), while our new
P3 method performs well in the entire frustrated region
β < 0 (see the inset of Fig. 2). The unmagnetized solu-
tion does not exhibit continuous phase transitions for the
new methods, as it should. At low temperature conver-
gence problems hinder the construction of solutions, the
unmagnetized P3 solution is constructed only for β < 0.3,
certainly this solution disappears at β = 0.35, where the
Hessian becomes singular for any Cnn < 1.

Long range correlations are not amongst the CVM pa-
rameters, LR is required to determine correlations out-
side plaquette regions. For β ∈ (−∞,βc] the new method
improves upon standard implementations for many sig-
nificant terms in χ and χ−1. Figure 3 shows the next
nearest correlations calculated on a finite model L = 5,
the new method estimates are superior to their coun-
terparts for most β. The values calculated for L = 5 are
close to those for L → ∞ for β < βc, although in the case
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of L = 5 the tripartite lattice symmetry is broken so that
for β < 0 there is extra frustration, and the paramagnetic
solutions are more stable. The NMF paramagnetic solu-
tion is unstable for β < −0.382 , but other paramagnetic
solutions are stable for −1.2 < β < 0. An interesting fea-
ture of the new method is that it overcompensates the
error of the standard method; so a combination of the
two can lead to even better results.

Inverse problem

A simpler application of our method is for the in-
verse problem: given sample statistics, determine J and
H [17, 21]. With ignorance of the distribution of cou-
plings (and topology), we must have unbiased region se-
lection: all edges for Bethe, and all (triangular) Plaque-
ttes for P3. In the new method we take C and χ equal to
the correlation statistics and solve first (15) for Jij , and
then (12) for H. In standard mean field methods the
same assumptions are made on region selection, but only
χ and {Ci} are determined from the statistics, all other
C obey the saddle point equations (13) with λ = 0 (thus
making equations solvable for Bethe and TAP [17]).

Figure 4 demonstrates the results for estimation of ma-
trix J in the HTL L = 5 based on exact data. The im-
proved scaling at small |β| is as anticipated in Eqs. (19),
(20). However, even at low temperature reconstruction
is significantly improved by the new methods. Although
Φnn determines the error, note that the approximation is
different to that used in the direct problem: the 2D trian-
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F in the variational parameters in green (label C) and
our new method in blue. All methods perform well at
high temperature (small |β|), and magnetized solutions
are accurate for β ! βc. Standard methods undergo con-
tinuous transitions for β ∼ βc, and in some cases even
for β < 0. LR estimates diverge at these points. The
standard (λ = 0) P3 method performs well in the esti-
mate of Cnn, for the unmagnetized solutions, but only
in the stable range β ∈ (−1.01, 0.255), while our new
P3 method performs well in the entire frustrated region
β < 0 (see the inset of Fig. 2). The unmagnetized solu-
tion does not exhibit continuous phase transitions for the
new methods, as it should. At low temperature conver-
gence problems hinder the construction of solutions, the
unmagnetized P3 solution is constructed only for β < 0.3,
certainly this solution disappears at β = 0.35, where the
Hessian becomes singular for any Cnn < 1.

Long range correlations are not amongst the CVM pa-
rameters, LR is required to determine correlations out-
side plaquette regions. For β ∈ (−∞,βc] the new method
improves upon standard implementations for many sig-
nificant terms in χ and χ−1. Figure 3 shows the next
nearest correlations calculated on a finite model L = 5,
the new method estimates are superior to their coun-
terparts for most β. The values calculated for L = 5 are
close to those for L → ∞ for β < βc, although in the case
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of L = 5 the tripartite lattice symmetry is broken so that
for β < 0 there is extra frustration, and the paramagnetic
solutions are more stable. The NMF paramagnetic solu-
tion is unstable for β < −0.382 , but other paramagnetic
solutions are stable for −1.2 < β < 0. An interesting fea-
ture of the new method is that it overcompensates the
error of the standard method; so a combination of the
two can lead to even better results.

Inverse problem

A simpler application of our method is for the in-
verse problem: given sample statistics, determine J and
H [17, 21]. With ignorance of the distribution of cou-
plings (and topology), we must have unbiased region se-
lection: all edges for Bethe, and all (triangular) Plaque-
ttes for P3. In the new method we take C and χ equal to
the correlation statistics and solve first (15) for Jij , and
then (12) for H. In standard mean field methods the
same assumptions are made on region selection, but only
χ and {Ci} are determined from the statistics, all other
C obey the saddle point equations (13) with λ = 0 (thus
making equations solvable for Bethe and TAP [17]).

Figure 4 demonstrates the results for estimation of ma-
trix J in the HTL L = 5 based on exact data. The im-
proved scaling at small |β| is as anticipated in Eqs. (19),
(20). However, even at low temperature reconstruction
is significantly improved by the new methods. Although
Φnn determines the error, note that the approximation is
different to that used in the direct problem: the 2D trian-
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methods in red (label χ), standard methods minimizing
F in the variational parameters in green (label C) and
our new method in blue. All methods perform well at
high temperature (small |β|), and magnetized solutions
are accurate for β ! βc. Standard methods undergo con-
tinuous transitions for β ∼ βc, and in some cases even
for β < 0. LR estimates diverge at these points. The
standard (λ = 0) P3 method performs well in the esti-
mate of Cnn, for the unmagnetized solutions, but only
in the stable range β ∈ (−1.01, 0.255), while our new
P3 method performs well in the entire frustrated region
β < 0 (see the inset of Fig. 2). The unmagnetized solu-
tion does not exhibit continuous phase transitions for the
new methods, as it should. At low temperature conver-
gence problems hinder the construction of solutions, the
unmagnetized P3 solution is constructed only for β < 0.3,
certainly this solution disappears at β = 0.35, where the
Hessian becomes singular for any Cnn < 1.

Long range correlations are not amongst the CVM pa-
rameters, LR is required to determine correlations out-
side plaquette regions. For β ∈ (−∞,βc] the new method
improves upon standard implementations for many sig-
nificant terms in χ and χ−1. Figure 3 shows the next
nearest correlations calculated on a finite model L = 5,
the new method estimates are superior to their coun-
terparts for most β. The values calculated for L = 5 are
close to those for L → ∞ for β < βc, although in the case
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of L = 5 the tripartite lattice symmetry is broken so that
for β < 0 there is extra frustration, and the paramagnetic
solutions are more stable. The NMF paramagnetic solu-
tion is unstable for β < −0.382 , but other paramagnetic
solutions are stable for −1.2 < β < 0. An interesting fea-
ture of the new method is that it overcompensates the
error of the standard method; so a combination of the
two can lead to even better results.

Inverse problem

A simpler application of our method is for the in-
verse problem: given sample statistics, determine J and
H [17, 21]. With ignorance of the distribution of cou-
plings (and topology), we must have unbiased region se-
lection: all edges for Bethe, and all (triangular) Plaque-
ttes for P3. In the new method we take C and χ equal to
the correlation statistics and solve first (15) for Jij , and
then (12) for H. In standard mean field methods the
same assumptions are made on region selection, but only
χ and {Ci} are determined from the statistics, all other
C obey the saddle point equations (13) with λ = 0 (thus
making equations solvable for Bethe and TAP [17]).

Figure 4 demonstrates the results for estimation of ma-
trix J in the HTL L = 5 based on exact data. The im-
proved scaling at small |β| is as anticipated in Eqs. (19),
(20). However, even at low temperature reconstruction
is significantly improved by the new methods. Although
Φnn determines the error, note that the approximation is
different to that used in the direct problem: the 2D trian-



Nearest-neighbor correlation
(2D triangular lattice)

where ti = tanh(Ji), Ti = 1 − t2i and we define Jijk =
JikJjktitjTk. The response and on-diagonal errors are

LX
i − L∗

i
.
= tiD

X
i ; ΦX

ii − Φ∗
ii

.
= DX

i . (37)

For the NMF and Bethe methods we define respectively

DN
i = −

∑

j( "=i)

J2
ijTj ; DB

i = 2
∑

j<k( "=i)

JjkJijJikTjTk .

(38)
In the Bethe method where Cij "= χij the error on Cij is
dominated by

LB
ij − L∗

ij
.
=

∑

k( "=i,j)

JikJjkTk . (39)

In (35) and (36) we demonstrate also the leading order diagram
relevant for high temperature at O(β3) and O(β5) respectively.

We calculate errors for both the weak coupling (small J)
and high temperature (J and H are O(β)) cases solving the
linearized equations. We summarise the consequences for the
error in Ci, χi"=j and Cij according to constraints introduced
(left label in list). For NMF errors are

∅ From (31) and (37) δCi is determined as O(J2,β3).
The response error δχij is O(J2,β3).

(10) We find λN
i = DN

i , removing the most significant
source of error in δCi, the error on the magnetization
improves to O(J3,β4), the error on δχij remains
limited to O(J2,β3) by the error (35).

For Bethe errors are

∅ δCi and δχij are O(J3,β4).

(10) We find δCi is improved to O(J4,β5), δχij remains
O(J3,β4). Error sources (37) are improved, but (39)
remains a significant constraint on accuracy of δχij .

(12) δCi remains O(J3,β4) but δχij is improved to
O(J4,β4). The errors on δC are made independent
of (39), but the error sources (37) are unimproved.

(10,12) The combined effect is to remove the most signif-
icant sources of error, both δCi and δχij become
O(J4,β5). The remaining error on δχij is limited at
leading order only by (36).

For Bethe introducing the constraint (12) always reduces the
error on δCij , which is O(J2,β2) in the standard method.

B. Iterative scheme

The non-convex nature of the constraints we are introduc-
ing makes algorithm development a challenge, but we can
solve in general these equations for weak-coupling, with a
naive iterative scheme

Ct+1
i = tanh



Hi +
∑

j

Jijmj + λt
iC

t
i − Lt

i



 . (40)

If applying the constraint (10), we can simultaneously infer

λt+1
i = λt

i − Φt
ii((1 − (Ct

i )
2) − χt

ii)Φ
t
ii , (41)
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Fig. 1. Full correlations estimates on nearest neighbors based on linear
response bLR

ij , compared to the exact result (black think curve), and the
parameters bij determined for a standadrd implentation of the Bethe approxi-
mation (thin red). Curves are labeled in the legend according to the constraints
introduced. For negative J the new methods perform admirably compared to
standard implementations. All methods perform poorly in the vicinity of the
phase transition, the paramagnetic solutions of the new methods can be stable
even beyond the true critical point J > 0.275, though performance is poor.

otherwise λi = 0. Applying constraint (12), for the Bethe
method,

χt
ij = [(Φt − βJ)−1]ij ; Ct+1

ij = χt
ij . (42)

with λij fixed by (16); otherwise λij = 0 and we fix

bt
ij = argminbij

{bij log bij − JijTr[bijσiσj ] : Ct
i , C

t
j} . (43)

To fix bt
ij at fixed Ct

i and Ct
j is equivalent to fixing Ct

ij .

The instantaneous mean field is used to update the mag-
netization in (40), a linear expansion of (10) is used to deter-
mine (41), a naive iteration matching successively the linear
responses is used in (42). At large |J | (40)-(42) can be unstable
individually or in combination, damping and annealing can be
effective strategies to arrive at a solution for strong coupling.
The procedure (43) is one of convex optimization and doesn’t
contribute to instability.

C. Strong coupling regime experiments

We consider a simple model the triangular lattice model
with uniform couplings Jij = J and zero fields Hi = 0
in the large system limit. This model is problematic for
standard Bethe and NMF for several reasons: it involves short
loops not accounted for by the region selection; there is a
continuous symmetry breaking transition at J = 0.275 with
associated long range correlations [18]; for J < 0 there is
frustration; for J < 0 there are Kosterlitz-Thouless transitions,
but no symmetry breaking transitions [19], [20]. For these
reasons Bethe and NMF estimates for bR or bLR

R can be
poor. The solution can be found for our new methods by
Fourier analysis. Figure 1 presents a comparison of methods.
We present only the solution found continuously from J = 0
by the iterative method, and we do not present the symmetry
breaking solutions at J < 0, where they exist.

(10) χii = 1−m2
i

(12) χij = Cij



Inverse problem

• Use the CVM for the free-energy including all 
pairs (Bethe) or all triplets (Plaquette)

• Solve equations in            and eventually
given (exact) correlations and magnetizations

• Measured the error on the inferred couplings by

λJij , Hi
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The Bethe approximation for solving the inverse Ising problem

for the BA, thus leading to

JTAP
ij =

�
1 − 8mimj(C−1)ij − 1

4mimj
, (33)

JBA
ij = −atanh

�
1

2(C−1)ij

�
1 + 4(1 − m2

i )(1 − m2
j)(C

−1)2
ij − mimj

− 1

2(C−1)ij

���
1 + 4(1 − m2

i )(1 − m2
j)(C

−1)2
ij − 2mimj(C−1)ij

�2

− 4(C−1)2
ij

�
. (34)

The fourth approximation that I am considering has been obtained from a small correlation
expansion by Sessak and Monasson [16] and has been further simplified in [27] to the
following expression

JSM
ij = −(C−1)ij + J IP

ij − Cij

(1 − m2
i )(1 − m2

j) − (Cij)2
. (35)

For each approximation, I measure the error in inferred couplings J �
ij with respect to

the true ones Jij by using the following expression:

∆J =

��
i<j(J

�
ij − Jij)2

�
i<j J2

ij

. (36)

I study both the diluted ferromagnetic model with a fraction p of non-zero couplings
(Jij = β) and undiluted spin glass models (Jij = ±β with probability 1/2). I also consider
several topologies: 2D square lattices, 3D cubic lattices, random regular graphs with
fixed degree c = 4 and fully connected (FC) graphs. In the latter case the couplings are
normalized in order to have a phase transition at βc = 1 in the thermodynamic limit. I
restrict the study to models of small sizes, with N ranging between 20 and 100, because
these are the sizes for problems of biological interest. Moreover, as discussed below, the
number M of independent measurements of the correlation matrix that make inferred
coupling reasonably good grows linearly with N , and so for larger systems the number of
measurements needed becomes too large. The data shown in section 5 have been obtained
with M = 106 independent measures of the correlation matrix (unless stated otherwise)
and going to much larger values seems to me rather unrealistic as compared with practical
applications.

4.1. The normalization trick for the inverse Ising problem

The trick of normalizing the correlation matrix to improve inference (see section 3) can
be extended to the inverse Ising problem. In practice, it corresponds to solving all the
equations relating the inverse correlation matrix C−1 to the couplings Jij, including also
those for the diagonal elements which are usually ignored.

Let me illustrate the new method for the simple case of the TAP approximation with
null magnetizations. In this case, solving the inverse Ising problem only on the off-diagonal
elements is equivalent to solving the equations

(C−1)ij = −Jij ≡ Dij ∀(i �= j),

doi:10.1088/1742-5468/2012/08/P08015 13
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FIG. 1: Regions and counting numbers for a triangular lat-
tice. {a, c} are nearest neighbors (nn), {a, b} are next-nearest
neighbors (nnn). We abbreviate χ and C indices accordingly.
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methods in red (label χ), standard methods minimizing
F in the variational parameters in green (label C) and
our new method in blue. All methods perform well at
high temperature (small |β|), and magnetized solutions
are accurate for β ! βc. Standard methods undergo con-
tinuous transitions for β ∼ βc, and in some cases even
for β < 0. LR estimates diverge at these points. The
standard (λ = 0) P3 method performs well in the esti-
mate of Cnn, for the unmagnetized solutions, but only
in the stable range β ∈ (−1.01, 0.255), while our new
P3 method performs well in the entire frustrated region
β < 0 (see the inset of Fig. 2). The unmagnetized solu-
tion does not exhibit continuous phase transitions for the
new methods, as it should. At low temperature conver-
gence problems hinder the construction of solutions, the
unmagnetized P3 solution is constructed only for β < 0.3,
certainly this solution disappears at β = 0.35, where the
Hessian becomes singular for any Cnn < 1.

Long range correlations are not amongst the CVM pa-
rameters, LR is required to determine correlations out-
side plaquette regions. For β ∈ (−∞,βc] the new method
improves upon standard implementations for many sig-
nificant terms in χ and χ−1. Figure 3 shows the next
nearest correlations calculated on a finite model L = 5,
the new method estimates are superior to their coun-
terparts for most β. The values calculated for L = 5 are
close to those for L → ∞ for β < βc, although in the case
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of L = 5 the tripartite lattice symmetry is broken so that
for β < 0 there is extra frustration, and the paramagnetic
solutions are more stable. The NMF paramagnetic solu-
tion is unstable for β < −0.382 , but other paramagnetic
solutions are stable for −1.2 < β < 0. An interesting fea-
ture of the new method is that it overcompensates the
error of the standard method; so a combination of the
two can lead to even better results.

Inverse problem

A simpler application of our method is for the in-
verse problem: given sample statistics, determine J and
H [17, 21]. With ignorance of the distribution of cou-
plings (and topology), we must have unbiased region se-
lection: all edges for Bethe, and all (triangular) Plaque-
ttes for P3. In the new method we take C and χ equal to
the correlation statistics and solve first (15) for Jij , and
then (12) for H. In standard mean field methods the
same assumptions are made on region selection, but only
χ and {Ci} are determined from the statistics, all other
C obey the saddle point equations (13) with λ = 0 (thus
making equations solvable for Bethe and TAP [17]).

Figure 4 demonstrates the results for estimation of ma-
trix J in the HTL L = 5 based on exact data. The im-
proved scaling at small |β| is as anticipated in Eqs. (19),
(20). However, even at low temperature reconstruction
is significantly improved by the new methods. Although
Φnn determines the error, note that the approximation is
different to that used in the direct problem: the 2D trian-
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FIG. 5: Error in inferring couplings J for a diluted 2D square
ferromagnet, from statistics of 106 independent samples. [KR]
employs the Kappen-Rodriguez normalization [10].

gular structure is discovered, unlike in the direct problem
where it is assumed in the region selection.

Figure 5 demonstrates results for an instance of a 7 by
7 diluted square lattice Ising model in zero field. Each
coupling is assigned according to the probability distri-
bution P (J) = 0.7δJ,1 + 0.3δJ,0. The reconstruction as-
sumes Hi = 0, but no knowledge of J . We generated the
pair-correlation matrix from independent Monte Carlo
measures. Sampling errors limit all methods for small
β. When β is large enough the error of the method ex-
ceeds the sampling one. A β interval exists in which
the new methods improve over standard ones. The tri-
angular Plaquette approximation improves over Bethe,
despite the absense of triangles in the model (the short-
est loop is of length 4). For larger β the model under-
goes a rapid growth in correlation length, far beyond the
edge/triangular regions selected, all mean-field methods
are prone to significant errors.

Conclusion

We propose a minimal modification to the mean-field
free energy functional in order to make max-entropy es-
timates of correlations consistent with LR ones, in other
words the Hessian consistent with the location of its min-
imum.

More detailed calculations for the significant results of

this letter are available [18, 22].
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Summary

New general framework to force in CVM the 
consistency between maximum entropy estimates
and linear response ones.

Several improvements achieved

• better high temperature expansions

• better correlation estimates

• smaller errors in estimating couplings

...still working for a fast message passing algorithm ;-)


