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Outline of the talk

• Bethe approx. for inverse Ising problem

• Comparison among several mean-field 
approximations (IP, nMF, TAP, SM, Bethe...)

• Correlations normalization trick

• Major limitation in using TAP and Bethe in 
frustrated models with a field

• New method: pseudo-likelihood + decimation 
(Aurelien DECELLE)



Inverse Ising problem

• M configurations of N Ising variables (             )
extracted from

[alternatively only magnetizations                  and
correlations                                     are given]

• GOAL: estimate couplings and fields 

si = ±1

mi = �si�
Cij = �sisj� −mimj

3

I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp




�

i �=j

Jijsisj +
�

i

hisi



 , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = �si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is

FnMF =
�

i

�
H

�
1 +mi

2

�
+H

�
1−mi

2

��
+

�

i

himi +
�

i �=j

Jijmimj , (3)

where H(x) ≡ −x ln(x) and the mi must be fixed according to the self-consistency equations

∂FnMF

∂mi
=

�

j

Jijmj + hi − atanh(mi) = 0 ⇒ mi = tanh



hi +
�

j

Jijmj



 . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations

FTAP =
�

i

�
H

�
1 +mi

2

�
+H

�
1−mi

2

��
+

+
�

i

himi +
�

i �=j

�
Jijmimj +

1

2
J
2
ij(1−m

2
i )(1−m

2
j )

�
, (5)

mi = tanh



hi +
�

j

Jij

�
mj − Jij(1−m

2
j )mi

�


 . (6)
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Solving inverse Ising pb.

Initial guess
for J(0),h(0)

Monte Carlo -> unbiased solution ...but it is slow!

Given J(t),h(t)
MC compute m(t),C(t)

Update J(t+1),h(t+1)
according to
dm(t)=m(t)-m
dC(t)=C(t)-C

dm<eps?
dC<eps?

Yes

No
Return

J(t),h(t)
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M
log
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P (s(k)|J ,h) =
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ij

Jij(Cij +mimj)− logZ(J ,h)
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Mean-field approximations 
(MFA) to the free-energy

• naive mean-field (nMF)
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MFA to the free-energy

• Bethe approximation (BA)

4

In the TAP approximation, when computing the marginal probability of spin si (i.e. its mag-

netization mi), the reaction term modifies the marginal probabilities of the neighboring spins,

mj → (mj − Ji,j(1 − m
2
j )mi), in order to try to remove the effect of the spin si under study. It

has been recognized [13, 14] that FnMF and FTAP are only the first two terms of the expansion

of F (J ,h) in small couplings J at fixed magnetizations m = {mi}. This expansion contains [14]

both loop terms, like JijJj�J�i, and terms with higher powers of a single coupling, i.e. Jk
ij : the

latter terms, that correspond to considering recursively the reaction to the reaction between spins

si and sj , can be resummed and lead to the BA.

The BA gives a description of the model in terms of magnetizations mi and connected correla-

tions cij = �sisj� −mimj between neighboring spins (i.e. spins connected by a non-zero coupling

Jij). The BA can be derived in two equivalent ways. The first way consists in finding values of m

and c minimizing the following free-energy

FBA =
�

i �=j

�
H

�
(1 +mi)(1 +mj) + cij

4

�
+H

�
(1−mi)(1−mj) + cij

4

�
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+ H
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4
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4
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i
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�
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�
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2

��
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�

i

himi +
�

i �=j

Jij(cij +mimj) , (7)

where di is the degree of spin si, i.e. the number of its neighboring spins. In Eq.(7) the last two

terms correspond to the average value of the energy at given magnetizations and neighbouring

correlations, while the first two terms correspond to the entropy of the Bethe approximation to the

joint probability distribution of the N spin variables,

P (s1, . . . , sN )
BA�

�

(ij)

pij(si, sj)

pi(si)pj(sj)

�

i

pi(si) , (8)

where the first product runs over all pair of neighboring spins and the two-spins and single-spin

marginal probabilities are given respectively by pij(si, sj) = [(1 +misi)(1 +mjsj) + cijsisj ]/4 and

pi(si) = (1 +misi)/2. The conditions ∂FBA/∂cij = 0 can be solved analytically and lead to

Jij =
1

4
ln





�
(1 +mi)(1 +mj) + cij

��
(1−mi)(1−mj) + cij

�

�
(1 +mi)(1−mj)− cij

��
(1−mi)(1 +mj)− cij

�



 , (9)

cij(mi,mj , tij) =
1

2tij

�
1 + t

2
ij −

�
(1− t

2
ij)

2 − 4tij(mi − tijmj)(mj − tijmi)
�
−mimj . (10)

where tij = tanh(Jij). Please note that Eq.(9) is identical to Eq.(26) in Ref. 16 and this is a

further confirmation that resumming all 2-spin terms in the Plefka expansion leads to the BA.
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                                               : magnetization of i
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5

Moreover Eq.(9) has been used in the literature [7, 27] as the independent-pair (IP) approximation

for inferring couplings from magnetizations and correlations: such an approximation infers the

coupling Jij by assuming spins si and sj form an isolated pair with magnetizations mi and mj and

correlation cij . Unfortunately under this IP approximation computing the external fields in not

immediate and moreover even the estimates of the couplings are rather poor (see Section V).

By making the substitution cij → cij(mi,mj , tij) in FBA one can obtain the Bethe free-energy

only in terms of magnetizations, from which the self-consistency equations for the magnetizations

can be derived. However this derivation requires a rather complicated algebra and I prefer to

obtain the same equations in a much simpler alternative way.

In the so-called Cavity Method [2] local magnetizations mi and neighbouring correlations cij

are expressed in terms of some auxiliary variables, the cavity magnetizations m(j)
i (i.e. the mean

value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m
(i)
j

1 +m(j)
i tij m

(i)
j

, (11)

mj =
tij m

(j)
i +m(i)

j

1 +m(j)
i tij m

(i)
j

, (12)

cij =
tij +m(j)

i m(i)
j

1 +m(j)
i tij m

(i)
j
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in Eq.(10). Finally, combining Eq.(11) and Eq.(14), it is possible to obtain the self consistency

equation for the magnetizations under the BA:

mi = tanh
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

 . (17)

It is fair to comment that the use of this formula for finding Bethe magnetizations is not a good

idea: indeed an iterative solution of Eq.(17) is typically more unstable than BP solving Eq.(14).

My interest in this formula is that it involves only physical magnetizations (not cavity ones) and

can be used to obtain correlations (see Section II) and to solve in a fast way the inverse Ising

problem (see Section V).

A series expansion of the exponent in Eq.(17) for small couplings gives

hi +
�

j

atanh

�
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�

j

�
Jijmj − J2

ij(1−m2
j )mi + . . .

�
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and one recognizes that the first two terms of the expansion are the naive MF approximation and

the Onsager reaction term. This expansion should make clearer that the BA is a way of considering

recursively all the reactions between a pair of neighboring variables.

II. COMPUTING CORRELATIONS BY LINEAR RESPONSE

A preliminary step to solve the inverse Ising problem by any MFA is to derive an analytical

expression for the pairwise correlations as a function of the coupling constants. Actually, the MFA

discussed in Section I do not provide information about the correlation between distant variables:

indeed, naive MF and TAP approximations give cij = 0 for any pair of variables, and the BA only

provides an expression for correlation between neighboring spins, see Eq.(10), which is trivially

cij = tij in case of null magnetizations.

Nonetheless, a closed set of equations for the connected correlations1, Cij ≡ �sisj�− �si��sj� for

any pair i, j, can be derived from the magnetizations self-consistency equations, Eqs.(4), (6), (17),

through the linear response [8, 12]

Cij =
∂mi

∂hj
, (C−1

)ij =
∂hi
∂mj

. (19)

1 Please do not confuse the correlation Cij with the parameter cij appearing in the BA: the two coincide only when
the BA is exact.
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by linear response

• Correlations are trivial in MFA
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• Non trivial correlations can be obtained by using 
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The inverse correlation matrices C−1 for the three MFA discussed above are given by the following

expressions:

naive MF (C−1
nMF)ij =

δij
1−m2

i

− Jij , (20)

TAP (C−1
TAP)ij =

�
1

1−m2
i

+
�

k

J2
ik(1−m2

k)

�
δij −

�
Jij + 2J2

ijmimj
�
, (21)

Bethe (C−1
BA)ij =

�
1

1−m2
i

−
�

k

tikf2(mk,mi, tik)

1− t2ikf(mk,mi, tik)2

�
δij −

tijf1(mj ,mi, tij)

1− t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m1 and f2(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) suffers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where
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FIG. 1: Error made by 5 mean-field approximations in estimating the correlation matrix, given the couplings.

Shown are typical samples of size N = 52 (the qualitative behavior does not change for larger sizes).

The discrepancy between true correlations C and those inferred C � is defined as

∆C ≡
�

1

N2

�

i,j

(Cij − C �
ij)

2 . (28)

In Figure 1 and 2 I report the typical behavior of the error ∆C between exact and estimated

correlation matrices for 5 different MFA. Figure 1 shows results for models defined on a 2D square

lattice, while Figure 2 refers to FC and 3D topologies. In order to compare the MFA estimates

with the exact correlation matrices I am studying here small systems, but the qualitative behavior

does not change for larger sizes.

Although the quantitative behavior of ∆C depends on the specific sample, some general state-

ments can be made:

• naive MF is typically the worst MFA and shows many spurious singularities (roughly one

for each peak in ∆C);

• TAP and 4th order approximations typically show no (or very rare) singularities;

• the best estimate is typically provided by BA and TAP, with BA being the best unless it

has a singularity (in this case TAP becomes the best at lower temperatures, higher β).
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III. IMPROVING INFERENCE ALGORITHMS

Expressions in Eqs.(23-27) are intrinsically approximated, and turn out to be correct only

in some particular cases. Naive MF and TAP approximations (as well as 3rd and 4th orders

approximations), being the first orders in a small couplings expansion, are exact only in the limit

of very weak couplings (either high temperature or fully-connected models in the large N limit).

The BA, on the contrary, is exact also for coupling intensities O(1), but only if the interacting

network is a tree; on random graph models (which are locally tree-like) the BA turns out to be

correct as long as the model has only one state (modulo the known symmetries). On any other

model those expressions are approximated and it is worth trying to improve it.

Let me first notice that any of the above MFA returns in general a value for the self-correlation

differing from the exact one, i.e. Cii �= 1 (for simplicity I consider the case of null magnetizations,

but the argument is general). This fact can be easily explained, noticing that all the above MFA

assume that correlations along loops are vanishingly small (at least in the large N limit). On the

contrary, on any loopy graph, like e.g. regular lattices, correlations along loops are important and

may alter significantly the mean-field estimates. A general solution to this problem is still not

available, although many work is in progress to include loop contributions to MFA [21–25].

What I am proposing here is a simple heuristic improvement. Once the correlation matrix Cij is

computed by one of the approximations described in Section II, a properly normalized correlation

matrix can be defined

�Cij ≡
Cij�
CiiCjj

. (29)

By definition �Cii = 1 and also off-diagonal element may approximate better the true correlations.

The reason for this is that the loops neglected in MFA actually modify in a similar way both

self-correlations Cii and off-diagonal correlations Cij , and the heuristic normalization in Eq.(29) is

assuming that the modifying factor only depends on the loop structure around sites i and j (which

is certainly wrong for distant sites, but may be a reasonable approximation for closed-by sites).

In Figure 3 full points show that the error ∆C in the BA decreases by roughly one order of

magnitude if normalized correlations are used. On the contrary, the TAP result is not very sensitive

to this normalization: the reason is that the estimates of the self-correlations in TAP remain quite

close to the right value, specially if compared to BA estimates that diverge at the singularity

(mark by a peak in Figure 3). On the right of such a peak the error obtained by the normalized

BA is not reported because Eq.(29) can not be used, since several BA estimates for self-correlations

BP for SG on a 2D lattice

pure ferro

J.S
tat.M

ech.
(2011)

P
12007

Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe ! 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe ! 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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FIG. 3: Same as in Figure 1 for a typical sample of the 2D diluted ferromagnet of size N = 52. The error

∆C has been computed with respect to the exact correlation matrix and with respect to the one measured

in MC simulations. Full points show the error obtained with the normalization trick.

are negative. This is the problem of the BA fixed point becoming (strongly) unphysical, already

discussed in Section II: indeed by running SuscProp on this sample one would observe convergence

only for β smaller than the peak location. I would like to stress again that checking the physical

consistency of a solution based on a MFA is very important: for the sample shown in Figure 3,

even without knowing the exact correlations, one should switch from the BA to TAP, when the

former reaches the singularity (that manifests e.g. in SuscProp not converging or in self-correlations

diverging)2.

Moreover there are cases (e.g. homogeneous FC models) where the spurious singularity induced

by the MFA in a system of finite size is such that Cii and Cij diverge with the same law at the

spurious critical point, while the normalized correlation �Cij stays finite (and much closer to the true

one). For example for the FC ferromagnetic model the normalized correlation �CMFA estimates the

true correlation with an error roughly half than the one of CMFA for any of the 5 MFA considered

here.

2
Actually for a ferromagnet one knows how to break the up-down symmetry and let BP converge even at low

temperatures: once BP returns non-zero magnetizations mi, the correlation matrix can be computed by mean of

Eq.(22). However in the general case, BP does not converge in presence of long range correlations, i.e. after the

singularity, and one must resort to other MFA.
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The inverse correlation matrices C−1 for the three MFA discussed above are given by the following

expressions:

naive MF (C−1
nMF)ij =

δij
1−m2

i

− Jij , (20)

TAP (C−1
TAP)ij =

�
1

1−m2
i

+
�

k

J2
ik(1−m2

k)

�
δij −

�
Jij + 2J2

ijmimj
�
, (21)

Bethe (C−1
BA)ij =

�
1

1−m2
i

−
�

k

tikf2(mk,mi, tik)

1− t2ikf(mk,mi, tik)2

�
δij −

tijf1(mj ,mi, tij)

1− t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m1 and f2(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) suffers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where
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the probability measure force magnetizations to be zero, or in the inverse Ising problem, where

JnMF
ij = −(C−1)ij=⇒
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expressions:
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− Jij , (20)
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where f1(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m1 and f2(m1,m2, t) ≡ ∂f(m1,m2, t)/∂m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) suffers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where

JnMF
ij = −(C−1)ij=⇒
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Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,

because are those performing better in the direct problem of estimating correlations (see Section II).
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The fourth approximation I am considering has been obtained from a small correlation expansion

by Sessak and Monasson [16] and has been further simplified in Ref. 27 to the following expression
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. (36)

I study both diluted ferromagnetic model with a fraction p of non-zero couplings (Jij = β) and

undiluted spin glass models (Jij = ±β with probability 1/2). I also consider several topologies: 2D
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I consider 4 different approximations for solving the inverse Ising problem. The simplest one

is the independent-pair (IP) approximation, already discussed in Section I and recalled here for

convenience

J IP
ij =

1

4
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
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Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,

because are those performing better in the direct problem of estimating correlations (see Section II).

The corresponding expressions for the inferred couplings can be obtained by solving the equation

2mimjJ
2
ij + Jij + (C−1)ij = 0 ∀(i �= j) (31)

for TAP and the equation

(C−1)ij =
−tijf1(mj ,mi, tij)

1− t2ijf(mj ,mi, tij)2
=
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(1− t2ij)
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for the BA, thus leading to
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, (33)
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The fourth approximation I am considering has been obtained from a small correlation expansion

by Sessak and Monasson [16] and has been further simplified in Ref. 27 to the following expression

JSM
ij = −(C−1)ij + J IP

ij − Cij

(1−m2
i )(1−m2

j )− (Cij)2
. (35)

For each approximation, I measure the error in inferred couplings J �
ij with respect to the true

ones Jij by the following expression

∆J =

��
i<j(J

�
ij − Jij)2�

i<j J
2
ij

. (36)

I study both diluted ferromagnetic model with a fraction p of non-zero couplings (Jij = β) and

undiluted spin glass models (Jij = ±β with probability 1/2). I also consider several topologies: 2D

⇓
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. (35)

For each approximation, I measure the error in inferred couplings J �
ij with respect to the true

ones Jij by the following expression

∆J =

��
i<j(J

�
ij − Jij)2�

i<j J
2
ij

. (36)

I study both diluted ferromagnetic model with a fraction p of non-zero couplings (Jij = β) and

undiluted spin glass models (Jij = ±β with probability 1/2). I also consider several topologies: 2D
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Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,
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undiluted spin glass models (Jij = ±β with probability 1/2). I also consider several topologies: 2D
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Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,
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Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,

because are those performing better in the direct problem of estimating correlations (see Section II).

The corresponding expressions for the inferred couplings can be obtained by solving the equation
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The fourth approximation I am considering has been obtained from a small correlation expansion
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I study both diluted ferromagnetic model with a fraction p of non-zero couplings (Jij = β) and

undiluted spin glass models (Jij = ±β with probability 1/2). I also consider several topologies: 2D
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Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,

because are those performing better in the direct problem of estimating correlations (see Section II).
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�
. (34)

The fourth approximation I am considering has been obtained from a small correlation expansion

by Sessak and Monasson [16] and has been further simplified in Ref. 27 to the following expression

JSM
ij = −(C−1)ij + J IP

ij − Cij

(1−m2
i )(1−m2

j )− (Cij)2
. (35)

For each approximation, I measure the error in inferred couplings J �
ij with respect to the true

ones Jij by the following expression

∆J =

��
i<j(J

�
ij − Jij)2�

i<j J
2
ij

. (36)

I study both diluted ferromagnetic model with a fraction p of non-zero couplings (Jij = β) and

undiluted spin glass models (Jij = ±β with probability 1/2). I also consider several topologies: 2D
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FIG. 5: Errors in the couplings inferred by several approximations. The model is a ferromagnet on a random

regular graph of fixed degree 4. Shown are two typical samples of sizes N = 20 (left) and N = 100 (right).

The vertical dotted lines mark the locus of the ferromagnetic phase transition in the thermodynamic limit.

I think that comparing inference methods by using the exact correlation matrix is rather un-

realistic, given that in any practical application the correlations are always known with some

uncertainty. So in presenting below the numerical results I always consider the case with M = 106

independent measurements for the magnetizations and the correlations.

In Figure 5 I am showing the error in the couplings inferred by several approximation for a

ferromagnet on a random regular graph with fixed degree c = 4. The two panels correspond to

sizes N = 20 (left) and N = 100 (right) and show that the qualitative behavior is mostly size
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The vertical dotted lines mark the loci of the ferromagnetic phase transitions in the thermodynamic limit.

independent. Also the dependence on the specific sample (i.e., on the random graph) is rather

weak. The data in Figure 5 support many of the statements written above: (i) IP is a very bad

approximation even in the low β regime; (ii) BA always outperforms TAP; (iii) SM is better than

BA only in the low β regime, but here the error is dominated by the uncertainty in the correlation

and increases with the system size, so the improvement of SM over BA is tiny; (iv) errors in TAP

and SM diverge for large β, while those in IP and BA remains finite, although very large; (v) the

normalization trick works nicely and gives actually the best result in a wide range of temperatures.

The data for TAP with the normalization trick (label “TAP norm”) are interrupted because at

large β the iterative procedure I am using for finding the parameters {λi} stops converging.

The same qualitative conclusions can be reached by studying a diluted ferromagnet on a 2D

square lattice for several different dilutions (see Figure 6). In particular the relative quality of the

approximations seems to be independent on the dilution, and the BA with the normalization trick

outperforms the other inference methods. However I notice that, while the error of BA (with and

without the normalization trick) at the critical temperature is roughly independent on the dilution,

the errors made by TAP and SM tend to increase when the dilution is stronger and the system
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IV. METHODS FOR THE INVERSE ISING PROBLEM

I consider 4 different approximations for solving the inverse Ising problem. The simplest one

is the independent-pair (IP) approximation, already discussed in Section I and recalled here for

convenience

J IP
ij =

1

4
ln





�
(1 +mi)(1 +mj) + Cij

��
(1−mi)(1−mj) + Cij

�

�
(1 +mi)(1−mj)− Cij

��
(1−mi)(1 +mj)− Cij

�



 . (30)

Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,

because are those performing better in the direct problem of estimating correlations (see Section II).

The corresponding expressions for the inferred couplings can be obtained by solving the equation

2mimjJ
2
ij + Jij + (C−1)ij = 0 ∀(i �= j) (31)

for TAP and the equation

(C−1)ij =
−tijf1(mj ,mi, tij)

1− t2ijf(mj ,mi, tij)2
=

−tij�
(1− t2ij)

2 − 4tij(mi − tijmj)(mj − tijmi)
∀(i �= j) (32)

for the BA, thus leading to

JTAP
ij =

�
1− 8mimj(C−1)ij − 1

4mimj
, (33)

JBA
ij = −atanh

�
1

2(C−1)ij

�
1 + 4(1−m2

i )(1−m2
j )(C

−1)2ij −mimj −

1

2(C−1)ij

���
1 + 4(1−m2

i )(1−m2
j )(C

−1)2ij − 2mimj(C−1)ij
�2

− 4(C−1)2ij

�
. (34)

The fourth approximation I am considering has been obtained from a small correlation expansion

by Sessak and Monasson [16] and has been further simplified in Ref. 27 to the following expression

JSM
ij = −(C−1)ij + J IP

ij − Cij

(1−m2
i )(1−m2

j )− (Cij)2
. (35)

For each approximation, I measure the error in inferred couplings J �
ij with respect to the true

ones Jij by the following expression

∆J =

��
i<j(J

�
ij − Jij)2�

i<j J
2
ij

. (36)

I study both diluted ferromagnetic model with a fraction p of non-zero couplings (Jij = β) and

undiluted spin glass models (Jij = ±β with probability 1/2). I also consider several topologies: 2D
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APPENDIX A: LIMITS OF TAP AND BA INFERENCE METHODS FOR A

FRUSTRATED MODEL IN A FIELD

In this appendix I show explicitly that the formulas derived with TAP and BA for solving the

inverse Ising problem do not always admit a solution for the case of frustrated models. In order to

simplify the computation I focus on the simplest model showing this problem, namely a system of

3 spins interacting with antiferromagnetic couplings of intensity J < 0, in presence of an external

field of intensity h, whose probability distribution is

P (s1, s2, s3) ∝ exp[J(s1s2 + s2s3 + s3s1) + h(s1 + s2 + s3)] .

Thanks to the symmetries in the above measure, each spin has the same local magnetizationm(J, h)

and each pair of spins has the same correlation c(J, h).

When using the TAP approximation for the inverse problem one has to solve the following

equation for each coupling Jij ,

2mimjJ
2
ij + Jij + (C−1)ij = 0 ,

and the above equation admit a solution only if its discriminant is non-negative:

∆TAP ≡ 1− 8mimj(C
−1)ij ≥ 0 . (A1)

In the present case, the discriminant is the same for each coupling and it is a function of the two

parameters J and h, that I report schematically in Figure 10. The full curve shown in Figure 10

corresponds to ∆TAP(J, h) = 0 and has two asymptotes at h∗ = 0.966759 . . . and J∗ = − ln(2)/4.

It is clear that for any non-zero field h and any antiferromagnetic coupling J the inference method

based on the TAP approximation will fail at sufficiently small temperatures (i.e., large absolute

values of h and J).

The resulting coupling is real only if

The same happens also within the BA
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FIG. 10: Limit of validity of the TAP inference method for a system of 3 spins interacting with an antifer-

romagnetic coupling J in an external field h. In the region where the discriminant ∆ is negative the TAP

inference method does not work.

The same phenomenon happens also for the inference method based on the BA. In this case the

discriminant that may become negative is

∆BA =
��

1 + 4(1−m2
i )(1−m2

j )(C
−1)2ij − 2mimj(C

−1)ij
�2

− 4(C−1)2ij . (A2)

In Figure 10 the dashed line corresponds to∆BA(J, h) = 0 and has two asymptotes at h∗ = 0.673689

and along the line h = −4J (meaning that for this simple system of 3 spins the BA can work even

a very low temperatures if the external field is large enough).
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[9] M. Mézard and T. Mora, J. Physiology 103, 107 (2009).



A major problem for frustrated 
models in a field

Three spins interacting with a coupling J in a constant field h

23

Acknowledgments

I acknowledge interesting conversations with A. Decelle, S. Franz, A. Pelizzola, I. Perez-Castillo

and J. Raymond, and financial support by the Italian Research Minister through the FIRB Project

No. RBFR086NN1 on “Inference and Optimization in Complex Systems: From the Thermody-

namics of Spin Glasses to Message Passing Algorithms”.

After the completion of the present manuscript I learnt of a manuscript by H. C. Nguyen and

J. Berg [32] showing a formula similar to Eq.(34).

APPENDIX A: LIMITS OF TAP AND BA INFERENCE METHODS FOR A

FRUSTRATED MODEL IN A FIELD

In this appendix I show explicitly that the formulas derived with TAP and BA for solving the

inverse Ising problem do not always admit a solution for the case of frustrated models. In order to

simplify the computation I focus on the simplest model showing this problem, namely a system of

3 spins interacting with antiferromagnetic couplings of intensity J < 0, in presence of an external

field of intensity h, whose probability distribution is

P (s1, s2, s3) ∝ exp[J(s1s2 + s2s3 + s3s1) + h(s1 + s2 + s3)] .

Thanks to the symmetries in the above measure, each spin has the same local magnetizationm(J, h)

and each pair of spins has the same correlation c(J, h).

When using the TAP approximation for the inverse problem one has to solve the following

equation for each coupling Jij ,

2mimjJ
2
ij + Jij + (C−1)ij = 0 ,

and the above equation admit a solution only if its discriminant is non-negative:

∆TAP ≡ 1− 8mimj(C
−1)ij ≥ 0 . (A1)

In the present case, the discriminant is the same for each coupling and it is a function of the two

parameters J and h, that I report schematically in Figure 10. The full curve shown in Figure 10

corresponds to ∆TAP(J, h) = 0 and has two asymptotes at h∗ = 0.966759 . . . and J∗ = − ln(2)/4.

It is clear that for any non-zero field h and any antiferromagnetic coupling J the inference method

based on the TAP approximation will fail at sufficiently small temperatures (i.e., large absolute

values of h and J).

-2 -1.5 -1 -0.5  0
 0

 1

 2

 3

 4

 5

-2 -1.5 -1 -0.5  0

h

J

∆ < 0

∆ > 0

TAP
BA



Pseudo-likelihood method (PLM)

• Approximate 

• Define the pseudo-log-likelihood as

• Maximize      to estimate      and

• For sparse models use an L1 regularization and 
maximize

P (s) �
�

i

Pi(si|s\i)

PL(h,J |s) = �logP (s|h,J)� =
�

i

�logPi(s|hi,Ji)� =
�

i

fi

fi hi Jij

fi = himi +
�

j

Jij(Cij +mimj)− �log 2 cosh
�
si(hi +

�

j

Jijsj)
�
�

fi − λ
�

j

|Jij |



PLM vs. MFA
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Couplings inferred by PLM
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Decimation procedure

• Run PLM

• Set to zero a constant fraction of couplings
(those inferred to be the smallest)

• Re-run PLM only on couplings not set to zero
(this is impossible within a MFA)

• Iterate until...
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Summary of recent results 
about the inverse Ising pb.

• Analytical expressions for the Bethe approx.

• Comparison of MFA in a wide temperature range

• Serious limitation of TAP and Bethe in a field

• Improvement in the inferred couplings by:

• normalization trick (in weakly frustrated models)

• PLM + decimation procedure

JSTAT (2012) P08015


