The analysis of BP guided decimation algorithm

Federico Ricci-Tersenghi Physics Department Sapienza University, Roma

FRT, G. Semerjian, JSTAT (2009) P09001

A. Montanari, FRT and G. Semerjian, Proc. Allerton (2007) 352

Motivations

- Solving algorithms are of primary relevance in combinatorial optimization
 - -> provide lower bounds
 - -> their behavior is related to problem hardness
- Analytical description of the dynamics of solving algorithms is difficult
- Can we link it to properties of the solution space?
- Is there a threshold unbeatable by any algorithm?
 (kind of first principles limitation...)

Models and notation

- Random k-XORSAT (k=3)
- Random k-SAT (k=4)
- Notation:
 - N variables, M clauses
 - Clause to variables ratio $\ \alpha = M/N$

Phase transitions in random CSP

Standard picture

More phase transitions in random k-SAT(k > 3)

More phase transitions in random k-SAT(k > 3)

Rigorously solved algorithms

Rigorously solved algorithms

Algorithms with no analytic solution

Two broad classes of solving algorithms

Local search

(biased) random walks in the space of configurations E.g. Monte Carlo, WalkSAT, FMS, ChainSAT, ...

Sequential construction

at each step a variable is assigned E.g. UCP, GUCP, BP/SP guided decimation

- the order of assignment of variables
- the information used to assign variables

The oracle guided algorithm (a thought experiment)

- Start with all variables unassigned
- while (there are unassigned variables)
 - ullet choose (randomly) an unassigned variable σ_i
 - ask the **oracle** the marginal of this variable $\mu_i(\,\cdot\,|\underline{\sigma}(t))$
 - ullet assign σ_i according to its marginal

```
Samples solutions uniformly :-)
Oracle job is #P-complete in general :-(
```

Ensemble of θ -decimated CSP

- 1. Draw a CSP formula with parameter α
- 2. Draw a uniform solution $\underline{\tau}$ of this CSP
- 3. Choose a set D_{θ} by retaining each variable independently with probability θ
- 4. Consider the residual formula on the variables outside D_{θ} obtained by imposing the allowed configurations to coincide with $\underline{\tau}$ on D_{θ}

Not an ensemble of randomly uniform formulae conditioned on their degree distributions (step 2 depends on step 1)

Ensemble of θ -decimated CSP

Residual entropy:

$$\omega(\theta) = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}_F \mathbb{E}_{\underline{\tau}} \mathbb{E}_D[\ln Z(\underline{\tau}_D)]$$

 $Z(\underline{\tau}_D)$ = number of solutions compatible with the solution "exposed" on D_{θ}

Fraction of frozen variables:

$$\phi(\theta) = \frac{1}{N} \mathbb{E}_F \ \mathbb{E}_{\underline{\tau}} \ \mathbb{E}_{D_{\theta}} |W_{\theta}|$$

 $W_{\theta} = D_{\theta} \cup \{\text{variables implied by } D_{\theta}\}$

Ensemble of θ -decimated CSP

• Compute $Z(\underline{\tau}_D)$ by the Bethe-Peierls approx.

$$\ln Z(\underline{\tau}_{D}) = -\sum_{i \notin D, a \in \partial i} \ln \left(\sum_{\sigma_{i}} \nu_{a \to i}^{\underline{\tau}_{D}}(\sigma_{i}) \eta_{i \to a}^{\underline{\tau}_{D}}(\sigma_{i}) \right) + \sum_{a} \ln \left(\sum_{\underline{\sigma}_{\partial a}} \psi_{a}(\underline{\sigma}_{\partial a}) \prod_{i \in \partial a} \eta_{i \to a}^{\underline{\tau}_{D}}(\sigma_{i}) \right) + \sum_{i \notin D} \ln \left(\sum_{\sigma_{i}} \prod_{a \in \partial i} \nu_{a \to i}^{\underline{\tau}_{D}}(\sigma_{i}) \right),$$

where messages satisfy standard BP equations with the boundary condition

$$\eta_{i\to a}^{\underline{\tau}_D}(\sigma_i) = \delta_{\sigma_i,\tau_i} \text{ when } i \in D$$

Practical approximate implementation of the thought experiment (BP guided decimation algorithm)

- a. Choose a random order of the variables $i(1), \ldots, i(N)$
- b. for t = 1, ..., N
 - 1. find a fixed point of BP eqns. with boundary condition $\eta_{i\to a}^{\tau_D}(\sigma_i)=\delta_{\sigma_i,\tau_i}$
 - 2. draw $\sigma_{i(t)}$ according to the BP estimation of $\mu(\sigma_i|\underline{\tau}_{D_{t-1}})$
 - 3. set $\tau_{i(t)} = \sigma_{i(t)}$

When BP guided decimation is expected to work

- At least 1 solution must exists ($\alpha < \alpha_s$)
- No contradictions should be generated
- Check for contradictions at each time
 - add step 0. where UCP/WP is run
- Can not go beyond condensation transition as BP marginals are no longer correct ($\alpha < \alpha_c$)

Full analytic solution (by differential equations)

$$\phi = \theta + (1 - \theta) \left(1 - e^{-\alpha k \phi^{k-1}} \right)$$

Phase transition for $\alpha > \alpha_a = \frac{1}{k} \left(\frac{k-1}{k-2}\right)^{\kappa-2}$ like UCP

Jump in $\phi(\theta)$ and cusp in $\omega(\theta)$

$$\alpha_a(k=3) = \frac{2}{3}$$

Phase transition for $\alpha > \alpha_a = \frac{1}{k} \left(\frac{k-1}{k-2}\right)^{k-2}$ like UCP

Jump in $\phi(\theta)$ and cusp in $\omega(\theta)$

$$\alpha_a(k=3) = \frac{2}{3}$$

Phase diagram for random 3-XORSAT

Numerics for random k-SAT

- k = 4, N = 1e3, 3e3, 1e4, 3e4
- Run WP
 - integer variables, no approximation
- Run BP
 - much care for dealing with quasi-frozen variables
 - slow convergence (damping and restarting trick)
 - maximum number of iterations (1000) Much larger than the diameter (~2)

$$\begin{aligned}
\alpha_d &= 9.38 \\
\alpha_c &= 9.55 \\
\alpha_s &= 9.93
\end{aligned}$$

Large k limit

$$\alpha_d \simeq \frac{\ln k}{k} 2^k \qquad \alpha_c \simeq \alpha_s \simeq 2^k$$

Previous solvable algorithms

Pure Literal ("PL")	$o(1)$ as $k \to \infty$
Walksat, rigorous	$\frac{1}{6} \cdot 2^k / k^2$
Walksat, non-rigorous	$2^k/k$
Unit Clause ("UC")	$\frac{1}{2} \left(\frac{k-1}{k-2} \right)^{k-2} \cdot \frac{2^k}{k}$
Shortest Clause ("SC")	$\frac{1}{8} \left(\frac{k-1}{k-3} \right)^{k-3} \frac{k-1}{k-2} \cdot \frac{2^k}{k}$
SC+backtracking ("SCB")	$\sim 1.817 \cdot \frac{2^k}{k}$

• Our prediction for BP guided decimation $\, lpha_a \simeq rac{e}{k} 2^k \,$

Large k limit

$$\alpha_d \simeq \frac{\ln k}{k} 2^k \qquad \alpha_c \simeq \alpha_s \simeq 2^k$$

Previous solvable algorithms

Pure Literal ("PL")	$o(1)$ as $k \to \infty$
Walksat, rigorous	$\frac{1}{6} \cdot 2^k / k^2$
Walksat, non-rigorous	$2^k/k$
Unit Clause ("UC")	$\frac{1}{2} \left(\frac{k-1}{k-2} \right)^{k-2} \cdot \frac{2^k}{k}$
Shortest Clause ("SC")	$\frac{1}{8} \left(\frac{k-1}{k-3} \right)^{k-3} \frac{k-1}{k-2} \cdot \frac{2^k}{k}$
SC+backtracking ("SCB")	$\sim 1.817 \cdot \frac{2^k}{k}$

- ullet Our prediction for BP guided decimation $\,lpha_a \simeq rac{e}{k} 2^k$
- Algorithm Fix by A. Coja-Oghlan works up to $rac{\ln k}{k}2^k$

Large k limit

(pros and cons)

- Allows for rigorous proofs :-)
 - Phase transition in the decimation process proved rigorously by A. Coja-Oghlan and A. Pachon-Pinzon

- May lead to assertions that are not always true :-(
 (especially for small k values)
 - Clustering threshold = rigidity threshold

Performance of algorithms for random 4-SAT

In summary...

- We have solved the oracle guided decimation algorithm
 -> ensemble of decimated CSP
- BP guided decimation follows closely this solution
- We improve previous algorithmic thresholds α_a from 5.56 (GUC) to 9.05 for k=4 from 9.77 (GUC) to 16.8 for k=5
- Conjecture: in the large N limit for $\alpha < \alpha_a$ BP guided decimation = oracle guided decimation
- Todo: bound the error on BP marginals

A conjecture for the ultimate algorithmic threshold

- Hypothesis 1: no polynomial time algorithm can find solutions in a cluster having a finite fraction of frozen variables (frozen cluster)
- Hypothesis 2: smart polynomial time algorithms can find solutions in unfrozen clusters even when these clusters are not the majority

Dall'Asta, Ramezanpour, Zecchina, PRE 77 (2008) 031118

A conjecture for the ultimate algorithmic threshold

 The smartest polynomial time algorithm can work as long as there exists at least one unfrozen cluster

Conjecture:

No polynomial time algorithm can find solutions when all clusters are frozen

Stronger condition than the rigidity transition