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Models of interest

• SPIN GLASSES on D-dimensional lattices

disorder (random couplings)
frustration
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What we want to know
• Physical properties:

(free-)energy and correlations
-> nature of low T phase

• Single sample:
site specific
marginals

• Average case: global quantities
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Mean field approximations
Variational approach

Short description, few parameters:
magnetizations
(MF)

and correlations
(Bethe)
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Bethe approximation 

• Exact on trees

• Marginalization conditions

• Belief Propagation (BP)
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BP for SG on a 2D lattice
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Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe ! 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe ! 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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- Exact on Trees
- Good on sparse systems
- Message Passing (BP)

4 Constrained minimization: b(si) =
∑

sj b(si , sj )

Alejandro Lage-Castellanos, et.al. (1) CVM on 2D EA model La Sapienza, February, 2012 7 / 42



Improving BP
(loop corrections)

• Montanari, Rizzo, JSTAT 2005

• Parisi, Slanina, JSTAT 2006

• Chertkov, Chernyak, JSTAT 2006
(loop calculus)

all based on existence of BP fixed point !



• Mean field

• Bethe

• Plaquette CVM

Cluster Variation Method
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Region graph approximation

• Disorder -> heterogeneities

• Choose an arbitrary set of regions
(containing all interactions)

• Find an extremum by 
Generalized Belief Propagation (GBP)

Yedidia Freeman Weiss, IEEE-IT 2005

Replica Cluster Variational Method 379

3 Cluster Variational Method and Message-Passing

In the following we will briefly present the message-passing approach to cluster variational
method of [6]. We will use the same notation of [6] and we refer to it for a more detailed
presentation.

We will call R a set of connected clusters (regions) of nodes (spins), plus their intersec-
tions, plus the intersections of the intersections and so on. Then xr is the state (configura-
tion) of nodes in r and br(xr) (the belief) is an estimate of the probability of configuration
xr according to the Gibbs measure. Following [6] we will often use the notation br omit-
ting the explicit dependence of the beliefs br(xr) on xr . Then the energy of region r is
Er = − ln

∏
ij ψij (xi, xj ) − ln

∏
i ψi (xi) where the products run over all links and nodes

(in presence of a field) contained in region r . With this definitions, the Kikuchi free energy
reads:

FK =
∑

r∈R

cr

(∑

xr

brEr +
∑

xr

br lnbr

)
(4)

where the so-called Moebius coefficient cs is the over-counting number of region s defined
by cs = 1 − ∑

r∈A(s) cr . The set A(s) is made of all ancestors of s, i.e. it is the set of all
regions that contain s. The condition cs = 1 holds for the largest regions.

The cluster variational method amounts to extremize the free energy with respect to the
beliefs, under the constraint that the beliefs are normalized and compatible one with each
other in the sense that the belief of a region can be obtained marginalizing the belief of any
of its ancestors. It is worth noticing that the Kikuchi free energy does not provide in general
an upper bound on the true free energy of the model.

The main result of [6] was to show that the variational equations for the beliefs can be
written in a message-passing fashion. In order to do this we define for any given region r :
i) the set of its ancestors A(r), that is the set of regions that contain region r ; ii) the set
of its parents P(r), that is the subset of its ancestors that have no descendant that is also an
ancestor of r ; iii) the set of its descendants D(r), that is the set of regions contained in region
r ; iv) the set of its children C(r), that is the subset of its descendants that are not contained
in a region that is also a descendant of r . One introduces message mrs from a region r to any
of its children s. The messages can be thought of as going from the variable nodes (spins) in
r \ s to the variable nodes in s. They depend on the configuration of xs but for brevity this
dependence is omitted. We also need the following definitions:2

• M(r) is defined as the ensemble of connected (parent-child) pairs of regions (r ′, s ′) such
that r ′ \ s ′ is outside r while s ′ coincides either with r or with one of its descendants.

• M(r) \ M(s) is the ensemble of connected pairs of regions that are in M(r) but not in
M(s).

• M(r, s) is the ensemble of connected pairs of regions such that the parent is a descendant
of r and the child is either region s or a descendant of s.

Although all these definitions of sets of regions may look abstract and hard to follow, in the
next section we will provide immediately an example on the 2D square lattice which should
make these definitions clearer.

2We adopt the original notation of [6], which was changed in the more recent [7]. The ensembles M(r)\M(s)
and M(r, s) corresponds respectively to N(r, s) and M(r, s) defined in [7]. Note however that for us these are
ensembles of couples of regions labels instead of ensembles of the corresponding messages as in [6].
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• 2 kind of messages
(marginalizations)

• 2 kind of self-consistency equations

Square plaquette GBP

= =

u
(U, u1, u2)



• 2 kind of messages
(marginalizations)

• 2 kind of self-consistency equations

Square plaquette GBP

= =

Single and triple messages
appear together!

u
(U, u1, u2)
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Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe ! 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe ! 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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Improving GBP convergence

mi = 0 =⇒ u = 0

=

Exploit symmetries:
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Improving GBP convergence

mi = 0 =⇒ u = 0

=

Exploit symmetries:

tanh(βU) = tanh(β(J1 + U1)) tanh(β(J2 + U2)) tanh(β(J3 + U3))
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Improving GBP convergence

mi = 0 =⇒ u = 0

=

Exploit symmetries:

cij = tanh(β(Jij + UL + UR))
URUL

tanh(βU) = tanh(β(J1 + U1)) tanh(β(J2 + U2)) tanh(β(J3 + U3))

U1

U2

U3

U

Dual
algorithm



Dual algorithm

ALEJANDRO LAGE-CASTELLANOS et al. PHYSICAL REVIEW E 84, 046706 (2011)

with or without short loops. Given the convergence problems
in GBP, researchers typically resort to double-loop algorithms
to extremize region graph approximations to the free energy,
below the Bethe critical temperature.

In order to make a fair comparison with our dual algorithm,
we have used an optimized code for GBP and double-loop al-
gorithms: the open source LIBDAI library written in C++ [23].

The first interesting result of our work is that our dual
algorithm converges at all temperatures, just as the double-loop
algorithm does. The reason why it converges is that there are
no u messages, so the Bethe instability does not affect our
message-passing iteration.

The second relevant result of our dual algorithm is the
fact that it finds the same solution found by the double-
loop algorithm at all temperatures. In other words, the
direct extremization of the region graph approximation to
the free energy Eq. (4) via a double-loop algorithm finds a
paramagnetic solution characterized by the beliefs bi(si) = 0.5
and bL(si,sj ) = 1

z
e−βJ̃ij si sj ; and the effective interactions J̃ij

found by the double-loop algorithm are exactly equal to those
found with our dual algorithm, J̃ij = Jij + UP→L + UL→L.
This means that beliefs and correlations found by the two
algorithms are identical: 〈sisj 〉double loop = 〈sisj 〉dual.

The third result is that the running times of our dual
algorithm are nearly four orders of magnitude smaller than
those required by the double-loop implementation in LIBDAI,
at least in a wide range of temperatures (see Fig. 5). More
precisely, the convergence time of the dual algorithm grows
exponentially with β = 1/T , but still, in the relevant range of
temperatures where the region graph approximation is a good
approximation (not too low temperatures), the running time is
always roughly a factor of 104 smaller than that for the double
loop.
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FIG. 5. Running times of the double-loop algorithm [7,23]
(LIBDAI) and the dual algorithm averaged over ten realizations of
a 2D 8 × 8 EA model with Gaussian interactions. Generally the
double-loop algorithm requires a time four orders of magnitude
larger than that used by the dual algorithm. Three different precision
goals were used for the dual algorithm, 10−5,10−10,10−15, while the
precision of the double-loop algorithm is 10−9. The inset shows the
behavior of the running times for both algorithms versus the system
size L =

√
N . The growth is linear in N , as expected.
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FIG. 6. Comparison between the correlations 〈sisj 〉dual obtained
by the dual algorithm and the nearly exact correlations obtained
by a parallel tempering simulation. We used a 64 × 64 EA model
with Gaussian interactions. In the left lower plot the trivial inference
〈sisj 〉BP = tanh(βJi,j ) is also plotted for comparison purposes. Notice
that this is the correlation resulting from BP, when it converges to the
paramagnetic u = 0 solution. At each temperature the data correlation
coefficient ρ is reported.

A. Dual approximation vs Monte Carlo simulations

The fact that our dual algorithm provides the same results
(and much faster) than the double-loop algorithm is good
news. Essentially it is telling us that we are not losing
anything by restricting the space of possible messages, as far
as the region graph approximation is concerned. However, the
ultimate comparison for the approximation has to be done
with the exact marginals and correlations. In Fig. 6 we show
a comparison between the exact correlations Cij,PT = 〈sisj 〉PT
of neighboring spins obtained with a parallel tempering (PT)
Monte Carlo simulation, and the dual approximation estimate
for the same two-spin correlations Cij,dual = 〈sisj 〉dual. The
agreement between Cij,PT and Cij,dual is essentially perfect at
high temperatures, and it becomes weaker as the temperature
is decreased. The reason for the discrepancies is obviously the
fact that we are using an approximation in which the collective
behavior of spins is accounted for exactly only until the pla-
quette level; more distant correlations are approximated, and
these correlations become more important at low temperatures.
In particular, the correlation length of the 2D EA at β = 2.0
is already above 10 [15], and therefore the local inference
method performs poorly.

However, the average mean error between the correlations
inferred from the dual algorithm and those obtained by Monte
Carlo (PT) simulation decreases with increasing system size at
any fixed temperature. In Fig. 7 the two-point and four-point
correlation errors, defined as

#2 =
√∑

〈i,j〉(Cij,PT − Cij,dual)2

∑
〈i,j〉 C

2
ij,PT

,

(18)

#4 =
√∑

〈i,j,k,l〉(Cijkl,PT − Cijkl,dual)2

∑
〈i,j,k,l〉 C

2
ijkl,PT

,
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with or without short loops. Given the convergence problems
in GBP, researchers typically resort to double-loop algorithms
to extremize region graph approximations to the free energy,
below the Bethe critical temperature.

In order to make a fair comparison with our dual algorithm,
we have used an optimized code for GBP and double-loop al-
gorithms: the open source LIBDAI library written in C++ [23].

The first interesting result of our work is that our dual
algorithm converges at all temperatures, just as the double-loop
algorithm does. The reason why it converges is that there are
no u messages, so the Bethe instability does not affect our
message-passing iteration.

The second relevant result of our dual algorithm is the
fact that it finds the same solution found by the double-
loop algorithm at all temperatures. In other words, the
direct extremization of the region graph approximation to
the free energy Eq. (4) via a double-loop algorithm finds a
paramagnetic solution characterized by the beliefs bi(si) = 0.5
and bL(si,sj ) = 1

z
e−βJ̃ij si sj ; and the effective interactions J̃ij

found by the double-loop algorithm are exactly equal to those
found with our dual algorithm, J̃ij = Jij + UP→L + UL→L.
This means that beliefs and correlations found by the two
algorithms are identical: 〈sisj 〉double loop = 〈sisj 〉dual.

The third result is that the running times of our dual
algorithm are nearly four orders of magnitude smaller than
those required by the double-loop implementation in LIBDAI,
at least in a wide range of temperatures (see Fig. 5). More
precisely, the convergence time of the dual algorithm grows
exponentially with β = 1/T , but still, in the relevant range of
temperatures where the region graph approximation is a good
approximation (not too low temperatures), the running time is
always roughly a factor of 104 smaller than that for the double
loop.
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A. Dual approximation vs Monte Carlo simulations

The fact that our dual algorithm provides the same results
(and much faster) than the double-loop algorithm is good
news. Essentially it is telling us that we are not losing
anything by restricting the space of possible messages, as far
as the region graph approximation is concerned. However, the
ultimate comparison for the approximation has to be done
with the exact marginals and correlations. In Fig. 6 we show
a comparison between the exact correlations Cij,PT = 〈sisj 〉PT
of neighboring spins obtained with a parallel tempering (PT)
Monte Carlo simulation, and the dual approximation estimate
for the same two-spin correlations Cij,dual = 〈sisj 〉dual. The
agreement between Cij,PT and Cij,dual is essentially perfect at
high temperatures, and it becomes weaker as the temperature
is decreased. The reason for the discrepancies is obviously the
fact that we are using an approximation in which the collective
behavior of spins is accounted for exactly only until the pla-
quette level; more distant correlations are approximated, and
these correlations become more important at low temperatures.
In particular, the correlation length of the 2D EA at β = 2.0
is already above 10 [15], and therefore the local inference
method performs poorly.

However, the average mean error between the correlations
inferred from the dual algorithm and those obtained by Monte
Carlo (PT) simulation decreases with increasing system size at
any fixed temperature. In Fig. 7 the two-point and four-point
correlation errors, defined as
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FIG. 7. Average errors !2 and !4 between the nearly exact two-
point and four-point correlations (obtained by MC calculation) and
their dual estimates. The average has been taken over ten Edwards-
Anderson samples of three different sizes and bimodal interactions.
The quality of the inference becomes worst as the temperature goes
down (higher β), but it improves for larger systems.

are shown as functions of the inverse temperature. The sum
goes over the pairs of first neighbors in the case of !2
and over the groups of four spins in a square plaquette for
!4. Four-point correlations appear to be slightly worse than
two-point correlations. For clarity in the plot, only the data
for the four-point correlation in a 162 system are plotted, but
the behavior is similar to that of the two-point correlations.
The inferred correlations worsen at lower temperatures but the
errors diminish with increasing system size.

Given the good correspondence between the correlations
under the dual approximation and the true correlations, we
expect a good estimate for the energy too. In Fig. 8 we show
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FIG. 8. Energy as a function of the inverse temperature β for
a 64 × 64 2D EA model, with both types of interaction, Gaussian
and bimodal. Full lines represent the exact thermodynamic energy
as obtained by a Monte Carlo simulation, points are the energies
obtained under the dual approximation, and dashed lines are the
average case energies.
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FIG. 9. Error !2 made by a Monte Carlo simulation (with parallel
tempering) for the estimation of first-neighbor correlations in a 2D EA
model of size 642. The Monte Carlo simulation is run for a time that is
1, 10, and 100 times the convergence time of the dual algorithm. The
error made by the dual approximation is also reported and is lower
in the whole range of temperatures analyzed, suggesting that the dual
approximation is a better choice when only an approximated result is
required in a short time for large systems.

with points the energy under the dual approximation and with
full lines the Monte Carlo exact energy: the data are indeed
very close. The dashed lines show the average case energy
for the dual approximation, Eq. (17). In spite of the fact that
the average case does not take into account the local structure
of the lattice, the average case energy is quite close to the
single-instance one.

Concluding this section on the comparison between the dual
algorithm and the Monte Carlo method (which is the standard
general purpose inference method), we emphasize that the
dual algorithm is not able to provide the exact answer, because
of the underlying approximation, even if run for a very long
time. However it is able to provide a very good approximate
result in a very short time. To quantify this statement, we
show in Fig. 9 the error !2 achieved by the Monte Carlo
method (using the parallel tempering algorithm) when run for
the same time required by the dual algorithm to converge:
the error achieved by the Monte Carlo simulation is at least
twice that obtained by the dual algorithm for any temperature
in the range considered, 0.5 ! T ! 1.4. Moreover, improving
the error !2 by running a longer Monte Carlo simulation is
not easy, since an increase of running times by a factor of 100
is required to obtain equivalent performances at least for high
temperatures (T " 1). So in all those cases where an approx-
imate inference is required in a very short time, the present
dual algorithm greatly outperforms the standard Monte Carlo
methods.

B. Ground state configuration in 2D

The good agreement between the correlations found by the
dual algorithm and those found in a Monte Carlo simulation,
for the 2D EA model, suggests that we should check whether
the inferred correlations can be used down to T = 0. More
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and over the groups of four spins in a square plaquette for
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two-point correlations. For clarity in the plot, only the data
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under the dual approximation and the true correlations, we
expect a good estimate for the energy too. In Fig. 8 we show
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FIG. 11. Correlation between the ground state energy per spin obtained by the dual + freezing algorithm and by an exact method for
N = 16 × 16 (left) and N = 64 × 64 (right) systems. In each plot the top left points correspond to 100 bimodal systems Jij = ±1, while the
right bottom points correspond to 100 systems with Gaussian interactions. In both cases the dual + freezing algorithm finds a state close in
energy to the ground state. For bimodal interactions, the degeneracy of the ground state reduces the expected link overlap with the exact ground
state solution Prob(sdual

i sdual
j = sexact

i sexact
j ) = 86%. For Gaussian interactions, the ground state is not degenerate and therefore the average link

overlap is very high (94%). The line f (x) = x is shown to guide the eye. Kindly note that two set of axes are being used.

systems with bimodal interactions have degenerate ground
states; therefore solutions nearby in energy need not be too
close in the configuration space.

Even if the dual algorithm converges quite fast, the
decimation procedure used in this section requires running the
algorithm after every freezing of the dual variables, making
the dual + freezing algorithm quite slow compared to the
exact algorithms for the ground state. The performance of this
algorithm in more interesting cases, like the 3D EA model, is
left for future work.

V. GENERALIZATION TO OTHER DIMENSIONS

Let us now consider the region-graph-based approximation
to the free energy for a generic D-dimensional (hyper)cubic
lattice, using the same hierarchy of regions: square plaquettes,
links, and spins. After computation of the counting numbers
for a general D-dimensional lattice, see Eq. (3), the free energy
approximation becomes

βF =
∑

P

∑

σP

bP (σP ) ln
bP (σP )

exp[−βEP (σP )]
(plaquettes)

− (2D − 3)
∑

L

∑

σL

bL(σL) ln
bL(σL)

exp[−βEL(σL)]
(links)

+ (2D2 − 4D + 1)
∑

i

∑

si

bi(si)

× ln
bi(si)

exp[−βEi(si)]
(spins). (20)

Plaquettes are still the biggest regions considered and so
have counting number 1, but now each link is contained
in 2(D − 1) plaquettes, and each spin is in 2D links and

2D(D − 1) plaquettes. The message-passing equations for the
dual algorithm in D dimensions are then

UP→L = 1
β

arctanh

[

tanh β

(2(D−1)−1∑

i

UUi→U + JU

)

× tanh β

(2(D−1)−1∑

i

URi→R + JR

)

× tanh β

(2(D−1)−1∑

i

UDi→D + JD

) ]

, (21)

where Ui (Ri and Di) are the 2(D − 1) − 1 plaquettes
containing the link U (R and D) excluding plaquette P .

In the high-temperature phase, this dual approximation
with all u = 0 should still be a valid approach for any
dimensionality D. At low temperatures, however, the EA
model in more than two dimensions has a spin glass phase
transition and, therefore, we expect the dual approximation to
become poorer, as it cannot account for a very long correlation
length and a nontrivial order parameter.

By running the dual algorithm for the 3D EA model we have
found a divergence of U fields around β $ 0.39 for bimodal
couplings and around β $ 0.41 for Gaussian couplings. This
divergence is due to the fact the U fields get too strongly
self-reinforced under iteration. This divergence does not come
as a surprise, given that it happens also when one studies
the simpler pure ferromagnetic Ising model. However, in
the ferromagnetic model the temperature at which U fields
diverge is always below the critical temperature and so the
dual algorithm still provides a very good description of the
entire paramagnetic phase.

Unfortunately, in the 3D EA model the divergence of U
fields takes place well above the critical temperature (which is
Tc $ 1.12 for bimodal coupling and Tc $ 0.95 for Gaussian
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Figure 6. Null modes of the plaquette-CVM free energy in terms of fields. The
small-u fields that act over a given spin i inside a plaquette can be shifted by
an arbitrary amount δ as in equation (11) without changing the self-consistent
(message passing) equations.

So, beyond the simple Bethe approximation, we found three different temperatures
in the CVM approximation: βSG ! 0.79 < βconv ! 0.96 < βCVM ! 1.22, corresponding
respectively to the appearance of spin glass solutions, to the lack of convergence on single
instances, and to the average case prediction for the critical temperature.

We can summarize three main differences between the properties of BP and GBP.
At high temperatures (below βSG ! 0.79) GBP gives a quite good approximation of the
marginals [26], namely the paramagnetic solution with nontrivial correlation fields U "= 0,
while BP treats the system as a set of independent pairs of linked spins. Furthermore, this
naive approach is all that BP can do for us, since above βBethe ! 0.66 it no longer converges.
GBP, on the other hand, is not only able to converge beyond βBethe, but it is also able to
find spin glass solutions above βSG. The third difference between the two algorithms is
that the nonconvergence of BP seems to occur exactly at the same temperature where a
spin glass phase should appear (and arguably because of it), while the GBP convergence
problems appear deep into the spin glass phase. The lack of convergence of GBP, however,
seems to depend strongly on the implementation details, as we show next.

5. Gauge invariance of the GBP equations

The convergence properties of the GBP message passing are sensitive to the
implementation details, e.g. the damping value in the update equations, and this is not
an inherent property of the CVM (or region-graph) approximation. We might try, for
instance, to update simultaneously all small -u fields pointing towards a given spin, hoping
to gain some more stability in the message passing algorithm. When trying to do this we
find out that there is a freedom in the choice of these fields that has no effect over the fixed
point solutions. This freedom (similar to the one noticed in [35]) is the result of having
introduced unnecessary Lagrange multipliers to enforce marginalization constraints that
were already indirectly enforced.

Consider, for instance, the messages shown in figure 6. If the belief on a plaquette
bP (si, sj, sk, sl) correctly marginalizes to the beliefs of two of its child links bL(si, sj) and
bD(sl, si), and one of those beliefs marginalizes to the common spin bi(si) =

∑
sj

bL(si, sj),
it is inevitable that the second link D also marginalizes to the same belief on si, since
bi(si) =

∑
sj

bL(si, sj) =
∑

sj ,sl,sk
bP(si, sj , sk, sl) =

∑
sl

bD(sl, si). Therefore the Lagrange
multiplier that was introduced to force this last marginalization is not needed. This
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spin glass phase should appear (and arguably because of it), while the GBP convergence
problems appear deep into the spin glass phase. The lack of convergence of GBP, however,
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Figure 7. In the left diagram, all eight small-u messages pointing to the central
spin are highlighted with bold face. They are four link-to-site u-messages, and
four plaquette-to-link uleft-messages. They have linear dependence among them.
The right diagram shows four plaquettes around a spin, and the messages that
contribute in a nonlinear way to the aforementioned eight messages. The idea
of GBP + GF is to compute the nonlinear contributions to the message passing
equations, and then assign the values of the u-messages in order to satisfy their
linear relations.

redundancy is a general feature of GBP equations when there are more than two levels of
regions (plaquettes, links, and spins in our case).

The consequence of having introduced unnecessary multipliers is a gauge invariance
on the field (message) values. Such an invariance can be better understood by looking
at the GBP equations at infinite temperature: for β = 0 the nonlinear parts of the
message passing equations (5) and (6) disappear, but there is still a set of linear equations
to be satisfied for the small-u messages with infinitely many nontrivial solutions. These
solutions correspond, however, to the same physical paramagnetic solution, since the total
field hi =

∑4
L uL→i and the magnetizations mi = tanh(βhi) are always zero. It is easy

to check that once we have a solution of the message passing equations (5) and (6) at
any temperature, we can change by an arbitrary amount δ any group of four u-messages
inside a plaquette (figure 6) pointing to the same spin as

uL→i → uL→i + δ, uPL→i → uPL→i + δ,

uD→i → uD→i − δ, uPD→i → uPD→i − δ,
(11)

and still all self-consistent equations are satisfied.
This local null mode of the standard GBP equations can be avoided by arbitrarily

setting to zero one of the four small-u fields entering equation (11). We choose to fix the
gauge by removing the right small-u field in every plaquette-to-link field (U, uleft, uright),
as shown in figure 7. Once the gauge is fixed, the fields are uniquely determined, and we
can try to implement the simultaneous updating of all small -u fields around a given spin,
hopefully improving the convergence.

In the left diagram of figure 7 all messages involving the central spin are represented,
and in bold face those that act precisely upon that spin. These messages enter linearly in
the message passing equations of each other (see equations (5) and (6)). Therefore, the
self-consistent equations they should satisfy at the fixed points can be written as (using
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Figure 8. Convergence probability of GBP and GBP + GF as a function of β.
The solution found by either iteration method is always the same (when both
converge), but GBP + GF reaches lower temperatures while converging. The
fraction of spin glass solutions found by either algorithm shows that GBP + GF
sees the same spin glass transition temperature. The fraction of spin glass
solutions is always given with respect to the amount of convergent solutions.

the notation of figure 7)

u1 = ua + NL1, ua = ub − u2 + NLa,

u2 = ub + NL2, ub = uc − u3 + NLb,

u3 = uc + NL3, uc = ud − u4 + NLc,

u4 = ud + NL4, ud = ua − u1 + NLd,

(12)

where the NL stand for the nonlinear contributions to the corresponding equation. As a
consequence, the values of the eight u-messages pointing to the central spin can be assigned
precisely by a linear transformation for any given values of the nonlinear contributions.
This gauge fixed updating method, that we will call GBP + GF, updates all u-messages
around a spin simultaneously and in such a way that they are consistent with each other
via the message passing equations.

The right diagram in figure 7 shows the messages entering the nonlinear parts. Taking
the eight u-messages as zero, the nonlinear contributions are the right-hand sides of the
message passing equations involved. With the nonlinear parts computed, the system of
equations (12) is solved for the u-variables multiplying the nonlinearity vector by the
corresponding matrix. The eight u-messages are then updated, usually with a damping
factor. The update of the U correlation fields is carried out as in the original GBP method,
via equation (6), since it does not depend on the u-messages that are being updated.

Figure 8 shows the probability of convergence versus the inverse temperature for
GBP and GBP + GF, and also the fraction of the solutions found that correspond to
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where the NL stand for the nonlinear contributions to the corresponding equation. As a
consequence, the values of the eight u-messages pointing to the central spin can be assigned
precisely by a linear transformation for any given values of the nonlinear contributions.
This gauge fixed updating method, that we will call GBP + GF, updates all u-messages
around a spin simultaneously and in such a way that they are consistent with each other
via the message passing equations.

The right diagram in figure 7 shows the messages entering the nonlinear parts. Taking
the eight u-messages as zero, the nonlinear contributions are the right-hand sides of the
message passing equations involved. With the nonlinear parts computed, the system of
equations (12) is solved for the u-variables multiplying the nonlinearity vector by the
corresponding matrix. The eight u-messages are then updated, usually with a damping
factor. The update of the U correlation fields is carried out as in the original GBP method,
via equation (6), since it does not depend on the u-messages that are being updated.

Figure 8 shows the probability of convergence versus the inverse temperature for
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Figure 8. Convergence probability of GBP and GBP + GF as a function of β.
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converge), but GBP + GF reaches lower temperatures while converging. The
fraction of spin glass solutions found by either algorithm shows that GBP + GF
sees the same spin glass transition temperature. The fraction of spin glass
solutions is always given with respect to the amount of convergent solutions.
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precisely by a linear transformation for any given values of the nonlinear contributions.
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around a spin simultaneously and in such a way that they are consistent with each other
via the message passing equations.

The right diagram in figure 7 shows the messages entering the nonlinear parts. Taking
the eight u-messages as zero, the nonlinear contributions are the right-hand sides of the
message passing equations involved. With the nonlinear parts computed, the system of
equations (12) is solved for the u-variables multiplying the nonlinearity vector by the
corresponding matrix. The eight u-messages are then updated, usually with a damping
factor. The update of the U correlation fields is carried out as in the original GBP method,
via equation (6), since it does not depend on the u-messages that are being updated.

Figure 8 shows the probability of convergence versus the inverse temperature for
GBP and GBP + GF, and also the fraction of the solutions found that correspond to
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Figure 8. Convergence probability of GBP and GBP + GF as a function of β.
The solution found by either iteration method is always the same (when both
converge), but GBP + GF reaches lower temperatures while converging. The
fraction of spin glass solutions found by either algorithm shows that GBP + GF
sees the same spin glass transition temperature. The fraction of spin glass
solutions is always given with respect to the amount of convergent solutions.

the notation of figure 7)

u1 = ua + NL1, ua = ub − u2 + NLa,

u2 = ub + NL2, ub = uc − u3 + NLb,

u3 = uc + NL3, uc = ud − u4 + NLc,

u4 = ud + NL4, ud = ua − u1 + NLd,

(12)

where the NL stand for the nonlinear contributions to the corresponding equation. As a
consequence, the values of the eight u-messages pointing to the central spin can be assigned
precisely by a linear transformation for any given values of the nonlinear contributions.
This gauge fixed updating method, that we will call GBP + GF, updates all u-messages
around a spin simultaneously and in such a way that they are consistent with each other
via the message passing equations.

The right diagram in figure 7 shows the messages entering the nonlinear parts. Taking
the eight u-messages as zero, the nonlinear contributions are the right-hand sides of the
message passing equations involved. With the nonlinear parts computed, the system of
equations (12) is solved for the u-variables multiplying the nonlinearity vector by the
corresponding matrix. The eight u-messages are then updated, usually with a damping
factor. The update of the U correlation fields is carried out as in the original GBP method,
via equation (6), since it does not depend on the u-messages that are being updated.

Figure 8 shows the probability of convergence versus the inverse temperature for
GBP and GBP + GF, and also the fraction of the solutions found that correspond to

doi:10.1088/1742-5468/2011/12/P12007 15

βconv

βc

SG phase ?



GF-GBP does it better

J.S
tat.M

ech.
(2011)

P
12007

Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 12. The free energy of the solutions found by the double loop algorithm,
the HAK and the GBP PTC algorithm relative to the free energy of the
paramagnetic solution (dual approximation), in a typical system in which GBP
PTC finds a spin glass solution. At high temperatures all three algorithms find the
same paramagnetic solution. Interestingly, there is a small range of temperatures
where the spin glass solution found by GBP is actually the one that minimizes
the free energy. However, at even lower temperatures the paramagnetic solution
becomes again the correct one. While double loop and HAK switch back to the
paramagnetic solution (even if at the wrong T ), the GBP PTC gets stuck in the
spin glass solution (and for this reason, it eventually stops converging).

be used as a warning that something wrong is happening with the CVM approximation,
something that it is impossible to understand by looking at the behavior of provably
convergent algorithms.

In figure 13 we compare the running times of double loop (LibDai [36]), HAK and
GBP PTC (our implementation) for the two systems of figure 12. As expected, double
loop is much slower than the message passing heuristics of HAK and GBP (please notice
the log scale in the time axis). The peaks in the running times correspond to the transition
points from the paramagnetic to the spin glass solution. Double loop and HAK have two
peaks, the second corresponding to the transition back to the paramagnetic solution, while
the GBP PTC has only the first peak.

7. Summary and conclusions

We studied the properties of the generalized belief propagation algorithm derived from
a cluster variational method approximation to the free energy of the Edwards–Anderson
model in 2D at the level of plaquettes. We compared the results obtained by parent-to-
child GBP with the ones obtained by the dual (paramagnetic) algorithm [26] and by the
HAK two-way algorithm [19] and the double loop provably convergent algorithm [19].

doi:10.1088/1742-5468/2011/12/P12007 20



GF-GBP does it better

J.S
tat.M

ech.
(2011)

P
12007

Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 12. The free energy of the solutions found by the double loop algorithm,
the HAK and the GBP PTC algorithm relative to the free energy of the
paramagnetic solution (dual approximation), in a typical system in which GBP
PTC finds a spin glass solution. At high temperatures all three algorithms find the
same paramagnetic solution. Interestingly, there is a small range of temperatures
where the spin glass solution found by GBP is actually the one that minimizes
the free energy. However, at even lower temperatures the paramagnetic solution
becomes again the correct one. While double loop and HAK switch back to the
paramagnetic solution (even if at the wrong T ), the GBP PTC gets stuck in the
spin glass solution (and for this reason, it eventually stops converging).

be used as a warning that something wrong is happening with the CVM approximation,
something that it is impossible to understand by looking at the behavior of provably
convergent algorithms.

In figure 13 we compare the running times of double loop (LibDai [36]), HAK and
GBP PTC (our implementation) for the two systems of figure 12. As expected, double
loop is much slower than the message passing heuristics of HAK and GBP (please notice
the log scale in the time axis). The peaks in the running times correspond to the transition
points from the paramagnetic to the spin glass solution. Double loop and HAK have two
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a cluster variational method approximation to the free energy of the Edwards–Anderson
model in 2D at the level of plaquettes. We compared the results obtained by parent-to-
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Figure 13. Convergence time in seconds for the double loop algorithm
(full points) and standard message passing algorithms (empty points) for the
plaquette-GBP approximation in two different realizations of a 162 Edwards–
Anderson system. Message passing algorithms are typically faster, but not always
convergent. The first cusp is related to the appearance of the spin glass solution,
while the second cusp in the double loop algorithm is related to the switching
back to the paramagnetic solution (see figure 12).

We found that the plaquette-CVM approximation (using parent-to-child GBP) is far
richer than the Bethe (BP) approximation in the 2D EA model. BP converges only
at high temperatures (above TBethe = 1/βBethe = 1.51), and in such a case it treats
the system as a set of independent pairs of linked spins. GBP, on the other hand,
makes a better prediction of the paramagnetic behavior of the model at high T , since
it implements a message passing of correlation fields flowing from plaquettes to links in
the graph. Furthermore with GBP the paramagnetic phase is extended to temperatures
below TBethe = 1.51 until TSG = 1/βSG ! 1.27, where spin glass solutions appear in the
single instance implementation of the message passing algorithm. In contrast to the Bethe
approximation, GBP is able to find spin glass solutions, and the standard message passing
stops converging near Tconv ! 1.

The average case calculation of the stability of the paramagnetic solution in the CVM
approximation predicted that nonparamagnetic (spin glass) solutions should appear at
lower temperatures TCVM = 1/βCVM ! 0.82. This average case result does not coincide
with the single instance behavior of the standard GBP since it fails to mark both the
point where GBP starts finding spin glass solutions, TSG, and the point where GBP stops
converging, Tconv.

However, the nonconvergence of GBP is not a feature of the CVM approximation,
and is susceptible to changes from one implementation of the message passing to another.
We showed that by fixing a hidden gauge invariance in the message passing equation, a
simultaneous update of all cavity fields pointing to a single spin in the lattice improves the
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P-4 Solución de Vidrio de espín
¿Qué relevancia tiene la solución SG si es físicamente incorrecta?
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Unfortunately these fields enter into the equations in an implicit form and so standard population

dynamic algorithms can not be used for finding the solution. In previous works [23, 24], using

linear stability analysis, we showed that these equations improve the Bethe approximation on the

location of the phase boundaries. However the solution of these equations in the low temperature

phase, and the interpretation of this solution in terms of the performance of inference algorithms

are still important open problems.

The main goal of this work is to extend our previous results in these two directions. On the

one hand, using a stability analysis we study the phase diagram in the ρ (density of ferromag-

netic couplings) versus T (temperature) plane for the Edwards-Anderson model on the square and

triangular lattices. Moreover, we show that the Generalized Belief Propagation algorithm (GBP)

stops converging close to the spin-glass temperature predicted by our approximation. On the other

hand, we propose an approximated method to deal, at the RS level, with the complex equations

that arise in the formalism in the low T phase.

The rest of the work is organized as follows. In the next section, we rederive the equations

already obtained in [23] but now limiting its scope to the RS scenario in the average case. In

section III we present the phase diagram obtained by a linearized version of these equations and in

IV we study the consequences of this phase diagram for the perfomance of GBP. Section V show

the solution of a non-linear approximation for the RS equations in the glassy phase. Finally, the

conclusions and possible extensions of our approach are outlined in section VI.

II. THE CVM REPLICA SYMMETRIC SOLUTION

The Edwards-Anderson model is defined by the Hamiltonian H = −
�

(ij) Jijsisj , where the

sum is over neighboring spins on a finite dimensional lattice and the couplings Jij are quenched

random variables. Although the equations we write are valid for generic couplings, our results will

be obtained for couplings drawn from the distribution P (J) = ρ δ(J − 1) + (1− ρ)δ(J + 1).

In a model with quenched disorder the free-energy of typical samples can be obtained from the

n → 0 limit of the replicated free-energy

Φ(n) = − 1

nβN
lnTr

�
exp

��
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βJij

n�
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s
a
i s

a
j

��
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s
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i s
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j

�

J



 , (1)

n-replicated
free energy
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where n copies of a system of N spins are considered at inverse temperature β, and the average

over the quenched disorder is represented by the angular brackets.

The starting point of the Kikuchi’s CVM approximation is to choose a set of regions of the graph

over which the model is defined. We will concentrate here on three kind of regions, plaquettes

(square or triangles, depending on the lattice), links and nodes. Using the definition, ψr(σr) ≡
�

i,j∈r�expβJ
�

a s
a
i s

a
j �J the energy of region r is:

Er = − ln
�

ij

ψij(σi,σj)− ln
�

i

ψi(σi) , (2)

where the products run over all links and nodes (in presence of a field) contained in region r. Let

us also define the belief br(σr) as an estimation of the marginal probability of the configuration σr

according to the Gibbs measure. Then, within this approximation, the Kikuchi’s free energy takes

the form:

FK =
�

r∈R
cr

�
�

xr

brEr +
�

xr

br ln br

�
, (3)

where the so-called Moebius coefficient cr is the over-counting number of region r [21]. In the case

of the EA in the square lattice, the biggest regions are the square plaquettes, and by definition

cP = 1. Since each link region is contained in two plaquettes, cL = 1 − 2 = −1. Moreover, the

spins regions are contained in 4 plaquettes and 4 links and cS = 1 − 4 · cP − 4 · cL = 1. Similarly

for the triangular lattices cP = 1, cL = 1− 2 · cP = −1 and cS = 1− 6 · cP − 6 · cL = 1.

Now, the Kikuchi free energy has to be extremized with respect to the beliefs br(σr), subject

to the constraint that they are compatible upon marginalization. For example, b(ij)(σi,σj) =
�

σk,σl
b(ijkl)(σi,σj ,σk,σl) and bi(σi) =

�
σj

b(ij)(σi,σj) for the square lattice. It is already a

standard procedure [21, 25] to show that under these conditions the beliefs can be written as:

br(σr) ∝ ψr(σr)
�

(r�,s�)∈M(r)

mr�s�(σr) , (4)

where M(r) is the set of connected pairs of regions (r�, s�) such that r� \ s� is outside r while s�

coincides either with r or with one of its subsets (descendants). For example, if r is one link in a

square lattice, the product in (4) contains the so-called messages m from the two squares adjacent

to it, and the messages m from the six other links connected to it (three on each extreme). The

messages mrs obey the following equations:

mrs(σs)
�

(r�,s�)∈M(r,s)

mr�s�(σs) ∝
�

σr\s

ψr\s(σr)
�

(r��,s��)∈M(r)\M(s)

mr��s��(σr) , (5)

σi ≡ {s1i , . . . , sni }
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where M(r, s) is the set of connected pairs of regions (r�, s�) such that r� is a descendant of r and

s� is either region s or a descendant of s.

For the particular cases we are considering here (2D square and triangular lattices) the general

expression (5) translates into the following two couple equations. The first equation is identical for

both lattices and reads

m(ij)→j(σj) ∝
�

σi

ψ(ij)(σi,σj)Mα→(ij)(σi,σj)Mβ→(ij)(σi,σj)
�

k∈∂i\j

m(ki)→i(σi) , (6)

where α and β are the two plaquette sharing the link (ij) and ∂i is the set of neighbors of site

i. The notation used in this equation should make clear that messages are sent between a region

and one of its descendant. The second equation takes slightly different forms for the square and

triangular lattices, and we write it explicitly for the triangular lattice:

M(ijk)→(ij)(σi,σj)m(ik)→i(σi)m(jk)→j(σj) ∝
�

σk

ψ(ik)(σi,σk)ψ(jk)(σj ,σk)

�

α∈∂(ik)\(ijk)

Mα→(ik)(σi,σk)
�

β∈∂(jk)\(ijk)

Mβ→(jk)(σj ,σk)
�

l∈∂k\{i,j}

ml→k(σk) , (7)

where, in practice, the first two products only contain one message each. For the square lattice the

equation modifies slightly and contains some more products; disregarding all indices and arguments,

its schematic form is M mm ∝
�

ψ ψ ψ
�

M
�

M
�

M
�

m
�

m.

Up to this point the only difference with the standard CVM method is the introduction of

replicated spins σi and the non obvious connection with the average over the disorder, implicitly

introduced in ψr(σr). The main contribution of our previous work [23] was to introduce a consistent

scheme to write these equations in the limit n → 0 at any level of RSB.

Here we reproduce the approach for the average case at the RS level. Following [26], we start

by parametrizing the link to node messages in the following way:

m(σi) =

�
du q(u) exp

�
βu

n�

a=1

σa
i

�
(2 coshβu)−n , (8)

and extend the same idea to the parametrization of the plaquette to link messages:

M(σi,σj) ∝
�

dU dui duj Q(U, ui, uj) exp

�
βU

n�

a=1

σa
i σ

a
j + βui

n�

a=1

σa
i + βuj

n�

a=1

σa
j

�
. (9)

The above parametrization allows to rewrite the message passing equations (5) in terms of q(u) and

Q(U, u1, u2). Substituting equations (8) and (9) into (6) and (7) and sending n → 0, we obtain,

=
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Up to this point the only difference with the standard CVM method is the introduction of

replicated spins σi and the non obvious connection with the average over the disorder, implicitly

introduced in ψr(σr). The main contribution of our previous work [23] was to introduce a consistent
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Here we reproduce the approach for the average case at the RS level. Following [26], we start
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The above parametrization allows to rewrite the message passing equations (5) in terms of q(u) and

Q(U, u1, u2). Substituting equations (8) and (9) into (6) and (7) and sending n → 0, we obtain,



Replica CVM
a third technical slide :-(

RS ansatz on
the messages

5

where M(r, s) is the set of connected pairs of regions (r�, s�) such that r� is a descendant of r and

s� is either region s or a descendant of s.

For the particular cases we are considering here (2D square and triangular lattices) the general

expression (5) translates into the following two couple equations. The first equation is identical for

both lattices and reads

m(ij)→j(σj) ∝
�

σi

ψ(ij)(σi,σj)Mα→(ij)(σi,σj)Mβ→(ij)(σi,σj)
�

k∈∂i\j

m(ki)→i(σi) , (6)

where α and β are the two plaquette sharing the link (ij) and ∂i is the set of neighbors of site

i. The notation used in this equation should make clear that messages are sent between a region

and one of its descendant. The second equation takes slightly different forms for the square and

triangular lattices, and we write it explicitly for the triangular lattice:

M(ijk)→(ij)(σi,σj)m(ik)→i(σi)m(jk)→j(σj) ∝
�

σk

ψ(ik)(σi,σk)ψ(jk)(σj ,σk)

�

α∈∂(ik)\(ijk)

Mα→(ik)(σi,σk)
�

β∈∂(jk)\(ijk)

Mβ→(jk)(σj ,σk)
�

l∈∂k\{i,j}

ml→k(σk) , (7)

where, in practice, the first two products only contain one message each. For the square lattice the

equation modifies slightly and contains some more products; disregarding all indices and arguments,

its schematic form is M mm ∝
�

ψ ψ ψ
�

M
�

M
�

M
�

m
�

m.

Up to this point the only difference with the standard CVM method is the introduction of

replicated spins σi and the non obvious connection with the average over the disorder, implicitly

introduced in ψr(σr). The main contribution of our previous work [23] was to introduce a consistent

scheme to write these equations in the limit n → 0 at any level of RSB.

Here we reproduce the approach for the average case at the RS level. Following [26], we start

by parametrizing the link to node messages in the following way:

m(σi) =

�
du q(u) exp

�
βu

n�

a=1

σa
i

�
(2 coshβu)−n , (8)

and extend the same idea to the parametrization of the plaquette to link messages:

M(σi,σj) ∝
�

dU dui duj Q(U, ui, uj) exp

�
βU

n�

a=1

σa
i σ

a
j + βui

n�

a=1

σa
i + βuj

n�

a=1

σa
j

�
. (9)

The above parametrization allows to rewrite the message passing equations (5) in terms of q(u) and

Q(U, u1, u2). Substituting equations (8) and (9) into (6) and (7) and sending n → 0, we obtain,

5

where M(r, s) is the set of connected pairs of regions (r�, s�) such that r� is a descendant of r and

s� is either region s or a descendant of s.

For the particular cases we are considering here (2D square and triangular lattices) the general

expression (5) translates into the following two couple equations. The first equation is identical for

both lattices and reads

m(ij)→j(σj) ∝
�

σi

ψ(ij)(σi,σj)Mα→(ij)(σi,σj)Mβ→(ij)(σi,σj)
�

k∈∂i\j

m(ki)→i(σi) , (6)

where α and β are the two plaquette sharing the link (ij) and ∂i is the set of neighbors of site

i. The notation used in this equation should make clear that messages are sent between a region

and one of its descendant. The second equation takes slightly different forms for the square and

triangular lattices, and we write it explicitly for the triangular lattice:

M(ijk)→(ij)(σi,σj)m(ik)→i(σi)m(jk)→j(σj) ∝
�

σk

ψ(ik)(σi,σk)ψ(jk)(σj ,σk)

�

α∈∂(ik)\(ijk)

Mα→(ik)(σi,σk)
�

β∈∂(jk)\(ijk)

Mβ→(jk)(σj ,σk)
�

l∈∂k\{i,j}

ml→k(σk) , (7)

where, in practice, the first two products only contain one message each. For the square lattice the

equation modifies slightly and contains some more products; disregarding all indices and arguments,

its schematic form is M mm ∝
�

ψ ψ ψ
�

M
�

M
�

M
�

m
�

m.

Up to this point the only difference with the standard CVM method is the introduction of

replicated spins σi and the non obvious connection with the average over the disorder, implicitly

introduced in ψr(σr). The main contribution of our previous work [23] was to introduce a consistent

scheme to write these equations in the limit n → 0 at any level of RSB.

Here we reproduce the approach for the average case at the RS level. Following [26], we start

by parametrizing the link to node messages in the following way:

m(σi) =

�
du q(u) exp

�
βu

n�

a=1

σa
i

�
(2 coshβu)−n , (8)

and extend the same idea to the parametrization of the plaquette to link messages:

M(σi,σj) ∝
�

dU dui duj Q(U, ui, uj) exp

�
βU

n�

a=1

σa
i σ

a
j + βui

n�

a=1

σa
i + βuj

n�

a=1

σa
j

�
. (9)

The above parametrization allows to rewrite the message passing equations (5) in terms of q(u) and

Q(U, u1, u2). Substituting equations (8) and (9) into (6) and (7) and sending n → 0, we obtain,



Replica CVM
a third technical slide :-(

RS ansatz on
the messages

5

where M(r, s) is the set of connected pairs of regions (r�, s�) such that r� is a descendant of r and

s� is either region s or a descendant of s.

For the particular cases we are considering here (2D square and triangular lattices) the general

expression (5) translates into the following two couple equations. The first equation is identical for

both lattices and reads

m(ij)→j(σj) ∝
�

σi

ψ(ij)(σi,σj)Mα→(ij)(σi,σj)Mβ→(ij)(σi,σj)
�

k∈∂i\j

m(ki)→i(σi) , (6)

where α and β are the two plaquette sharing the link (ij) and ∂i is the set of neighbors of site

i. The notation used in this equation should make clear that messages are sent between a region

and one of its descendant. The second equation takes slightly different forms for the square and

triangular lattices, and we write it explicitly for the triangular lattice:

M(ijk)→(ij)(σi,σj)m(ik)→i(σi)m(jk)→j(σj) ∝
�

σk

ψ(ik)(σi,σk)ψ(jk)(σj ,σk)

�

α∈∂(ik)\(ijk)

Mα→(ik)(σi,σk)
�

β∈∂(jk)\(ijk)

Mβ→(jk)(σj ,σk)
�

l∈∂k\{i,j}

ml→k(σk) , (7)

where, in practice, the first two products only contain one message each. For the square lattice the

equation modifies slightly and contains some more products; disregarding all indices and arguments,

its schematic form is M mm ∝
�

ψ ψ ψ
�

M
�

M
�

M
�

m
�

m.

Up to this point the only difference with the standard CVM method is the introduction of

replicated spins σi and the non obvious connection with the average over the disorder, implicitly

introduced in ψr(σr). The main contribution of our previous work [23] was to introduce a consistent

scheme to write these equations in the limit n → 0 at any level of RSB.

Here we reproduce the approach for the average case at the RS level. Following [26], we start

by parametrizing the link to node messages in the following way:

m(σi) =

�
du q(u) exp

�
βu

n�

a=1

σa
i

�
(2 coshβu)−n , (8)

and extend the same idea to the parametrization of the plaquette to link messages:

M(σi,σj) ∝
�

dU dui duj Q(U, ui, uj) exp

�
βU

n�

a=1

σa
i σ

a
j + βui

n�

a=1

σa
i + βuj

n�

a=1

σa
j

�
. (9)

The above parametrization allows to rewrite the message passing equations (5) in terms of q(u) and

Q(U, u1, u2). Substituting equations (8) and (9) into (6) and (7) and sending n → 0, we obtain,

5

where M(r, s) is the set of connected pairs of regions (r�, s�) such that r� is a descendant of r and

s� is either region s or a descendant of s.

For the particular cases we are considering here (2D square and triangular lattices) the general

expression (5) translates into the following two couple equations. The first equation is identical for

both lattices and reads

m(ij)→j(σj) ∝
�

σi

ψ(ij)(σi,σj)Mα→(ij)(σi,σj)Mβ→(ij)(σi,σj)
�

k∈∂i\j

m(ki)→i(σi) , (6)

where α and β are the two plaquette sharing the link (ij) and ∂i is the set of neighbors of site

i. The notation used in this equation should make clear that messages are sent between a region

and one of its descendant. The second equation takes slightly different forms for the square and

triangular lattices, and we write it explicitly for the triangular lattice:

M(ijk)→(ij)(σi,σj)m(ik)→i(σi)m(jk)→j(σj) ∝
�

σk

ψ(ik)(σi,σk)ψ(jk)(σj ,σk)

�

α∈∂(ik)\(ijk)

Mα→(ik)(σi,σk)
�

β∈∂(jk)\(ijk)

Mβ→(jk)(σj ,σk)
�

l∈∂k\{i,j}

ml→k(σk) , (7)

where, in practice, the first two products only contain one message each. For the square lattice the

equation modifies slightly and contains some more products; disregarding all indices and arguments,

its schematic form is M mm ∝
�

ψ ψ ψ
�

M
�

M
�

M
�

m
�

m.

Up to this point the only difference with the standard CVM method is the introduction of

replicated spins σi and the non obvious connection with the average over the disorder, implicitly

introduced in ψr(σr). The main contribution of our previous work [23] was to introduce a consistent

scheme to write these equations in the limit n → 0 at any level of RSB.

Here we reproduce the approach for the average case at the RS level. Following [26], we start

by parametrizing the link to node messages in the following way:

m(σi) =

�
du q(u) exp

�
βu

n�

a=1

σa
i

�
(2 coshβu)−n , (8)

and extend the same idea to the parametrization of the plaquette to link messages:

M(σi,σj) ∝
�

dU dui duj Q(U, ui, uj) exp

�
βU

n�

a=1

σa
i σ

a
j + βui

n�

a=1

σa
i + βuj

n�

a=1

σa
j

�
. (9)

The above parametrization allows to rewrite the message passing equations (5) in terms of q(u) and

Q(U, u1, u2). Substituting equations (8) and (9) into (6) and (7) and sending n → 0, we obtain,

6

after some standard algebra,

q(u) =

� k�

i

dqi

p�

α

dQα �δ(u− û(#))�J ,

R(U, ua, ub) ≡
�

dui duj Q(U, ui, uj)q(ua − ui)q(ub − uj) = (10)

=

� K�

i

dqi

P�

α

dQα �δ(U − Û(#))δ(ua − ûa(#))δ(ub − ûb(#))�J ,

where k (p) and K (P ) correspond to the number of small m (large M) messages that enter into

each equation. The specific expressions for û(#), Û(#), ûa(#), ûb(#) depend on the lattice. The

expressions for the triangular lattices are given in the next section and we refer the reader to

reference [27] for similar formulas for the square lattice.

The next step is to solve the self-consistency equations in (10). Then, once q and Q are known,

the thermodynamical observables are well defined in term of these objects [23]. Unfortunately,

since in (10) the functions Q and q are convoluted, this problem can not be straightforwardly

approached using standard population dynamics algorithm. One possible approach is to deconvolve

R using Fourier techniques to extractQ. Unfortunately, this approach suffers from strong instability

problems. To use any numerical Fourier transform, one must have R and Q in form of histograms.

But since Q is not necessarily positive defined [23] the sampling of the messages becomes hard

and the numerical errors due to the discretization of Q combine with the errors due to the Fourier

inversion process making difficult the convergence at low temperatures. To bypass these numerical

problems we choose to solve these equations approximately. We perturb them in terms of small

parameters around the paramagnetic solution and keep track of the information about the first few

moments of the distributions.

III. PHASE DIAGRAM FROM THE LINEARIZED EQUATIONS

Since the exact computation of q(u) and Q(U, u1, u2) is a daunting task, here we concentrate

our attention to the calculation of their first two moments:

m =

�
q(u)u du , a =

�
q(u)u2du , a0(U) =

��
Q(U, u1, u2) du1 du2 ,

Mi(U) =

��
Q(U, u1, u2)ui dui , aij(U) =

��
Q(U, u1, u2)ui uj du1du2 , (11)

analytic continuation for n->0
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R(U, ua, ub) ≡
�

dui duj Q(U, ui, uj)q(ua − ui)q(ub − uj) = (10)

=

� K�

i

dqi

P�

α
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Very hard to solve:
• convolution in 
• non-positive defined
• no population dynamics

Hard to solve because are the right equations...?

R(U, ua, ub)
Q(U, ui, uj)

correlated
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q(u) = δ(u) Q(U, ui, uj) = a0(U)δ(u1)δ(u2)
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first two moments

three phases:
paramagnetic (P)
spin glass (SG)
ferromagnetic (F)

m = 0 a = 0

m = 0 a �= 0

m �= 0 a �= 0
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Unfortunately these fields enter into the equations in an implicit form and so standard population

dynamic algorithms can not be used for finding the solution. In previous works [23, 24], using

linear stability analysis, we showed that these equations improve the Bethe approximation on the

location of the phase boundaries. However the solution of these equations in the low temperature

phase, and the interpretation of this solution in terms of the performance of inference algorithms

are still important open problems.

The main goal of this work is to extend our previous results in these two directions. On the

one hand, using a stability analysis we study the phase diagram in the ρ (density of ferromag-

netic couplings) versus T (temperature) plane for the Edwards-Anderson model on the square and

triangular lattices. Moreover, we show that the Generalized Belief Propagation algorithm (GBP)

stops converging close to the spin-glass temperature predicted by our approximation. On the other

hand, we propose an approximated method to deal, at the RS level, with the complex equations

that arise in the formalism in the low T phase.

The rest of the work is organized as follows. In the next section, we rederive the equations

already obtained in [23] but now limiting its scope to the RS scenario in the average case. In

section III we present the phase diagram obtained by a linearized version of these equations and in

IV we study the consequences of this phase diagram for the perfomance of GBP. Section V show

the solution of a non-linear approximation for the RS equations in the glassy phase. Finally, the

conclusions and possible extensions of our approach are outlined in section VI.

II. THE CVM REPLICA SYMMETRIC SOLUTION

The Edwards-Anderson model is defined by the Hamiltonian H = −
�

(ij) Jijsisj − h
�

i si,

where the first sum is over neighboring spins on a finite dimensional lattice, the couplings Jij

are quenched random variables and h is the external field. Although the equations we write are

valid for generic couplings, our results will be obtained for couplings drawn from the distribution

P (J) = ρ δ(J − 1) + (1− ρ)δ(J + 1).

In a model with quenched disorder the free-energy of typical samples can be obtained from the

n → 0 limit of the replicated free-energy

Φ(n) = − 1

nβN
lnTr

�
exp

��

(ij)

βJij

n�

a=1

s
a
i s

a
j +

�

i

βh
n�

a=1

s
a
i

��

J

=

= − 1

nβN
lnTr exp




�

(ij)

ln
�
expβJ

�

a

s
a
i s

a
j

�

J
+
�

i

βh
n�

a=1

s
a
i



 , (1)
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FIG. 2. ρ vs T phase diagram for the square and the triangular lattice. We show results for the Bethe

approximation (upper curves) and the Kikuchi approximation (lower curves). It is also shown the Nishimori

line (NL). The bold circles on the Nishimori line are the best analytical predictions for the tricritical points.

The dashed lines represent the boundaries for the existence of purely ferromagnetic solutions.

phase. Critical lines meets at the tricritical point (ρcr, T cr), located on the Nishmori line (NL). On

the right of this tricritical point, i.e. if ρ > ρcr, the system is in the Ferromagnetic phase at low

temperatures and in the Paramagnetic phase at high temperatures.

In both cases, the conclusions are similar: the P-SG critical temperature predicted by the

Kikuchi approximation is lower than the one predicted by the Bethe approximation. This result

was already shown for ρ = 0.5 in [23], but here we correct an error in that work were an incomplete

range of β was considered during the study of the square lattice. In addition these results are

now extended to larger values of ρ. Moreover, we show that while both approximations correctly

predict a SG to F transition at low temperatures and a tricritical point on the Nishimori line (NL),

the estimation of the latter is much better in the Kikuchi approximation (the big dots on the NL

are the exact locations for the tricritical points predicted in [29] and [30]). The following table

summarize the locations of the tricritical points:

lattice ρcrBethe ρcrKikuchi ρcrexact

square 0.79 0.85 0.8894

triangular 0.74 0.78 0.8358

Finally, we checked the existence of a ferromagnetic transition keeping a zero and perturbing

m. Again, Kikuchi approximation improves Bethe one. Indeed the latter predicts a SG-F critical

line extending to very low ρ values (well below ρcr), while the Kikuchi approximation have a SG-F

critical line which is almost vertical in the ρ vs T phase diagram (and this behavior is consistent

with the theoretical predictions [31]).

P P
PP

F

F

F

FSG SG
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is defined as the point where non-zero small u messages appear in the population of 5-fields and

turns out to be very close to the the value of Tc computed in single instances. In ref. [24] these

facts were reported as an interesting coincidence that now we extend to other values of ρ.

In Figure 4 we report the Para-SG critical temperature Tc (large dots) and the convergence

temperature Tconv (filled squares) for a square lattice at several values of ρ. These temperatures

have been averaged over 10 samples of size N = 256 × 256. The key observation is that these

points lay very close to the analytical critical lines computed with the average case computations

explained in the previous section (full line, CVM) and in [24] (dotted line, gauge fixed population

dynamics (GF-SG)). Please note that similar observations can be made also for the triangular

lattice, thus suggesting that the property we are discussing is not accidental.
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FIG. 4. ρ vs T phase diagram for the square lattice in the Kikuchi’s approximation (lower curve) and under

the GBP-GF dynamics (upper curve). The circles indicate the temperature at which GBP finds a non

paramagnetic solution and the squares the temperature below which GBP does not converge.

In particular Tc is close to the temperature below which the population of 5-fields evolves towards

a non-paramagnetic fixed point under GBP-GF dynamics (see [24]). Also in [24] we show that the

small discrepancy between this temperature and the Tc measured on single sample decreases by

increasing the sample size. The closeness of these two temperatures suggests that the messages

(5-fields) arriving on a plaquette in a 2D square lattice are almost uncorrelated and thus lead to a

similar results to the one obtained by a population dynamics, where messages are uncorrelated by

construction. So the critical temperature Tc for a given large sample can very well be estimated

from the average GBP-GF dynamics.
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Figure 10. Left: the set of four messages that we compute jointly by population
dynamics. Right: the population dynamic step consists in taking four quadruplets
at random from the population (those in black), and computing a new quadruplet
(the one in gray inside the plaquette) using randomly selected interactions Jij on
the plaquette.

case, messages participating in the cavity iteration are very close to each other in the
lattice, and thus correlated. Furthermore, GBP does not have the equivalent of a Bethe
lattice for BP, i.e. a model in which the correlation between cavity messages is close to
zero by construction. The second reason for a failure of the average case prediction is
that the transition we observe in single instances might be due to the almost inevitable
appearance of ferromagnetic domains in large systems (Griffith instability). The third,
and most obvious, reason is that the gauge invariance was not accounted for in the average
case calculation.

Reproducing the method of section 3 to obtain an average case prediction of the
critical temperature for gauge fixed GBP is not straightforward. The reason is that
the link-to-spin messages u should fulfil two different equations: their own original
equation (5), and the implicit equation derived from the fact that the gauge is fixed
and one of the fields in the plaquette-to-link message (U, u, u) is set to zero.

However, a different average case calculation is possible. We can represent the
messages flowing in the lattice by a population of quadruplets (uLl→l, uP→l, UP→lr, uLr→r),
where one of the original messages is absent because the gauge has been fixed (see the left
panel in figure 10). Given any four of these quadruplets of messages around a plaquette, we
can compute, using the message passing equations, the new messages inside the plaquette
(see the right panel in figure 10). The new population dynamics consists in picking
four of these quadruplets out of the population at random, then computing the new
quadruplet (using also random interactions in the plaquette) and finally putting it back
in the population. After several steps, the population stabilizes either to a paramagnetic
solution (where all u = 0 and only U != 0), or to a nonparamagnetic one (where also
u != 0).

In figure 11 we show the Edwards–Anderson order parameter qEA =
∑

i m
2
i /N

obtained at different temperatures using this population dynamics average case method.
We find that qEA becomes larger than zero at βCVM−GF " 0.81, which is quite close
to the inverse temperature βSG " 0.79 where single instances develop nonzero local
magnetizations and a spin glass phase. The correspondence between this average case
result and the single instance behavior is very enlightening; indeed the average case
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Figure 11. The Edwards–Anderson order parameter, see equation (13), obtained
using a population of N = 103 messages, and running the population dynamics
step 103×N times. In agreement with the single instance behavior, the transition
between paramagnetic (qEA = 0) and nonparamagnetic (spin glass) phases is
found at β " 0.81.

computation does not take into account correlations among quadruplets of messages and it
is not sensitive to Griffith’s singularities. So, the simplest explanation for the GBP + GF
behavior on single samples of the 2D EA model is that quadruplets of messages arriving on
any given plaquette are mostly uncorrelated and that at βSG a true spin glass instability
takes place (which is an artifact of the mean field like approximation). Please consider
that under the Bethe approximation the SG instability occurs at βBethe " 0.66, while the
CVM approximation improves the estimate of the SG critical boundary to βSG " 0.79 (on
single instances) and to βCVM−GF " 0.81 (in the average case).

6. Same approximation, four algorithms

It can be proved [17] that stable fixed points of the message passing equations correspond
to stationary points of the region graph approximated free energy (or CVM free energy).
The converse is not necessarily true, and some of the stationary points of the free energy
might not be stable under the message passing heuristic. As we have seen, the message
passing might not even converge at all. For a given free energy approximation (equation (1)
in our case), there are other algorithms to search for stationary points, including other
types of message passing and provably convergent algorithms. In this section we study
two of these algorithms and show that they do find the same spin glass like transition at
βm, but have a different behavior at lower temperatures.

The one presented so far is the so called parent-to-child (PTC) message passing
algorithm, in which Lagrange multipliers are introduced to force marginalization of
larger (parent) regions onto their children. Other choices of Lagrange multipliers are
possible [17], leading to the so called child-to-parent and two-way algorithms. Next we
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FIG. 5. Red surfaces correspond to the absolute value of the magnetization of the spins in a 100 × 100

system, while the contours (shadowed blue areas) mark the regions where the non convergence appears for

the first time. For each of the three values of ρ, two different realizations of the disorder are shown. The

xy-plane is set at magnetization |m| = 0.1. In most cases the convergence problems appear in the low

magnetization regions.

Still more surprising is the fact that GBP on a given sample stops converging at a temperature

Tconv which is very close to the analytical estimate for the temperature TCVM computed in the

previous Section, where the CVM paramagnetic solution becomes unstable. Connecting the lack

of convergence of an iterative algorithm (as GBP) to the appearance of a flat direction in the

CVM free-energy is something very desirable: this is what one would call a ’static’ explanation

to a ’dynamical’ behavior. However here the situation is more subtle, because on any given large

sample GBP ceases to converge to the paramagnetic fixed point at Tc: below Tc the fixed point

reached by GBP has many strongly magnetized variables. So, how can the instability of the

paramagnetic fixed point (where all local magnetizations are null) explain the lack of convergence

of GBP around the SG fixed point (with non-null magnetization)? We have studied in detail the

behavior of GBP close to Tconv and we have discovered that in the regions with magnetized spins

GBP messages are very stable and show no sign of instability; on the contrary, in the regions where

spin magnetizations are very close to zero, the GBP messages start showing strong fluctuations

and finally produce an instability that leads to the lack of convergence of GBP (see Fig. 5). Since

in these regions of low local magnetizations the distribution of GBP messages is very similar to



Summary

• BP fails on regular lattices...
and so improved methods based on BP

• GBP works better...
much better if improved
(dual algorithm, gauge fixing)

• SG solutions found by GBP are faithful

• Replica CVM improves largely Bethe
(e.g. phase diagrams)
and can “explain” GBP behavior


