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Motivations

Big data from biology -> interesting inference problems

Not only "data fitting”, but "data modeling"
-> choice of the right interaction terms
-> explanation for the collective behavior

Under-sampling
-> hidden variables
-> effective interactions

Statistical physics of complex systems can inspire us...
but we should make our models more realistic



Big data in neurophysiology

e Multi-recording arrays (up to 256 channels)
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An interesting inference problem

e Infer synaptic couplings from correlations of the
sampled neural activities

e Dataare discretized in bins of length dt

Neuron
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An interesting inference problem

e Infer synaptic couplings from correlations of the
sampled neural activities

e Dataare discretized in bins of length dt
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Maximum entropy solution

From data compute average values

<S7j>data <S7ij>data

Look for the most probable model (maximum entropy)
within a class of interacting models (e.g. pairwise)

1
17 1

A4
such that

<Sz'>J,h — <Si>data
<SiSj>J,h — <SiSj>data
Maximum entropy = minimum free-energy =
= maximum likelihood (with flat prior)



Why only pairwise interactions ?

Compute more averages, e.g.

<Ssz Sk>data

Enlarge the class of interacting models, e.g. adding
> JijkSiS; Sk
i,j,k
High order couplings turn out to be very small...
Maybe are important in some applications as high order

corrections, but pairwise interactions seem to be able to
reproduce most of the data



Finding optimal model parameters

Find coupling and fields {J,h} satisfying
<Sz'>J,h — <Sz'>data
<SiSj>J,h — <SiSj>data

Very well known problem (Boltzmann machine learning)
Learn parameters according to following rules

6hz — 77(<Si>data_<si>J,h)a
0Jij = n((S:5;)data — (S5i55) 1)

Exact computation is exponentially slow

Even Monte Carlo is not very useful
(one MC run for each learning step)



Mean-field approximations

e Naive mean-field m,; = tanh (hz + Z Jz’jmj)

J

hi = tanh_l m; — Z Jijmj
J

Not bad for weakly interacting systems



Kinetic Ising model

Hertz, Roudi and Tyrcha in "Principle of Neural Coding" 2013

Limits of the Gibbs equilibrium measure:

-> configurations at close-by times are correlated
-> hon symmetric interactions

-> nhon stationary regimes

Kinetic Ising model is based on a stochastic dynamics
where configuration S(t + 1) depends on S(t)
exp|S;(t + 1)H; (1))

2 cosh H,(t)

H;(t) = hi(t) + Z Ji;S;(t)

P[Si(t +1)[S(1)] =

Ji; may be non symmetric



Stationary case

Fields are time-independent
Model parameters to be inferred: N h; , N(N —1) J;;
Maximize the log-likelihood

L= Z Si(t+ 1)H;(t) — log 2 cosh H;(t)
it

by e.g. gradient ascent

Oh; = n[(Si(t + 1)) — (tanh Hy(t)),]
5.Jij = n[(Sit+1)8;(t)), — (tanh Hi(t)S;(¢)),

Easier than equilibrium case: averages can be quickly
evaluated from the data



Naive MF approx. for KIM

e Assume averages satisfy naive MF equation
m; = tanh (hz —+ Z Jijmj)
j
Study fluctuations around mean values S; = m; + §.5;

(Si(t +1)5;(t))¢ = (tanh H;(¢)S;(t))

|

(6S:(t+1)6S;(t))e = (1 —m7) Y Jin(6Sk(£)0S;(t))



Naive MF approx. for KIM

e Assume averages satisfy naive MF equation

m; = tanh (hz —+ Z Jijmj)
j
Study fluctuations around mean values S; = m; + §.5;

<Sz(t—|— 1)33(?5 = <taHhH@'(t)Sj(t)>

)
|

(8Si(t+1)3S;(1))e = (1 —m2) > Ju3Sk(t)dS;(t))

N



MF approx. for KIM

Aij = a; 04
J=A"1DC! Cij — <5SZ(t)5S](t)>t
= (05;(t +1)05;(t))+

hz' — tanh_l m; — Zj Jijmj

e Naive MF a;,=1—-—m?

1

e TAP a;=(1-m?)[1—(1—m?)A]

A; = Zﬁ 1—m

e Exact for fully asymmetric SK model

— /D$ {1 — tanh? (hz + Z J@'jmj + ZIBAZ)}
J



Simulated neural networks

There are many, with very different complexity levels

We have used Leaky Integrate and Fire (LIF) dynamics

Tm =—-V(t)+ RI(t) Tm = 20ms

If V>0 (6 =1)neuron fires and potential is reset

Two populations of neurons:
- internal sparsely connected with parameters {J;;,d;;}
- external sustaining the network activity

Poisson process with parameters J.;:, Vest

(Vextdt)k o Veardt

P[Iea:t — kJe:cty dt ] — Ll




Simulated neural networks

e The incoming current on neuron i is

N
Li(t) = Tews + ) Jig )0t — (45 +645)]
jl/ koA
AV; induced by the firing interaction delay
of neuron j

instantaneous spike

e Interaction delay is an effective delay.
More realistic models have non-zero synaptic integration
times ranging between 1 ms and 100 ms



Simulated neural networks

Sparse topology
typically only 10% of interactions are present J;; # 0

Excitatory synapses J;; > 0
Inhibitory synapses J;; <0

Event-driven numerical simulation
(no time discretization)



The choice of the binning time dt

fire

Simulation outcome: firing times for each neuron {t; "’

Free to choose the binning time dt as long as the
probability of having two spikes in the same time bin is
negligible

The choice affects correlations

D = (6S;(t +dt)5S,(t)),

and coupling estimates through

J=A"1tDC1



N =50, Jugt = 0.05, vegs = Lms™t, J;; = 0.05, @ij = 3msj
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Couplings of wrong sign ?!

0.3 . T T

0.25

0.2

0.15

o
a
T

|
o
—
T

~—. Couplings
; © 5 fms] " * inferred with
a wrong sign




Couplings of wrong sign ?!

dt =7Tms




KIM with time delays

Stochastic dynamics as in KIM

P[Si(t + 1)|S(1)] = GXP[QSS(()Z;I;%@-@)]

but with delays
H;(t) = hi(t ZJ@JS (t+1—d;;)

Maximize the Iog-llkellhood
L= ZS (t+1)H;(t) — log 2 cosh H;(t)

with respec’r To couplings and delays



KIM with time delays
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Looking for the time delays
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Inferred time delays
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Inferred vs. true couplings

Inferred values for excitatory and inhibitory synaptic
efficacies/couplings are different

Excitatory synapses induce extra spikes
-> can be inferred from correlations between spikes

Inhibitory synapses can only retard spikes
-> must be inferred from lack of spikes

The 2 processes are not symmetricl



Inferred vs. true couplings

Stationary state: p(v) pdf of the potential
Excitatory synapsis

P(spike, dt = 0) = /
6—J

Z 0
p(v)dv = /Q_Jp (0)(v—0)dv < J

!

Diffusion with adsorbing wall at v =6

In a finite time window also the external current can help

P(spike, dt) oc J? 4+ J Jegt Vegrdt

to linear order in dt



Inferred vs. true couplings

Inhibitory synapsis: You need to have a chance to fire to
measure the lack of a spikel

-> the signal is proportional to dt

Since J"/¢" & Plspike, dt]/dt then
1 J;

Jinder o 94 0(1) if Jy; >0
(] Ve dt ngt —|_ ( ) 1 J >
z'nfer 1 JZ2] .

. 1
ginfer —5 HO(dt) if =2t < Ty < — T

L]



Inferred vs. true couplings
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Inferred vs. true couplings
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Inferred vs. true couplings
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# population

v[HZ]

100F=
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Bursting neural network
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Bursting neural network

e 100 populations of 10 neurons each
sparse and heterogenous connectivity, P(J) are broad
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o delays 9;; € [0.1,15] ms

e simulates short-term depression



Bursting neural network
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 Non-stationary, non-periodic, non-homogeneous

e We focus on the most active 50 neurons and try to infer
model parameters by KIMTD



tlnf

Bursting neural network

e Inference by KIMTD (preliminary results)

measuring time 11 hours (dt = 1 ms, ~4e7 bins)
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Cinf
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Bursting neural network

e Data filtering: using only 2 hours (1/5 than before)
from the quiescent regimes
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A more realistic neural network

Synaptic transmission is not instantaneous

Synaptic channels have their own dynamics with closing
timescales between 1 and 100 ms

V(t) / s(t)

| | | |
0 5 10 15 20 25 30
time [ms]



A more realistic neural network

Fully connected topology
4 populations of neurons

10 different kind of synapsis, both excitatory and
inhibitory

No synaptic delay, but synaptic integration times
between 1 and 100 ms

Preliminary results...
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A more realistic neural network

Coupling inferred by standard KIM (dt = 2 ms)
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KIM with memory

Non-instantaneous synaptic transmission implies S;(%)
may depend on S;(t — At) at several previous times

Memory term to keep effectively interactions taking
places at several time differences

Si(t) o< Y Syt — At)e AT
At

Easy to compute (running averages)

Mean values are unchanged <§i(t)>t = (S;(t)):



KIM with memory

e Maximize £=> S;(t+ 1)H;(t)—log2cosh H(t)

with H;( ) + Z Ji;S;(t




A more realistic neural network

e Couplings inferred by KIM with memory, 7 = 5ms
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Conclusions

Simple MF approximations for solving the Kinetic inverse
Ising problem seems to work also on “realistic” neural
networks, if complemented with

-> time delays

-> finite integration times

-> filtering out a quasi-stationary regime

Choosing the right time binning is mandatory, otherwise
inferred coupling may even have the wrong sign!

Relation between true and inferred couplings is
asymmetric and depends on the time binning

-> a Yoo small time-bin does not allow the separation of
negative and zero couplings



