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ABC Model (Evans et al.)

This is a three species system where each lattice site, on an interval
with N sites, or on a ring of /N sites with cyclic boundary conditions
N + 1 =1, is occupied by either an A, B or C type particle. Let
na(i) = 1(0) if site 7 is (is not) occupied by a particle of species
a,a=1,2,3,(A,B,C),i=1,---,N. A configuration n of this system
then consists of specifying all the nq(7), with Zgzl_na(i) = 1 and
Zf\él Na(i) = Na.

The dynamics consists of nearest neighbor exchanges between a
particle of species a at site ¢ and a particle of species v at site
i+1,i=1,---,N—1 on interval (clockwise on ring) with rate g < 1
if a <~ in cyclic order, and with rate 1 otherwise,

1 1 1
AB?BA BC?CB CA?AC.

Weakly asymmetric (Clincy et al.)

q = exp[-B/N] ~ 1 — %



It is “easy’ to see that on the interval, the dynamics satisfy detailed
balance with respect to the canonical Gibbs measure uﬂ(g), for all
NA,NB,NC,

vg(n) = exp[-BEN()]/Z

where
1 N-1 N
N 2 > [nc@n() +na@nc(G) +np@na@i))

1=1 j=141
and Z is the usual canonical partition function with fixed particle
numbers, No,aa = 1,2,3. The dynamics is ergodic for finite 3. Con-
sequently uﬁ(g) is the unique stationary measure, for 8 < oo, N < co.

En(n) =

Note that En(n) is of mean field type, with interactions which extend
over the whole length of the system. Hence the energy Ej grows
like N.



It is easy to check that if Ny = Np = N¢ then the energy En(7n)
(given on the previous slide) is also well defined on the ring, i.e. it
is independent of the starting site. Thus we can (mentally) connect
site N to site 1 clockwise, and ‘rotate” each configuration on the
interval without any cost in energy. The stationary measure is then
the same on the interval and on the ring, and is given by vg(7n).

In fact the observation about the relation between the ABC dynamics
and the equilibrium measure with long range interactions was first
made for the ring with N, = N/3 (Evans et al.).

When the N, are different the energy En(n) will not be periodic or
well defined on the ring. The model on the ring will then gener-
ally have a current in the stationary state and will thus not satisfy

detailed balance with respect to its stationary measure, which is
unknown.



Ground states on the interval

When there is a majority species, e.g. Ng > max(N4, N¢), there is
a unigue ground state consisting of three blocks ABC, with energy
per site emin = papc, Where po, = No/N.

When N4 = N > Np the ground state will be Np fold degenerate,
with some of the B’s at the left side of the interval followed by all
the C's then all the A’'s with the remainder of the B's at the right,
i.e. BiCAB>.

When Ny = Np = Ng the ground state is N-fold degenerate, con-
sisting of three blocks ABC with the origin of the A-block at any site
1. T his corresponds to the “rotational symmetry” on the equivalent
ring.



The ground state on the interval is therefore unique everywhere
except on the three line segments originating from py = pgp = 1/3
and terminating at the midpoints of the sides of the right triangle.
On the edges of the triangle the density of one of the species goes
to zero and the system reduces to a two species weakly asymmetric
exclusion process with a unique ground state.
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Wrong conjecture: the low temperature phase diagram on the
interval looks similar.



Properties of the Gibbs measure V3

Let (na; (i1)Ma5(i2) - - 1y, (2p))vs be the averages of the occupation
variables with respect to the Gibbs measure vg with «; = A, B,C.
Then it is easy to check that, for any value of the N,'s, No > 1, the

following holds

(na(1)) — e_ﬁ[ﬁa—l—Q_ﬁoz—l—l]’

(Na(N))
where o is counted modulo 3. It follows from the above that
3 3
I (1)) = ][] (na(N)), for all N.
a=1 a=1

One can also show that for fixed j, k with 7 %= k£ # 0 and i = [z]N],
x € (0,1),

im (na(i)np(i+ jinc(i+k)) = K,

N —o00

where K is a constant independent of x,5 and k.



Similarly it is “easy’” to see that

h h
<H 77042'([56]\7] ‘|‘]z)>/<H nap(i)([:vN] +jP(z’))> +1as N — oo

=1 1 =1
where P is any permutation of the {j;}, which is kept fixed as N — oo.

This means that the local measure on microscopic configurations is
exchangeable when the system becomes macroscopic.



Consider now the stationary probability distribution of a configura-
tion n, restricted to a finite neighborhood of a site i = [zN],x €
(0,1), e.g. [i—k,i+ k]. By shifting the origin to [xN] one obtains in
the limit N — oo a translation invariant measure () which, by the
exchangeability, is either a product measure, ﬁﬂ(g), with densities
n = (n1,no,n3), Or a superposition of such product measures, i.e.,

py (M = k(zin)in(n), =€ (0,1).

n

The limiting local Bernoulli measures clearly reflect the mean field
nature of the interaction giving rise to 7% without, in principle, any
reference to the dynamics.



We note that also on the ring, when the stationary measure is un-
known, local probabilities are, in the limit N — oo, given by a (su-
perposition of) product measures .

This follows dynamically, either on the ring or on the interval, from
the observation that when N — oo, the local generator of the dynam-
ics around [xN],z € (0,1) is that corresponding to the infinite sys-
tem, whatever the boundary condition on the finite system. Hence
for symmetric or weakly asymmetric exchanges, which become sym-
metric when N — oo, the invariant measures are the same as for
symmetric exchanges on Z. These are known to be superpositions
of extremal Bernoulli measures [in(n).
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This leads, via two independent ways, one dynamic and one equilib-
rium, to the determination of x(x;n) in the stationary state on the
interval. As we shall see the equilibrium route provides a criteria,
minimization of the free energy, for choosing the “right” x(x;n) and
leads via some interesting scenic byways, including elliptic functions,
to a phase diagram of the ABC system on the interval. By contrast,
the local measures on the ring with po %= 1/3, do not come directly
from any simple minimization principle, but see Clincy et al. and
Bodineau et al, and recent works by Bertini et al.
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To determine k(z; n) we note first that letting {pa(x)} be the limiting
average continuum density profile,

pal(z) = lim (na([zN])),
N —o0
where () is taken wrt the stationary measure, known or unknown,
then
palz) = Z"‘?(CU; n)na-

n

But this is clearly not sufficient information for determining x(x;n).
In fact, on the ring we always have pqo(x) = p independent of z.
The rest of this talk will be devoted to obtaining “typical” density
profiles and, using them, to obtain the correct () We will do this
first from the dynamics and then from V3.
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Density profiles: derivation from dynamics.

Given any initial state pu(n; sp) we have, for averages with respect to
u(n; s), s the microscopic time,

d%ma(m = ja(i—1,7) — ja(i,i+ 1),

where the flux of a-particles across the bond (i,i4 1) is, for a = A,

§aG i+ 1) = (na()lgnp(i + 1) +nc(@i + 1)) — MA@ + Dnp () + gne()])

= A1) —maG+ 1)+ 1 —a)(na(@Inc( —1) —np@i + 1)])
On the interval jo(0,1) = jo(N,N + 1) = 0.

In the stationary state jo(7,7+ 1) is independent of 7. In the interval
it will therefore vanish for all i. On the ring, (na(i)) = pa and
ja(i,i + 1) = jo independent of 7, with jo # 0 in general, except
when po = 1/3.
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Considering the time evolution of the *typical” density profile in

the hydrodynamic (diffusive) scaling limit i — [¢N],s — tN2, the

macroscopic density profiles {po(x,t)} will satisfy the equations,
apa(w7t) - a

——J, t 0,1
675 83: a(CU, )7 ZUE( ) )7

with the macroscopic flux J, given, for «a = A, by

0

JA(QC,t) — _£pA(x7t) + 6PA($7t) [pC(xat) - pB(mat)]a etc.,

and
1 — .
> palz,t) =1, /O pa(,t)dx = po, given.
o

For the interval, J,(0,t) = Jo(1,t) = 0O, for all t.
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In the stationary state, Jn(z) = Jo, with J, = 0 on the interval but
not necessarily on the ring. This gives the equations determining
the “typical” stationary pa(x),

%pm) = Bpa(@)lpc (@) — pp(2)] — Ja
= pp(@) = Bop@oa) — po(@)] - Tp (1)
= pe() = Bp(@lpp() — pa@)] - Te-

Note that the macroscopic flux is related to the microscopic flux
by considering (roughly) a limit Jo(x,t) ~ Njo([zN],[zxN] + 1). It
cannot therefore be obtained from g,y in the stationary state.
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Density profiles: equilibrium derivation.

Starting with the equilibrium measure I/B(ﬂ) one can derive an equa-
tion for the typical profiles {pn(x)} on the interval or the ring with
po = 1/3, when Jo = 0. These were first derived for the latter case
by Clincy et al.

Using the Gibbs canonical distribution V3 the probability of finding a
macroscopic density profile p(x) = {pa(x)} is given by the Helmholtz
free energy (multiplied by 3) as a large deviation functional

Prob({pa}) ~ exp[-NF({pa})],

where

F({pa}) = Be({pa}) —s({pa}),

with e and s respectively the energy and entropy per site.

16



For our (mean field) system,

F=p /01 dx /01—x dz [pa(z)pc(z + 2) + pB(x)pa(z + 2) + pc(z)pp(z + 2).
- /01 dz [pa(x) In(pa(x)) + pp(z) IN(pp(x)) + pc(z) IN(pc(z))],

To get the *typical”’ density profile we have to minimize F with
respect to pyq and ppg (Oor pa,pc, OF pgp,pc) Since we can always
eliminate one of the densities via > pa(x) = 1.

The minimizing profile will be a " compromise” between the entropy
which wants to keep all the densities uniform and the energy which
wants to keep the species segregated, as in the ground state.
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Minimization of F with respect to p4 and pp then gives the Euler-
Lagrange equations (ELE).

OF

— fA_fC:()a
(5p54]gx)

— fB—fCZO,
dpp(x)

OF T
Fa = (5—> = log pA(wH-ﬁ/ loc(y) — pB(y)] + const.
PA/ pp.pc 0

OF x
FB = (5— = log pB(w)-Fﬁ/ lpa(y) — pc(y)] + const.
PB/ pcipa 0

OF x
Fo = (5—> = log pc(z) + ﬁ/ loB(y) — pa(y)] + const.
PC/ pa,pp 0

and we have used the fact that the p, are fixed, and
pc(z) =1 —pa(x) — pp(z).
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Simple manipulations now show that Zpaan;a = 0, which implies,
rather surprisingly, that the solutions of the ELE, will satisfy the
equation, F, = const, i.e., the functional derivatives of F can be

taken as if the p, were independent.

This gives the ELE,

dp A

d— = PBpa (PC — PB)

dp%

d— = pBpB (PA — PC)

dpaéj

d— = Bpc (PB — PA) )
T

which are identical to the equations (1) when J, = 0. Inspection of
these equations show that their solutions satisfy

pa(z) + pp(z) + pco(x) = const = 1.
and that

pa(x)pp(z)pc(z) = K.
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The solutions of the ELE correspond to the stationary points of F
which are in the interior of the domain of permissible density profiles,
i.e., pa(x) > 0 for each o with x € [0, 1] as long as py # O.

This will always be the case for the minimizers of F, at nonzero
temperature, 8 < oo, due to the form of the entropy terms. For
B8 = oo, when only the energy counts, the minimizing densities will
be the continuum limit of the ground state configurations described
before (slides 5 and 6).
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“Explicit” solution of the ELE

Using the above equations we find that each pq(x) is a solution of

1 1

o (2)° + 882Uk (p(x)) =0,  Ug(p) = SKp—2p’(1—p)>

Set t = 20x and let y(t) = p(t/28); then y satisfies the equation

V(O + Uk(y(®) =0.

This is the equation of the zero energy solution of a mass 1 particle
moving in a potential Ug. For O < K < 1/27, Uk has four zeros,
with Ug(y) < O for a < y < b. See Figure. Since we are interested in
solutions which satisfy 0 < pa(x) < 1 we consider only the solutions
which oscillate between a and b.

These solutions can be expressed in terms of elliptic functions but
we do not use the representation in the results described below. In
fact our results may even give some new information about some
elliptic functions (as far as we know).
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Plots of Uk (y) for K =1/20, 1/27 and 1/50.
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Let yi denote the solution which satisfies yi(0) = a; yr(t) then
oscillates between a and b with period Ty and can be obtained for
all t by extending to an even function of period T}, where

(@) limg 107 T = 4mv/3 and limg o(Tk/IN(1/K)) = 6.

(b) Ty is a strictly monotonic decreasing function of K for 0 < K <
1/27.

For o« = A, B,C there must be a phase shift ¢, such that

pa(z) =y (268(x — 1/2) + ta), 0<z<1,

that is, each pq(x) is obtained by looking at the solution yy (x) within
a window of length 23 centered at some value t,, and rescaling from
t to x.

It can be shown that if pg(x), pg(x), and po(x) satisfy the ELE then
tqg = 1tp —|—TK/3 and to =tp — TK/3
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Phase plane orbit of yg(t) for K =1/100,1/50,1/27.1. The time
intervals between the six marked points are all equal to Tk /6.
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The figure below shows the curves pq(x) obtained from yg(t) and
yi(t £ Ty /3) for two values of 3, with the same p,'s.

| —

O O

-= O = O.s oO.s3 a
>~
1 —
O3 —
O.6G —
O.= —
O.= —
=2 O O.6 oO.S a
B

o O

Plots of py4 (red), pp (green), po (yellow) when
pp = 0.25,p4 = pc = 0.375.
(1) 3 =12.898,K = 5/144, (2) 8 = 32.5683, K = 1/204800.
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To obtain solutions p, for some K one views the curves yg(t) in a
window of length 23.

We label the solutions of the ELE by an integer which is one more
than the number of full periods that fit into the window.

A solution p(x) of the ELE with K < 1/27 is of type n, for n =
1,2,...,if (n— 1Tk <28 < nTk.
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Plot of K versus @ for different solutions for
pp=p<1/3,p4=pc=(1—pp)/2. The solid lines are the type 1
solutions, the dashed lines are the type 2 solutions and the dotted

line is the constant solution.
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As can be seen from the figure there will in general be many solutions

for the ELE for a given g and {pn}. We know that at least one of
these solutions will be the minimizer of F.

Question: (i) Is the minimizing profile p(z) = {pa(x)} unique?
(ii) If not unique, identify the minimizing profiles.
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Answer: For p = (1/3,1/3,1/3) and B8 < 2m/3 there is a unique
solution of the ELE and therefore ipso facto a unique minimizer. It
is (as expected from Clincy et al.) pa(x) = pa = 1/3 corresponding
to K = 1/27.

For p = (1/3,1/3,1/3) and 8 > 273 all type 1 solutions with
26 = Ty and tg any point in [0,Tk] are minimizing profiles. The
constant solution as well as the n > 1 type solutions, which will exist
for 8 > 2mn+/3 are not minimizers.

We can also prove for all 8 and p,'s, that the minimizing solution
has to be of type 1.

We have strong evidence that for p %= (1/3,1/3,1/3) there is a unique
minimizer for all 8 < oco. This is actually proven for 8 < 27r/\/§, all

pa, and for pp < pg = pco, all B.
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Local measures for ABC from equilibrium

e p=1(1/3,1/3,1/3), 3 < 2m/3, and for all p, with 3 < 27/+/3 as
well as for pg < pa = pc and B < oo,

k(z,n) = 6(p(x) —n), H(x) (ﬁ) — /jﬁ(x)

(As noted before, we believe, but have not proven, that this
uniqueness holds for all 3 < oo when not all the p, are equal.)
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e For p=1(1/3,1/3,1/3), 8 > 2m/3

1
Py () = /o Ap(atz) (1)dz
where, remembering that yi(t) is periodic with period Ty = 24,

we have

pa(z) =yrg(2B8(x—1/2))
pp(r) =yr(2B8(x—1/6))
pa(z) =y (26(x+1/6))

(I will not write this out in terms of x(x,n).)
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Local measures: general

The ABC model illustrates the general problem of finding the local
microscopic structure of macroscopic systems. This structure can
be uniform across the system (away from the boundaries) or it can
vary with x; * € A being a point in a macroscopic domain A € Rd,
say a unit cube. The macroscopic system in A is obtained as the
N — oo limit of a microscopic system in a stationary state with
specified bulk and boundary dynamics.

T he finite microscopic system is assumed to have a unique stationary
measure. This can be either an equilibrium measure, defined (for
the present) to be one in which there is detailed balance for the
dynamics, or not.
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As a simple example of the equilibrium case consider the Ising model
in the cube [—N, N]¢ ¢ Z4, evolving according to Glauber dynam-
ics satisfying detailed balance with respect to the Gibbs measure
~ exp(B > <ij> 00 + boundary terms). The boundary terms come
from boundary conditions which I will take to be either all 4+ or of
the Dobrushin type, + bc, ie +(—) for io > 0 (in» < 0).

When ( < Bc(d) there is only one extremal measure, u(c;3) for
the infinite system on Z¢ and so u,y(¢c) = p(c; B) for all z. When
B > Bc(d), in d > 2, there are two extremal translation invariant
states, pyy(o,8) and p_y(eo,3), with py(e,B) and p_y(e, 3) cor-
responding to the measures obtained from the all 4+ or all — boundary
conditions.

It is known that for Dobrushin boundaries p(,y,x € A, will for 2 >0
be ,u(_l_)(g, B) while for zo> < 0 it will be ,u(_)(g, B). When zo = 0 we
will get something which depends on the way the limit is taken and

on the dimension.
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In the simplest case consider the microscopic site 1 = (i1,0,i3) =
[tN]. Then in d = 2, H(z) = (u(+)(g,ﬁ) —I—,u(_)(g,ﬁ))/Q for all 3 >
Be(2). In d = 3, we will instead get for 8 > Brougn = Be(3), @ py)
which is non translation invariant, in the x5 direction corresponding
to a ‘“rigid” Dobrushin interface.

Taking the limit at 2 such that o = AV N will give a superposition

H) = eMnggy(e8) + (A = c(Mpy(e,B) in d = 2 with ¢(X) an
error function for 8 > Bc(2). In d = 3, with 8 > B,ougn One will get
c(A) =1 for A >0 and ¢(A\) = 0 for A < 0. It is not clear what one

gets for B € (Brough, Bc(3)).

Going now to a nonequilibrium example consider the case of the
open simple exclusion process.
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Open Systems

2.
a/ N\~

TASEP y=0=0,pa=0a,pp,=1—-7

Consider the stationary measure M(ﬂ) for the open system corre-
sponding to the SSEP or TASEP centered on j = [xN] then, in the
limit N — oo, P(z) IS given by

() = //1(:13; A)vydA

where {v,} are the infinite volume extremal stationary measures for
the SSEP or TASEP on Z.

35



For the SSEP there are only the Bernoulli measures, and it follows
from the work of Eyink, Spohn, L. that «(z;\) = d (A — p(x)),

p(x) = pa + x(pp — pa).
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For the TASEP the infinite volume stationary measures are either
of the blocking type, with all sites empty to the left and all sites
occupied to the right of some fixed site, or are translation invariant
Bernoulli measures at density p. Liggett proves that the blocking
measures do not enter in the decomposition of P(z)- When one is
not on the ‘“shock line” S, p(xz) = p, constant, and Liggett proves
that k(x; \) = (A —p) . On the shock line S

k(z; A) =26\ —pa) + (1 —x)6(A\ — pp).

S

1 /

N\
N\
SN
\
N\
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The phase diagram can be understood in terms of solutions of the
Burgers equation

dp(x,t) 0]
— L = 1 — R
which have shocks of the form
oo, 2 < X(1), .
p(x7t) - { p—l—; T > X(t), p— < P—l—,

this shock moves with velocity dX(t)/dt =v=1—p_ — p4.

In A the shock sticks to right,

in By the shock sticks to left,

in S, the shock has no net drift, v = 0.

In A>, B> and C' we are in the “fan” region,
C' is the maximal current phase.
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The proof given by Liggett is rather special — making use of some
inequalities to prove that the extremal states entering into the su-
perposition all have the same current,

J= Pa(]- — Pa) — Pb(l — Pb)-
We (Ayyer, L, Speer) have used a different argument which also
works (with modifications) for the case with a fixed density of sec-
ond class particles where we also find that all infinite volume ex-

tremal stationary states appearing in the superposition giving any
local measures have the same current.

There ought to be a general argument for this!
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Our argument goes as follows: For the one component TASEP not
on the shock line one has from the exact solution of the finite system
(Derrida et al.) that

5(z) = /)\m(a:; \)d\ = 7, constant

J(@) = [ A= Nal@ Ndr = 51— ).
T his implies that
Ak = (N7
and hence that
k(x; \) = d(x — p).

On the shock line one can use a ‘“‘second class’ particle which tracks
the shock microscopically and is uniformly distributed in [O, 1].
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This suggests a way of looking at what is happening globally in a
macroscopic system (S. Goldstein). Think of a general x(x; \) as
arising from a random field ¥ (x) which gives the (random) value of
“X'" at position x. For the cases considered, 1 (x) would either be a
deterministic field or, in the case of the TASEP on S,

Y(z) = 0(z —Y)pp + (1 = 0(z — Y))pa,

with Y uniformly distributed on the interval. Similarly for the ABC
model with p = (1/3,1/3,1/3), 8 > 27v/3, the phase shift tg is
uniformly distributed in [O, 1].
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In the general case one would hopefully get a global space-time
picture of what is happening in a nonequilibrium stationary state of
a macroscopic system which would go beyond the “local”™ measures
P(z)> T € N\. For example for the TASEP on S one would expect the
shock position to undergo a diffusion on a longer time scale.

This is a challenging task, related to recent work by Bertini et al. We
know that even in the simplest case of the SSEP the large deviation
function for finding density profiles p(xz) #= p(x) is not given by the
local equilibrium formulas. These reflect the O(1/N) corrections to
local equilibrium.

Is there a universal way of capturing this global behavior? Does the
global structure always depend only on the locally conserved quan-
tities described by hydrodynamic equations like the Navier-Stokes
equations?
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Example: Stationary shear flow (Chernov, L).
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