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Outline of the talk

• Kinetic inverse Ising problem

• Mean field approximation

• Neural network simulator (LIF)

• Time discretization vs. interaction delays

• Kinetic inverse Ising problem with delays

• Relation between true and inferred couplings

• Application to more realistic data



Motivations

• Big data from biology -> interesting inference problems

• Not only “data fitting”, but “data modeling”
-> choice of the right interaction terms
-> explanation for the collective behavior

• Under-sampling
-> hidden variables
-> effective interactions

• Statistical physics of complex systems can inspire us...
but we should make our models more realistic



Big data in neurophysiology

• Multi-recording arrays (up to 256 channels)

• each electrode
can stimulate
and record
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An interesting inference problem

• Infer synaptic couplings from correlations of the 
sampled neural activities

• Data are discretized in bins of length dt

...00001000010001000...

...00100100001001000...

...01001001000010000...
{bi(t)}i=1,...,N
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Maximum entropy solution

• From data compute average values 

• Look for the most probable model (maximum entropy)
within a class of interacting models (e.g. pairwise)

such that

• Maximum entropy = minimum free-energy =
= maximum likelihood (with flat prior)

is not to say that we don’t care about fit quality – we do. It is only to say
that fitting, for example, equal-time neuronal firing correlations in the data
perfectly with some model is not very satisfying if the parameters of the
model cannot be related fairly directly to the connectivity of the network.

To present the models and formal approaches that we study, we have to
start with our notation for the data. We work with time-binned spike trains
under the assumption that firing rates are low enough that there is (almost)
never more than one spike per bin. Time will be measured in units of the
bin size. We denote the spike train of neuron i by Si(t), where Si(t) = +1
if it fires in bin t and Si(t) = −1 if it does not. (One can equivalently use
Si = 0 for no spike, but we won’t do that here.) Thus we can visualize the
data as a big array, the “spike matrix” (N ×T if there are N neurons and T
time bins), of +1s and −1s.

This representation of the data lends itself to formulating the problem in
terms of a very simple, perhaps the simplest possible model: a McCulloch-
Pitts network (McCulloch and Pitts, 1943), or what in physics is called an
Ising model. In this chapter we will use several different kinds of Ising models
to treat the problem of finding the connections in a network from its spiking
history.

2 The Gibbs Equilibrium Model

A possible formal approach to the problem is this (Schneidman et al,
2006): One considers the data as the set of columns on the spike matrix, i.e.,
all the spike patterns observed, ignoring their temporal order, and asks what
distribution they could have been sampled from. Since one is treating all the
patterns as coming from the same distribution, one is implicitly assuming
stationarity in the data. If one seeks the distribution with the largest entropy,
consistent with the sample means mi = ⟨Si⟩ and correlations ⟨(Si−mi)(Sj −
mj)⟩,1 one finds something with a familiar look (at least if one is a statistical
physicist):

P [S] =
1

Z
exp

⎡

⎣

1
2

∑

ij

JijSiSj +
∑

i

hiSi

⎤

⎦ (1)

This is the Gibbs equilibrium distribution for the (pairwise) Ising model.
Its parameters, Jij and hi, are Lagrange multipliers that are used in the

1Statisticians would call these covariances, but here we follow the convention in statis-
tical physics and call them correlations.
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hSiidata hSiSjidata

hSiiJ,h = hSiidata
hSiSjiJ,h = hSiSjidata



Why only pairwise interactions ?

• Compute more averages, e.g.

• Enlarge the class of interacting models, e.g. adding

• High order couplings turn out to be very small...

• Maybe are important in some applications as high order 
corrections, but pairwise interactions seem to be able to 
reproduce most of the data

hSiSjSkidata

X

i,j,k

JijkSiSjSk



Finding optimal model parameters

• Find coupling and fields {J,h} satisfying

• Very well known problem (Boltzmann machine learning)
Learn parameters according to following rules

• Exact computation is exponentially slow

• Even Monte Carlo is not very useful
(one MC run for each learning step)

hSiiJ,h = hSiidata
hSiSjiJ,h = hSiSjidata

constrained maximization. The parameter Jij is the strength with which
unit (neuron) j influences unit i, and the bias “field” hi controls how likely
unit i is to be +1 (“fire”) in the absence of the other units. The expectation
values of the Si under the distribution (1), denoted mi (“magnetizations” in
the original context of the model), are related to the neuronal firing rates ri
(in units of spikes/time bin) through mi = 2ri − 1.

One might like to think of Jij as something like a synaptic strength.
However, the J matrix in (1) is necessarily symmetric, Jij = Jji. This is true
for the couplings in magnets, but it is generally not true for synapses, so we
have to be cautious about what Jij means.

A few remarks: In physics, the normalizing denominator Z in (1) is called
the partition function, and its log is the negative of the free energy. We are
everywhere setting the temperature equal to 1, since changing the tempera-
ture just amounts to rescaling the Jijs and his by a constant factor.

Normally in statistical mechanics, one is given a model and its param-
eters, and the task is to find the moments ⟨Si⟩, ⟨SiSj⟩, etc., which are the
quantities that can be measured in experiments. But here we have an inverse

problem: we are given the measured correlation functions and want to find
the parameters of the model.

It has been known for some time how to solve this problem, at least in
principle. One should adjust the hi and Jij to maximize the probability (1),
evaluated on the data. Doing this by gradient ascent gives learning rules

δhi = η(⟨Si⟩data − ⟨Si⟩J,h), (2)

δJij = η(⟨SiSj⟩data − ⟨SiSj⟩J,h). (3)

The averages in the second terms are under the model with the current
values of the Jij and hi, and η is a learning rate, to be chosen small enough
to get smooth convergence. To evaluate them exactly, we have to know the
probabilities (1), which requires evaluating the partition function Z. To do
this exactly one has to sum 2N terms, which is feasible for systems up to
N ≈ 20. For larger N one has to estimate the averages by Monte Carlo
simulations of the model. This fact makes the learning slow, especially when
working with data from long recordings. One wants the estimates of the
model averages to be as good as the direct data averages in the first terms,
so the length of each Monte Carlo run has to be about equal to the number
of time bins in the data set. It may take many iterations to reach stationary
values of the Jij and hi, so this can be a lot of computing. Just what limit this
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Mean-field approximations

• Naive mean-field

places on the size of systems that can usefully be studied this way depends
on patience and the computing resources available, but in our work we found
it impractical to try to work with N > 100.

These learning rules are a special case of what is called Boltzmann learn-
ing (Ackley et al, 1985), which also covers systems with “hidden”, i.e., un-
recorded units. In this case, the first terms on the right-hand sides of (2)
and (3), when evaluated for hidden units, are averages over the model with
the visible units clamped to their measured values. This requires even more
Monte Carlo runs.

2.1 Mean-field methods

It is possible to avoid long Monte Carlo runs using mean field methods.
Two such methods have been proposed. One is based on heuristic mean-field
equations first applied to magnetic systems byWeiss more than a century ago.
The other is based on improved equations first proposed by Onsager. They
were applied to spin glasses by Thouless, Anderson and Palmer (Thouless et
al, 1977), so nowadays in statistical mechanics they are called TAP equations.

Both the original mean-field and TAP equations are approximate partial
solutions to the forward problem, i.e., calculating the magnetizations mi.
From them, we will derive corresponding solutions to the inverse problem.
These solutions are approximate, but become very good in the limits of weak
coupling or, for dense connections, large N .

The idea of mean field theory is very simple. The exact mi, conditional
on a set of Sj connected to i by the coupling matrix Jij, is the difference of
Boltzmann probabilities

p(Si = 1|{Sj})− p(Si = −1|{Sj}) =
ehi+

∑

j
JijSj − e−hi−

∑

j
JijSj

ehi+
∑

j
JijSj + e−hi−

∑

j
JijSj

= tanh

⎛

⎝hi +
∑

j

JijSj

⎞

⎠ . (4)

The approximation consists of replacing the Sj inside the tanh by their av-
erages mi:

mi = tanh

⎛

⎝hi +
∑

j

Jijmj

⎞

⎠ . (5)

This is apparently a good approximation when the sum on j has many terms
(a loose kind of central-limit argument). This is called the mean field limit.
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Onsager argued that the contribution to the neighbor magnetizations mj

from the central unit Si itself should not be counted in estimating the field
acting on Si. This leads to corrected mean-field equations,

mi = tanh

⎡

⎣hi +
∑

j

Jijmj −mi

∑

j

J2
ij(1−m2

j )

⎤

⎦ . (6)

TAP showed that these equations, rather than (5), should be used in spin
glasses, where the Jij are random, with a zero or very small mean, because
then the Onsager correction term is of the same order as the naive mean
field. In this sense, these equations are the correct mean field equations for
spin glasses. It has become conventional to call them “TAP equations”. We
will use the abbreviation “nMF” for the naive mean field equations (5).

Plefka showed that (5) and (6) are the first two in a sequence of better
and better approximations that can be derived systematically (Plefka, 1982),
but we will only consider these first two here.

It is convenient to write the TAP equations in the form

hi = tanh−1mi −
∑

j

Jijmj +mi

∑

j

J2
ij(1−m2

j ) (7)

The matrix

χ−1
ij =

∂hi

∂mj

=
δij

1−m2
i

− Jij − 2J2
ijmimj (8)

is the inverse susceptibility matrix. In equilibrium statistical mechanics there
is a theorem that the susceptibility matrix is (up to a factor of the temper-
ature, which we are setting equal to 1) equal to the correlation matrix

Cij = ⟨(Si −mi)(Sj −mj)⟩ (9)

Thus, if we know the correlation matrix, we simply need to invert it and
solve (for i ̸= j)

(C−1)ij = −Jij − 2J2
ijmimj (10)

for Jij (Kappen and Rodriguez, 1998; Tanaka, 1998; Roudi et al, 2009). This
is the TAP algorithm. There are n(n−1)/2 quadratic equations to be solved,
but they are decoupled. For the original, “naive” mean field approximation,
it is even simpler: The last term on the right hand side of (10) is absent, and
we just have Jij = −(C−1)ij.
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Not bad for weakly interacting systems

Jij = �(C�1)ij



Kinetic Ising model 

• Limits of the Gibbs equilibrium measure:
-> configurations at close-by times are correlated
-> non symmetric interactions
-> non stationary regimes

• Kinetic Ising model is based on a stochastic dynamics 
where configuration              depends on 

Hertz, Roudi and Tyrcha in "Principle of Neural Coding" 2013

S(t)S(t+ 1)

3 Kinetic Ising Models

The Ising model as described so far has no dynamics. It is defined solely
by the Gibbs equilibrium distribution (1). Since the system we are trying
to understand is a noisy dynamical one, we would like to fit its data – the
spike trains – by a stochastic dynamical model. And the Ising model can
be given a dynamics in a natural way, as follows (Glauber, 1963). At each
time, every neuron has a chance ∝ dt of being updated in the infinitesimal
interval [t, t + dt) (i.e., neuron updates are independent Poisson processes).
For a neuron that is updated, we compute the total “field”

Hi(t) = hi(t) +
∑

j

JijSj(t). (11)

(We can allow the external field hi to depend on time.) We then let Si take
its next value Si(t +∆t) according to the probability

P (Si(t+∆t)|{Sj(t)}) =
exp[Si(t +∆t)Hi(t)]

2 coshHi(t)
= 1

2 [1− Si(t+∆t) tanhHi(t)].

(12)
It is then possible to show that if hi is independent of t and the matrix J is
symmetric, this model has a stationary distribution given by (1).

Since we would like to identify the Jij with synaptic strengths, which are
not symmetric, we relax the symmetry condition. Furthermore, here we will
update all the neurons simultaneously instead of randomly asynchronous,
because it makes the model easier to apply to time-binned data, such as we
are assuming we have here. (We set ∆t = 1 from now on.) With either of
these changes, the Gibbs equilibrium distribution (1) is no longer a stationary
solution of the dynamics, even if the hi are time-independent. In the case
that they are and J is symmetric, there is a stationary distribution,

P [S] =

∏

i[2 cosh(
∑

j JijSj + hi)]
∑

{σ}
∏

i[2 cosh(
∑

j Jijσj + hi)]
(13)

(Peretto, 1984). When the hi are time-independent and J is not symmet-
ric, a stationary distribution may still exist, but it cannot be written down
in closed from. Since such a state is not described by the Gibbs equilib-
rium distribution (1), we call it a non-equilibrium state, even though it is
stationary.

7

P [Si(t+ 1)|S(t)] = exp[Si(t+ 1)Hi(t)]

2 coshHi(t)

may be non symmetricJij



Stationary case

• Fields are time-independent
Model parameters to be inferred:
Maximize the log-likelihood

by e.g. gradient ascent

Easier than equilibrium case: averages can be quickly 
evaluated from the data

N hi , N(N � 1) Jij

3.1 Stationary case: exact algorithm

For simplicity, we consider first the case where the hi are time-independent
and we assume a stationary distribution of the Si. If we are given a set of
spike trains in the form S = {Si(t)}, 1 ≤ i ≤ N , we can derive an algorithm
for finding the model parameters Jij and hi by performing gradient ascent
on the log-likelihood of the data under the model, which is

L[S, J,h] =
∑

it

[Si(t+ 1)Hi(t)− log 2 coshHi(t)], (14)

with Hi(t) given by (11). This gives learning rules

δhi = η [⟨Si(t+ 1)⟩t − ⟨tanhHi(t)⟩t] (15)

δJij = η
[

⟨Si(t+ 1)Sj(t)⟩t − ⟨tanhHi(t)Sj(t)⟩t
]

(16)

(Roudi and Hertz, 2011a). Equations (15) and (16) have a form analogous
to (2) and (3) for the equilibrium case: the right hand sides are differences
between averages over the data and averages under the current model. How-
ever, here the latter can be evaluated directly and quickly from the data, so
this algorithm is generally much faster than the equilibrium one.

It is practical in implementing this algorithm to express the neuronal
firing variables in terms of the differences δSi(t) = Si(t) − mi, with mi =
⟨Si(t)⟩t and to write Hi(t) in the form

Hi(t) = bi +
∑

j

JijδSj(t) (17)

with
bi = hi +

∑

j

Jijmj . (18)

Then we have

δbi = η [mi − ⟨tanhHi(t)⟩t] (19)

δJij = η
{

Dij − ⟨[tanhHi(t)−mi] δSj(t)⟩t
}

, (20)

with
Dij = ⟨δSi(t+ 1)δSj(t)⟩, (21)

the one-step-delayed correlation matrix. The factor in brackets in the time
average in (20) can be recognized as the expectation value of δSi(t + 1),

8

L =

X

it

Si(t+ 1)Hi(t)� log 2 coshHi(t)



Naive MF approx. for KIM

• Assume averages satisfy naive MF equation

Study fluctuations around mean values

mi = tanh
⇣
hi +

X

j

Jijmj

⌘

Si = mi + �Si

hSi(t+ 1)Sj(t)it = htanhHi(t)Sj(t)i

h�Si(t+ 1)�Sj(t)it = (1�m2
i )

X

k

Jikh�Sk(t)�Sj(t)i
=)



Naive MF approx. for KIM

• Assume averages satisfy naive MF equation

Study fluctuations around mean values

mi = tanh
⇣
hi +

X

j

Jijmj

⌘

Si = mi + �Si

hSi(t+ 1)Sj(t)it = htanhHi(t)Sj(t)i

h�Si(t+ 1)�Sj(t)it = (1�m2
i )

X

k

Jikh�Sk(t)�Sj(t)i
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MF approx. for KIM

• Naive MF

• TAP

• Exact for fully asymmetric SK model

J = A�1 D C�1

Dij = h�Si(t+ 1)�Sj(t)it
Cij = h�Si(t)�Sj(t)it

Aij = ai �ij

hi = tanh�1 mi �
P

j Jijmj

ai = 1�m2
i

ai = (1�m2
i ) [1� (1�m2

i )�i]

ai =

Z
Dx


1� tanh2

⇣
hi +

X

j

Jijmj + x�i

⌘�

�i =
X

j

J2
ij(1�m2

j )



Simulated neural networks

• There are many, with very different complexity levels

• We have used Leaky Integrate and Fire (LIF) dynamics

• If                     neuron fires and potential is reset

• Two populations of neurons:
- internal sparsely connected with parameters
- external sustaining the network activity
  Poisson process with parameters 

⌧m
dV (t)

dt
= �V (t) +RI(t)

V >✓ (✓ = 1)

{Jij , �ij}

J
ext

, ⌫
ext

P[I
ext

= kJ
ext

; dt] =
(⌫

ext

dt)k

k!
e�⌫

ext

dt

⌧m = 20ms



Simulated neural networks

• The incoming current on neuron    is

  induced by the firing                  interaction delay
of neuron

                                    instantaneous spike

• Interaction delay is an effective delay.
More realistic models have non-zero synaptic integration 
times ranging between 1 ms and 100 ms

I
i

(t) = I
ext

+
NX

j=1

J
ij

X

k

�[t� (tfire
j,k

+ �
ij

)]

�Vi

i

j



Simulated neural networks

• Sparse topology
typically only 10% of interactions are present 

• Excitatory synapses
Inhibitory synapses

• Event-driven numerical simulation
(no time discretization)

Jij > 0

Jij < 0

Jij 6= 0



The choice of the binning time dt

• Simulation outcome: firing times for each neuron

• Free to choose the binning time      as long as the 
probability of having two spikes in the same time bin is 
negligible

• The choice affects correlations

and coupling estimates through

{tfirei,k }

dt

D = h�Si(t+ dt)�Sj(t)it

J = A�1 D C�1



−0.3 −0.2 −0.1 0 0.1
0

50

100

150

200

JInf

N

dt = 1ms

 

 

uncoupled
coupled

−0.2 0 0.2 0.4 0.6
0

50

100

150

200

250

JInf

N

dt = 10ms

 

 

uncoupled
coupled

−0.4 −0.2 0 0.2 0.4 0.6
0

50

100

150

200

JInf

N

dt = 3ms

 

 

uncoupled
coupled

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

TN/N

T P/P

 

 

dt = 1ms
dt = 3ms
dt = 10ms

N = 50, J
ext

= 0.05, ⌫
ext

= 1ms�1, J
ij

= 0.05, �
ij

= 3ms



N = 50, J
ext

= 0.05, ⌫
ext

= 1ms�1, J
ij

= 0.05, �
ij

2 [1, 20]ms

−0.5 0 0.5 1
0

50

100

150

200

JInf

N

dt = 1ms

 

 

uncoupled
coupled

−0.4 −0.2 0 0.2 0.4 0.6
0

50

100

150

200

JInf

N

dt = 3ms

 

 

uncoupled
coupled

−0.4 −0.2 0 0.2 0.4
0

50

100

150

200

250

JInf

N

dt = 10ms

 

 

uncoupled
coupled

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

TN/N

T P/P

 

 

dt = 1ms
dt = 3ms
dt = 10ms



Couplings of wrong sign ?!
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Couplings of wrong sign ?!
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• Stochastic dynamics as in KIM

but with delays

• Maximize the log-likelihood

with respect to couplings and delays

KIM with time delays

L =

X

it

Si(t+ 1)Hi(t)� log 2 coshHi(t)

Hi(t) = hi(t) +
X

j

JijSj(t+ 1� �ij)

P [Si(t+ 1)|S(t)] = exp[Si(t+ 1)Hi(t)]

2 coshHi(t)



KIM with time delays

@L
@Jij

= 0 =) Dij(�ij) = (1�m2
i )

X

k

JikM
(i)
kj

Dij(�t) = h�Si(t+�t) �Sj(t)it

M (i)
kj =

8
>>>><

>>>>:

Dkj(�ij � �ik) if �ik < �ij

Djk(�ik � �ij) if �ik > �ij

Ckj = Cjk if �ik = �ij

Jij =
1

1�m2
i

X

k

Dik(M
(i))�1

kj

But finding the right delays by                  it is not easy@L
@�ij

= 0
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Inference by the KIMTD
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Inferred vs. true couplings

• Inferred values for excitatory and inhibitory synaptic 
efficacies/couplings are different

• Excitatory synapses induce extra spikes
-> can be inferred from correlations between spikes

• Inhibitory synapses can only retard spikes
-> must be inferred from lack of spikes

• The 2 processes are not symmetric!



• Stationary state:           pdf of the potential

• Excitatory synapsis

• In a finite time window also the external current can help

to linear order in

Inferred vs. true couplings

p(v)

P(spike, dt = 0) =

Z ✓

✓�J
p(v)dv =

Z ✓

✓�J
p0(✓)(v � ✓)dv / J2

Diffusion with adsorbing wall at v = ✓

P(spike, dt) / J2 + J J
ext

⌫
ext

dt

dt



Inferred vs. true couplings

• Inhibitory synapsis: You need to have a chance to fire to 
measure the lack of a spike!
-> the signal is proportional to

• Since                                     then

dt
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due to the leaky dynamics of V (Eq 5):442

hSi|Sj = 1i = 1

dt

Z dt

0

d✏
h
⌫i ✏+ (25)

1X

k�0

Poisson[k|⌫ext (dt� ✏)] h
Z ✓

✓�k J
ext

�J
ij

�µ0 t̃
k

(dt�✏)

p(v, t) dvit̃
k

i
'

' ⌫i dt

2
+

1

dt

Z dt

0

d✏
h2 ⌫i
�2

Poisson[0|⌫ext (dt� ✏)]

Z J
ij

0

x dx+

+ Poisson[1|⌫ext (dt� ✏)]
2 ⌫i
�2

h
Z J

ij

+J
ext

+µ0 t̃1 (dt�✏)

0

x dxit̃1
i

where, in the second passage, with made use of Eq. 24 to approximate p(V, t) close to443

the threshold ✓, and neglected the Poisson terms for k > 1, that are order dt2 or higher;444

µ0 is a constant approximation of the leakage term in the V dynamics (Eq. 5) close to445

the threshold, and 0  t̃k  1 is a random number representing the time of arrival of the446

k-th external spike in a time window (given that exactly k external spikes are due in the447

time window); it is easy to show that ht̃ki = k
k+1 . Combining this expression with Eq. 22448

and keeping only the leading terms in dt (averaging over t̃1 has influence at order dt2 or449

higher), we have:450

J infer
ij ' 1

⌫ext dt

J2
ij

J2
ext

+O(1) if Jij > 0 (26)

Thus, for Jij > 0, the value of the inferred synaptic e�cacy J infer
ij depends quadratically451

on the real value Jij, and critically on the dt (J infer ⇠ 1/dt); this latter dependence452

derives from the fact that the contribution to hSi|Sj = 1i from the spike of pre-synaptic453

neuron j is order 1 (Poisson[0|⌫ext dt] ' 1 for dt ! 0), whereas at the same time, in454

Eq. 22, the denominator vanishes with dt (mi (1�mi) ' ⌫i dt).455

When Jij < 0, the only chance for neuron i after the arrival of a spike from neuron j456

to fire in dt � ✏ is exclusively given by the probability that one or more external spikes457

will compensate for the sudden negative jump Jij, making Vi pass the threshold ✓:458

hSi|Sj = 1i = 1

dt

Z dt

0

d✏
h
⌫i ✏+ (27)

1X

k�1

Poisson(k|⌫ext (dt� ✏)) h
Z ✓

✓�k J
ext

+|J
ij

|�µ0 t̃
k

(dt�✏)

p(v, t) dvit̃
k

i

It is important to note that, if |Jij| > Jext, the term with k = 1 will vanish (a single459

external spike won’t su�ce in compensating for the negative jump Jij and thus making460

neuron i fire); if |Jij| > 2 Jext, the second term too will disappear (not even two external461

spikes will be enough) and so on.462
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Now let’s assume that |Jij| < Jext, so that all the terms in the sum are non-zero and463

the sum will be dominated, for small dt, by the first term only; then, following a closely464

related line of reasoning as above for Jij > 0, we have:465

J infer
ij ' 1

J2
ext

(Jext Jij +
J2
ij

2
) +O(dt) if � Jext  Jij < 0 (28)

Under the hypothesis |Jij| < Jext, then, the dependence of the inferred synaptic e�cacy466

on the real one is again quadratic, as for the Jij > 0 case, but its leading term does not467

depend on dt.468

If we assume, instead, Jext < |Jij|  2 Jext, the sum in Eq. 27 will be dominated by469

the term k = 2, since the first term vanishes, and thus we get:470

J infer
ij ' �1

2
+O(dt) if � 2 Jext  Jij < �Jext (29)

Basically then, for |Jij| > Jext, the inferred J will be largely independent of the true value471

of Jij. This result can be intuitively understood by examining the extreme case Jij ! �1;472

in this case, the only surviving contribution to the probability of firing during dt (given473

the arrival of the inhibitory spike from j), is the baseline probability ⌫i ✏ before the large,474

negative jump Jij in Vi; such term, integrated over a uniform distribution becomes ⌫i dt/2,475

which inserted into Eq. 22 gives J infer
ij ' �1/2. Eq. 29 then shows that, for dt ! 0, the476

limit case’s behavior of J infer is essentially attained already for Jij  �Jext.477
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Inferred vs. true couplings
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Bursting neural network
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• 100 populations of 10 neurons each
sparse and heterogenous connectivity, P(J) are broad

• delays

• simulates short-term depression

Bursting neural network

�ij 2 [0.1, 15]ms

0 0.05 0.1 0.15
0

100

200

300

400

500

600

700

c

N



Bursting neural network
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• Non-stationary, non-periodic, non-homogeneous

• We focus on the most active 50 neurons and try to infer 
model parameters by KIMTD



Bursting neural network

• Inference by KIMTD (preliminary results)
measuring time 11 hours (dt = 1 ms, ~4e7 bins)
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Bursting neural network

• Data filtering: using only 2 hours (1/5 than before) 
from the quiescent regimes



A more realistic neural network 

• Synaptic transmission is not instantaneous
Synaptic channels have their own dynamics with closing 
timescales between 1 and 100 ms
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A more realistic neural network 

• Fully connected topology

• 4 populations of neurons

• 10 different kind of synapsis, both excitatory and 
inhibitory

• No synaptic delay, but synaptic integration times 
between 1 and 100 ms

• Preliminary results...



A more realistic neural network 
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• Coupling inferred by standard KIM (dt = 2 ms)
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KIM with memory

• Non-instantaneous synaptic transmission implies
may depend on                 at several previous times

• Memory term to keep effectively interactions taking 
places at several time differences

• Easy to compute (running averages)

• Mean values are unchanged

Si(t)

Sj(t��t)

bSj(t) /
X

�t

Sj(t��t)e��t/⌧

hbSi(t)it = hSi(t)it



KIM with memory

• Maximize

with

L =

X

it

Si(t+ 1)Hi(t)� log 2 coshHi(t)

Hi(t) = hi(t) +
X

j

Jij bSj(t)

@L
@Jij

= 0 =) J = A�1 bD bC�1

bCij = h� bSi(t) � bSj(t)it

bDij = h�Si(t+ 1) � bSj(t)it
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• Couplings inferred by KIM with memory, 
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A more realistic neural network 

⌧ = 5ms



Conclusions

• Simple MF approximations for solving the Kinetic inverse 
Ising problem seems to work also on “realistic” neural 
networks, if complemented with
-> time delays
-> finite integration times
-> filtering out a quasi-stationary regime

• Choosing the right time binning is mandatory, otherwise 
inferred coupling may even have the wrong sign!

• Relation between true and inferred couplings is 
asymmetric and depends on the time binning
-> a too small time-bin does not allow the separation of 
negative and zero couplings


