Parisi60 9 September 2008

Akira Ukawa Center for Computational Sciences University of Tsukuba

Progress in Lattice QCD

- physics, algorithms, and machines -

Giorgio and lattice QCD (I)

- First numerical calculation of hadron mass in lattice QCD (1981)
 - H. Hamber and G. Parisi, "Numerical Estimates of Hadronic Masses in a Pure SU(3) Gauge Theory", Nov 1981, Phys. Rev. Lett. 47, 1792, 1981
 - D. Weingarten, "Monte Carlo Evaluation of Hadron Masses in Lattice Gauge Theories with Fermions", Oct 1981. Phys.Lett.B109:57,1982.
- Limited in several respects:
 - Lattice size 4⁴~8⁴
 - Physical size L~1fm
 - Quenched approximation,
 i.e., no sea quarks

But a giant step forward

size $\approx 2 \times 10^{-15} m$

Giorgio and lattice QCD (II)
 Development of APE series of parallel computers optimized for lattice QCD (1984) Massively parallel architecture suitable for lattice QCD Optimized for complex arithmetic TAO Language and compiler
F(t) = f(t) +
 Parallel development in USA and in Japan

- Lattice QCD as computation and machine trends
- Physical point simulation and hadron spectrum
- Chiral symmetry and $K \rightarrow \pi \pi$ decay
- (Hot/Dense QCD)
- Conclusions

A bit of reminder

"fulfilling Yukawa's dream of 1934 in a refined way"

9

Lattice QCD as computation and machine trends

Current computing resources for lattice QCD in the World

- About 10 major cites scattered in USA, EU(UK, Germany, Italy etc), Japan
- In total 500~600Tflops in peak speed (US300Tf, EU150Tf, Japan100Tf)
 - Data sharing through *ILDG (International Lattice Data Grid)*

S Future: petascale computing
Peta-scale computing is around the corner(2010),
 National "Big Gun" projects
 USA: Road Runner (Cell-based cluster), BlueGene/Q,
 Japanese Project
 Commercial clusters based on multi-core CPU's (Intel, AMD)
New projects for lattice QCD
 QPACE Project (QCD Parallel Computing on the CELL)
 CELL-based cluster/200Tflops in 2009
 Pet-APE Project (Petaflops Processor Array Experiment)
 Reference platform for 2009-2014
GPGPU?
 Many-core high speed graphic cards/software development
Will lattice OCD be able to take back the leadership role in

Vill lattice QCD be able to take back the leadership role in High Performace Computing?

Physical point simulation and hadron spectrum

Molecular dynamics equation of HMC once again

UV/IR separation of quark force

$$\det D = \int d\phi_{UV}^+ d\phi_{UV} \exp\left(-\phi_{UV}^+ \frac{1}{D_{UV}}\phi_{UV}\right) \cdot \int d\phi_{IR}^+ d\phi_{IR} \exp\left(-\phi_{IR}^+ \frac{1}{D/D_{UV}}\phi_{IR}\right)$$

$$F_{quark} = F_{UV} + F_{IR}$$

Hasenbusch preconditioner $D_{UV} = D(m_a \rightarrow m'_a > m_a)$ M. Hasenbusch(2001)

Use heavier quark mass to separate out UV modes

 D_{IR}

Luescher domain decomposition M. Luescher (2005)

$$D_{UV} = \sum_{i} D_{\Lambda i}$$

Restricted to each domain → UV part of D

6	F	Recent larg	e-scale Nf=2+1	l calc	ulatio	ons
	Fe	atures Fully incorpora sea quarks, he Pion mass read PACS-CS even Lattice size to a	tes dynamical effects of nce called "Nf=2+1" ching down to attempting the physical avoid finite size effects	up, dow $m_{\pi} \approx 2$ point	νn, strai 00−30 m _π ≈14 m _π L ≈	nge 10 <i>MeV</i> 40 <i>MeV</i> 43-4
	Сс	ollaborations	action	a (fm)	L (fm)	m _π (MeV)
		MILC	Kogut-Susskind	0.06	4	220
		PACS-CS	wilson-clover	0.09	3	155
		BMW	wilson-clover	0.09	4	190
		RBC-UKQCD	domain-wall	0.085	4	220
		JLQCD	overlap	0.11	1.8	290

1.4

1.2

0

0.2

0.4

 $(m_{\pi}/$

0.6

0.8

Butapest-Marseille-Wuppertal Collaboration @ Lattice08

Chiral symmetry and $K \rightarrow \pi \pi decay$

- the strong interaction
- One of the key features of weak interaction

Nielesen-Ninomiya theorem

- Nielesen-Ninomiya (1981)
 Lattice fermion action satisfying
 - Chiral symmetry
 - Lattice translational invariance
 - Locality

necessarily has even number of states with the same flavor content,

i.e., exact chiral symmetry without doubling is not possible on the lattice

- Conventional fermion action
 - Wilson-clover action
 No doubling but explicitly broken by a mass-like term
 - Kogut-Susskind (staggered) action
 Only U(1) chiral symmetry and 4-fold doubling

□ Ginsparg-Wilson relation (1982)

$$D\gamma_5 + \gamma_5 D = 2aD\gamma_5 D$$
 or $\gamma_5 \left(D^{-1}\right)_{n,n'} + \left(D^{-1}\right)_{n,n'}\gamma_5 \neq 2a\gamma_5 \delta_{n,n'}$

- Avoids the Nielesen-Ninomiya theory via an ultra-local term which breaks chiral symmetry
- requires infinitely many fields to satisfy the relation (hence needs more computer power to simulate)

Explicit realizations

- Domain-wall fermion
- Overlap formalism
- Fixed point action

Kaplan('92)/Furman-Shamir('94) Neuberger-Narayanan('92,'97) Hasenfratz-Neidermyer('94)

Neuberger-Narayanan(1998)

$$D = \frac{1}{a} \left[1 + \gamma_5 \operatorname{sgn}(aH_W) \right], aH_W = \gamma_5 \left(aD_{wilson} - 1 \right)$$

 Rational approximants such as Zolotarev to approximate the sign function

- of weak interactions
- In the absence of chiral symmetry, mixing of wrong chirality operators destroys signal in numerical simulations
- NO success with conventional fermion actions in the I=0 channel

First attempt with domain wall QCD (2003)

- RBC Collaboration, Phys.Rev. D68 (2003) 114506
- CP-PACS Collaboration, Phys.Rev. D68 (2003) 014501
- quenched approximation
- Very complicated involving
 - 2 current-current operators
 - 4 QCD penguin operators
 - 4 EM penguin operators
- Used K-pi method,
 - i.e., uses chiral symmetry to reduce $K \rightarrow \pi \pi$ decay amplitude to $K \rightarrow \pi$ matrix element, and calculates the latter

$$\langle K | Q_i | \pi \pi \rangle \longrightarrow \langle K | Q_i | \pi \rangle, \langle K | Q_i | 0 \rangle$$

$$H_{W} = \frac{G_{F}}{\sqrt{2}} \sum_{i=1}^{10} c_{i} (\mu / m_{W}) Q_{i}(\mu)$$

	Reasonable agreement with experiment for $I=2$
	About half of experiment for $I=0$
	RIKEN-BNL-Columbia obtains a somewhat different result
	(smaller $I=2$ and larger $I=0$)
2.5	$\operatorname{Re} A_{\circ} [10^{-8} \mathrm{GeV}] \qquad \qquad$
	and the second s
2.0	$\square 16^3 \times 32$ $\blacksquare 24^3 \times 32$
	20 - Quadratic
	$\square 16^3 \times 32$ $\blacksquare 24^3 \times 32$
1.5	chiral log.

Second developments with direct
$$K \rightarrow \pi \pi$$
 amplitude
C. Lellouche and M. Luescher (2001)
C. Lellouche and M. Luescher (2001)
Finite-size formula for direct $K \rightarrow \pi \pi$ amplitude

$$\left| A_{physical} (K \rightarrow \pi \pi) \right|^{2} = 8\pi \left(\frac{E_{\pi\pi}}{p} \right)^{3} \left\{ p \frac{\partial \delta(p)}{\partial p} + q \frac{\partial \phi(q)}{\partial q} \right\} \left| \langle K | H_{W} | \pi \pi \rangle_{\text{Latrice}} \right|^{2}$$
Physical amplitude

$$p^{2} = E_{\pi\pi}^{2} / 4 - m_{\pi}^{2}, \quad q^{2} = (pL/2\pi)^{2}$$
Enite volume lattice amplitude

$$p^{2} = E_{\pi\pi}^{2} / 4 - m_{\pi}^{2}, \quad q^{2} = (pL/2\pi)^{2}$$

$$(p) = n\pi - \phi(q) \quad \text{Phase shift}$$
Requires $E_{K} = E_{\pi\pi}(L)$

Hot/Dense QCD

Theory predictions Consistent with most of simulations so far. Where is the physical point?

9	Nature of the transition for the physical point	
	Long-standing issue addressed by a large number of simulations since mid 1980's Bielefeld group, MILC Collaboration, JLQCD Collaboration etc 	
	"crossover and no real phase transition" has been a general concensus.	
	 Recent work employs dynamical staggered up, down, strange quark with realistically small quark masses Wuppertal group, Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K. Szabo, Nature 443 (2006) 675-678; PLB643 (2006) 46-54;Lattice08 Bielefeld-RBRC-BNL Collaboration, M. Cheng et al, PR D75 (2007) 034506, D74 (2006) 054507 HOTQCD Collaboration Lattice07:Lattice08 	
		-

Continuum limit extrapolation

Y. Aoki et al, Nature 443 (2006) 675-678

Transition temperature

- Point of dispute in recent literature
 - Wuppertal Group
 - RBC-Bielefeld, HOTQCD
- My view
 - No sharp definition since crossover; fairly broad in practice
 - May sizably depend on the quantity
 - Scale setting also introduces uncertainties

- Theoretical uncertainties with the staggered simulations
 - Only U(1)xU(1) chiral symmetry out of SU(N_f)xSU(N_f)
 - Fractional power of quark determinant [detD(U)] Nf/4 to "adjust" the #flavor
- Does it converge to the correct QCD in the continuum limit?
 - OK perturbatively, but is it at the non-perturbative level?
 - Lots of discussions in the the community, not yet settled:
 - Lattice06
 - S. Sharpe, "Rooted staggered fermions: good, bad, or ugly?"
 - Lattice07
 - M. Creutz, "Why rooting fails"
 - A. Kronfeld, "Lattice QCD with Staggered Quarks: Why, Where, and How"
- Clearly desirable to work with chiral action:
 - Domain-wall
 - Overlap

Much work and many simulations already done at T=0, so hot/dense QCD is the next natural target.

9	Transport coefficients in QGP
	 Very limited work over the years Karsch, Wylde, PRD35 (1987)2518 S. Gupta, PLB597(2004)57 Nakamura, Sakai, PRL94 (2005)072305 Aarts, Allton. Foley, Hands, Kim, PRL99(2007)022002 H. B. Meyer, hep-lat/0704.1801
	resurgence of interest due to RHIC experiment
	e.g., $\ell \approx \frac{\eta}{sT}$ mean free path $R \approx \left(\frac{\eta+\zeta}{s}\frac{1}{T}\frac{1}{\tau}\right)^{-1}$ Reynolds number
	η : shear viscosity, s: entropy density
	Application of the Kubo formula
	$\eta = \lim_{\omega \to 0} \frac{\rho_{12,12}(\omega,0)}{2\omega} \qquad \rho_{\mu\nu,\rho\sigma}(\omega,\bar{p}) = \int d^4 x \exp(ip \cdot x) \langle T_{\mu\nu}(x)T_{\rho\sigma}(0) \rangle$

Comments on finite-density QCD

The "sign problem", i.e., large phase fluctuation of the quark determinant detD for non-zero density

$$Z_{QCD} = \int \prod dU_{n\mu} \det D[U] \exp\left(-S_{gluon}[U]\right)$$

- Slow but steady progress over the years for not too large baryon density:
 - Estimate of the end point of the 1st order line on the T- μ plane
- Still no real prospect for large baryon number density

2-parameter reweigting method: Z. Fodor, S. Katz, JHEP 0404 (2004) 050 Nf=2+1, Nt=4

$$(T_E, \mu_E) = (162 \pm 2, 360 \pm 40) MeV$$

Taylor expansion method:

C. Allton etal, Phys.Rev. D71 (2005) 054508 Nf=2, Lt=4

Parisi-Wu (1981), Klauder, Parisi, ...

Recent work Aarts-Stamatescu archive0807.1597 60

Conclusions

Where we stand now

- Realistic calculation directly at the physical point finally in sight
 - Fruit of continuous effort over 25 years toward: Better physics understanding Better algorithms More powerful machines

Change of philosophy from "simulation" to "calculation"

- No more approximations/extrapolations
- Gluon configuration produced is Nature itself

Where do we go

- Expect that the fundamental issues of lattice QCD as particle theory makes major progress over the next five year range
 - Single hadron properties
 - Weak interaction aspects such as $K \rightarrow \pi \pi$ decays
 - Hot/dense QCD with chiral lattice action on large lattices
- Vast area of multi-hadron systems/atomic nuclei lies in wait for nuclear physics colleagues to explore
 - Nuclear force from lattice QCD
 - Exotic nuclei with unusual n/p ratios/strangeness etc

Nuclear force from lattice QCD(2007)

N. Ishii, S. Aoki, T. Hatsuda, PRL 99, 022001 (2007)

2-nucleon BS amplitude from lattice QCD

$$\phi(r) = \frac{1}{L^3} \sum_{\vec{x} \in L^3} \langle 0 | N(\vec{x} + r) N(\vec{x}) | NN \rangle$$

Extraction of potential from an effective Schrodinger eq.

$$V(r) = E + \frac{1}{2\mu} \frac{\nabla^2 \phi(r)}{\phi(r)}$$

- Impact and prospects
 - Derivation of the hard core
 - Extension to hyperon-nucleon potential etc

Quenched QCD 32⁴ lattice

$$m_{\pi} / m_{\rho} = 0.595$$

