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I introduce a dynamical field theory to describe the glassy behavior in supercooled liquids. The mean-field
approximation of the theory predicts a dynamical arrest transition, as in the ideal mode-coupling theory and
mean-field discontinuous spin-glass models. Instead, beyond the mean-field approximation, the theory predicts
that the transition is avoided and transformed into a crossover, as observed in experiments and simulations. To
go beyond mean-field, a standard perturbative loop expansion is performed at first. Approaching the ideal critical
point this expansion is divergent at all orders and I show that the leading divergent term at any given order is the
same as a dynamical stochastic equation, called stochastic-beta relaxation (SBR) in Europhys. Lett. 106, 56003
(2014). At variance with the original theory, SBR can be studied beyond mean-field directly, without the need
to resort to a perturbative expansion. Thus it provides a qualitative and quantitative description of the dynamical
crossover. For consistency reasons, it is important to establish the connection between the dynamical field theory
and SBR beyond perturbation theory. This can be done with the help of a stronger result: the dynamical field
theory is exactly equivalent to a theory with quenched disorder. Qualitatively, the nonperturbative mechanism
leading to the crossover is therefore the same as the mechanism of SBR. Quantitatively, SBR is equivalent to
making the mean-field approximation once the quenched disorder has been generated.
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I. INTRODUCTION

The ideal mode-coupling theory (MCT) for supercooled
liquids [1] and mean-field discontinuous spin-glass (SG)
models [2–4] both predict dynamical arrest at a critical
temperature. Experiments and numerical simulations on the
other hand do not display a transition but rather a dynamical
crossover from relaxational to activated-like dynamics. In
a recent publication [5], I have introduced a dynamical
stochastic equation, called stochastic-beta relaxation (SBR),
that provides a characterization of the temperature region
where the crossover occurs.

As a model of the glass crossover SBR is rather consistent
and lacks many of the drawbacks of earlier proposals to amend
ideal MCT. Ongoing studies of SBR are unveiling a rich
phenomenology and a rather nontrivial characterization of the
qualitative and quantitative changes occurring at the crossover
[6,7]. These include notably a change in the spatial structure
of dynamical fluctuations characterized by the appearance of
strong dynamical heterogeneities and violations of the Stokes-
Einstein relationship. Additionally, the increase of the relax-
ation time and of the dynamic susceptibility is accompanied
by a decrease of the dynamical correlation length below the
crossover temperature [7]. This challenges somehow the clas-
sic Adams and Gibbs [8] view that dynamical slowing down
is essentially driven by the increase of a correlation length
associated to the size of the cooperatively rearranging regions.

In order to fully appreciate the aforementioned properties,
one should acknowledge that SBR is not a phenomenological
theory. SBR is characterized by random quenched fluctuations
of the temperature. This essential feature is not an ad hoc
hypothesis, instead it comes out from a rigorous and complex
computation starting from clear and falsifiable assumptions.
As such SBR stands in a different position compared to many
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theories in the field of glassy systems that are either explicitly
phenomenological or at least very speculative. In this paper, I
present a complete discussion of this issue.

The starting point of the argument is that both MCT
and discontinuous SG (characterized by one step of Parisi’s
replica-symmetry breaking (1RSB) [9]) obey Götze’s equation
for the critical correlator. This is a mean-field equation in the
sense that it is a polynomial (quadratic) equation with coef-
ficients that are regular functions of the external parameters
(temperature, pressure, magnetic field, etc.). Landau theory
suggests that if the equation holds approaching a critical point,
then the critical point itself should be described by an effective
Hamiltonian.

The effective Hamiltonian (or effective action/theory in
a broader dynamical context) is simpler than the original
microscopic theory and can be identified by means of
symmetry arguments. As a first guess, the effective theory
can be determined by integration of the mean-field equation.
This guarantees that the effective theory is extremized by
the solutions of the mean-field equation. More precisely, the
effective theory is the most general polynomial of the order
parameter of the required order (cubic in our case, because
Götze’s equation is quadratic) with the symmetries of the
original microscopic problem.1

The above arguments are developed in Sec. II. In the
first section, I introduce a field-theoretical formulation of the
dynamics in order to understand the properties and symmetries
of the order parameter and of the action. Here, I discuss
the so-called fast-motion (FM) limit. In this limit, dynamical
correlations, and thus the effective theory, acquire a replica-
symmetric(RS)-like structure. In the second section, I discuss
in more details the nature of dynamical arrest in MCT and

1This criterion is mandatory if, as in this case, there are terms that
are irrelevant at the level of the mean-field equation and would not
show up upon integration.
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1RSB-SG. I recall the standard arguments of Landau theory
and the need to replace the critical mean-field equations with
an effective theory. I then argue that the effective theory is
RS-like in the FM limit but it retains this structure also in
the β regime, where the correlations are not RS-like. In the
last section, the dynamical effective theory is presented, for
brevity I refer to this specific effective action as the glassy
critical theory (GCT).

Section II is essentially introductory and deals mostly with
already published work. The following sections are the body
of the paper and are devoted to the study of the GCT. In
Sec. III, I study the GCT by means of a loop expansion. I start
with the mean-field equation, exhibit the bare propagator and
then study the Feynman diagrams. As usual, each term in the
loop expansion is found to be divergent approaching the ideal
critical point. I show that the leading divergent term at any
given order is the same generated by the loop expansion of
SBR. This proves a statement that was condensed in few lines
in Ref. [5]. The discussion is carried on initially for the zero-
dimensional case, and in the last subsection, it is generalized
to finite-dimensional systems. I note that the mapping to SBR
will be proven for all correlation functions, while in Ref. [5],
only the average order parameter was mentioned.

At variance with the GCT, SBR can be studied nonperturba-
tively unveiling the avoided nature of the transition and yield-
ing a description of the dynamical crossover. It is therefore
important to establish the connection between the dynamical
field theory and SBR beyond perturbation theory. This can be
done with the help of a result, presented in Sec. IV, that is
stronger than the one presented in Ref. [5]. According to it,
the dynamical field theory is exactly equivalent to a dynamical
theory with quenched disorder. Qualitatively, the nonperturba-
tive mechanism leading to the crossover is therefore the same
as that of SBR. Quantitatively, SBR is equivalent to making
the mean-field approximation once the quenched disorder has
been generated and the quality of this approximation depends
on the value of a dimensionless constant.

A well-known prediction within the random-first-order-
transition (RFOT) theory of the glass transition [3] is that
glassyness is driven by the increase of the correlation length
upon lowering the temperature. By contrast, SBR suggests a
different scenario, at least at the crossover. The interesting
point is that the alerted reader will recognize that the GCT,
albeit being a dynamical theory, is closely related to the static
replica theory that describes the so-called dynamical transition
within RFOT. Therefore it seems that there is a contradiction
that needs to be resolved, either by reconciling the two pictures
or by ruling out one of them.

Summarizing, Sec. II is where I lay down the basic
assumption a la Landau, i.e., the fact that at the dynamical
crossover, Götze’s critical equation must be replaced by the
glassy critical theory (GCT) defined in Eq. (31). Sections III
and IV present instead rigorous results that follow from this
assumption. In Sec. V, I give my conclusions.

II. GLASSY CRITICAL THEORY

A. Dynamical field theory

In order to determine the effective theory for the glass
crossover, I introduce a field-theoretical representation of

dynamics. I illustrate the method in the simplest case of a
single variable q that obeys Langevin dynamics:

1

�0
q̇ = −β

dH

dq
+ ξ, 〈ξ (t)ξ (t ′)〉 = 2

�0
δ(t − t ′). (1)

The discussion can be easily generalized to systems with many
degrees of freedom. In the standard framework [10–13], one
typically sets the initial time of dynamics to minus infinity,
here instead I want to compute averages of observables O[q(t)]
starting from an equilibrium initial configuration at time t = 0:

〈O〉 ≡ 1

Z̃

∫ ∏[
dq(t)dG(ξ (t))δ

(
− 1

�0
q̇ − β

dH

dq
+ ξ

)]
O

× exp[−βH (q(0))], (2)

where dG(ξ (t)) is the Gaussian measure over the thermal
noise ξ .2 The average over the initial condition implies that
the normalization constant Z̃ is exactly the partition function.
Rewriting the delta function in exponential form by means of
an auxiliary variable q̂(t) and integrating over ξ , we have

〈O〉 = 1

Z

∫ ∏
[dq(t)dq̂(t)]O exp(−L), (3)

where

L =
∫

dt

[
1

�0
(q̂q̇ − q̂2) + q̂β

dH

dq

]
+ βH (q(0)). (4)

The normalization constant Z is proportional to the partition
function at the initial time (times an irrelevant numerical
constant). Averages of observables involving the variable q̂

are associated with the response to perturbations of the form
�H (t) = −h(t)q(t) for times larger than the initial condition
(t > 0). For instance, it can be easily checked that

R(t,t ′) ≡ δ〈q(t)〉
δh(t ′)

= β〈q(t)q̂(t ′)〉 t ′ > 0. (5)

Responses to perturbation of the initial condition obey the
standard fluctuation-dissipation theorem

R(t) ≡ d〈q(t)〉
dh(0)

= β〈q(t)q(0)〉c. (6)

For a generic distribution of the initial condition, causality
implies that

R(t,t ′) = 0, t ′ > t. (7)

Since the initial condition is equilibrated, correlation functions
are time-translational invariant (TTI):

〈q(t)q(t ′)〉 = C(t − t ′), (8)

where C(s) = C(−s). Furthermore, the fluctuation-dissipation
theorem (FDT) implies that the response to a perturbation
acting on the initial condition and at all later times up to t ′′ < t

is given by

R(t) +
∫ t ′′

0+
R(t,t ′)dt ′ = β〈q(t)q(t ′′)〉c. (9)

2Even if the argument of the δ function is the Langevin equation, it
is also a δ function on its solution because the Jacobian is one if we
discretize in time according to the Ito convention.
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The above relationships combined imply

〈q(t)q̂(t ′)〉 = d

dt ′
〈q(t ′)q(t)〉 = −Ċ(t − t ′) (t ′ < t). (10)

The following general relationships (valid also for off-
equilibrium initial conditions) also hold in the above formal-
ism:

〈q̂(t)〉 = 0, 〈q̂(t)q̂(t ′)〉 = 0. (11)

They can be proven computing the derivative of ln
∫

exp(−L)
with respect to fields h(t) and noticing that ln

∫
exp(−L) =

ln Z (the free energy at the initial time) depends only on h(0).
The part of the Lagrangian that depends explicitly on the

Hamiltonian can be written in a compact form introducing a
novel coordinate η that has the properties of the product of two
Grassmanian variables:∫

dη = 0,

∫
η dη = 1, η2 = 0. (12)

The variables q(t) and q̂(t) can then be combined into a single
variable parameterized by the coordinate a = (ta,ηa):

q(a) ≡ q(ta) + ηaq̂(ta). (13)

Given a function A(a) ≡ A(ta,ηa), I define the integral over
da as∫

A(a)da ≡
∫ tmax

0+
A(ta,ηa)dηadta + A(0,0), (14)

where tmax is some maximal time over which we study
dynamics whose precise value is irrelevant as long as it is
larger than the larger time separation we want to study. We can
write the action as the sum of a kinetic term proportional to
1/�0 and of a potential term:

L = 1

�0

∫
dt(q̂q̇ − q̂2) +

∫
da β H (q(a)). (15)

Note that the generic product q(a)q(b) has four independent
components but the various relationships derived above imply
that instead the components of its average can be expressed in
terms of the sole correlation function C(s):

〈q(a)q(b)〉 = 〈q(ta)q(tb)〉 + 〈q(ta)q̂(tb)〉ηb

+〈q(tb)q̂(ta)〉ηa + 〈q̂(tb)q̂(ta)〉ηaηb

= C(|ta − tb|) − Ċ(ta − tb)θ (ta − tb)ηb

− Ċ(tb − ta)θ (tb − ta)ηa. (16)

The above structure is very general: considering any two
observables O1(q) and O2(q), one can show that the correlation
〈O1(q(a))O2(q(b))〉 takes the form of the right-hand side of
(16) with C(t) replaced by the correlation CO1O2 (t).

I now introduce the so-called fast motion (FM) limit
[12,14]. In physical terms, it amounts to studying the relax-
ational dynamics on an infinitely large time scale so that any
two-time correlation 〈q(t)q(t ′)〉 has relaxed to its infinite-time
value limt→∞〈q(0)q(t)〉. Formally, this can be achieved by
sending the parameter �0 to infinity leading to an extremely
fast microscopic dynamics (hence the name fast motion) so
that the memory of the initial condition is lost instantaneously.
One can argue that in the FM limit, the time dependence of any
two-time correlation is considerably simpler, the correlation

can take just two values depending on whether the two times
are equal or different. One can check by a simple explicit
computation that the form (16) becomes

〈q(a)q(b)〉 = δ(ab)(C(0) − C(∞)) + C(∞), (17)

where the delta function is defined with respect to
the integral (14) as

∫
δ(ab)g(a)da = g(b) and takes the

form δ(ab) = δ(ta − tb)(ηa + ηb)Q0(ta)Q0(tb) + P0(ta)P0(tb)
where the function P0(t) is defined as being equal to one
if t = 0 and zero otherwise. The function Q0(t) is equal to
1 − P0(t).3 Higher-order correlations also have a simplified
structure, for instance, a three-point correlation can take three
possible values and takes the form

〈q(a)q(b)q(c)〉 = c0 + c1[δ(ab) + δ(ac) + δ(cb)]

+ c2δ(ab)δ(ac). (18)

In general, the value of an n-point correlation depends only
on whether some indices coincide. This implies the following
general result: correlations in the FM limit have the same
expression of replica-symmetric correlations in a system of
n replicas, where a,b = 1, . . . ,n, and δ(ab) is the Kronecker
delta. I note that using this property one can establish the
connection between dynamics and statics. In particular, for
solvable models like mean-field SG, the statics can be solved
by the replica method and one can recover the same results
within dynamics by taking the FM limit [12,14].

The connection between FM and replica symmetry follows
from rather general arguments and holds also when using
Newtonian dynamics with Hamilton’s equations of motion.
In this case, the only averaging occurs for the initial condition,
more precisely once the initial configuration of the q is
fixed, the Maxwell-Boltzmann average over the momenta p

at the initial time generate different trajectories in analogy
with the different thermal histories in Langevin dynamics. Let
us introduce a field-theoretical representation of Hamiltonian
dynamics considering once again a single degree of freedom
q and its conjugate momentum p. For a Hamiltonian H (q,p),
action (4) becomes

L =
∫

dt

[
β

�0
(q̂ṗ − p̂q̇) + q̂β

dH

dq
+ p̂β

dH

dp

]
+βH (q(0),p(0)), (19)

where �0 = 1, but can take any value if we rescale times.
Using the same definitions for a and

∫
da introduced above,

we can define combined variables:

q(a) ≡ q(ta) + ηaq̂(ta), p(a) ≡ p(ta) + ηap̂(ta), (20)

3The unusual appearance of the functions P0(t) and Q0(t) is a
consequence of the special role of the initial time t = 0 encoded in the
definition (14). The explicit computation shows that

∫
δ(ab)g(a)da

is equal to g(b) = g(tb) + ηbĝ(tb) for tb > 0. For tb = 0, the integral
gives just g(0), which differs from �= g(0) + ĝ(0)ηa . Nevertheless,
the identity holds almost everywhere because upon an additional
integration of the form (14) ĝ(0) has zero measure, while g(0) has
measure one. Therefore one can replace a two-time correlation in the
FM limit with a delta function whenever integrations over all indices
are performed.
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and again decompose the dynamical action into a kinetic and
a potential-like term:

L = β

�0

∫
dt(q̂ṗ − p̂q̇) +

∫
da β H (q(a),p(a)). (21)

One can check that relationships (5), (6), (10), and (11) hold in
this formalism too and so does (16). The FM limit corresponds
to considering very large time scales or equivalently to have
very fast microscopic dynamics, i.e., sending �0 to infinity
and again one can check that all dynamical correlations are
RS-like.

B. Glassy phase transitions

Both mean-field 1RSB-SG and MCT are characterized
by phase transitions from a liquid phase to a glassy phase,
the order parameter being a two-time correlation. Although
the order parameter is discontinuous, overall the transition
is second-order in nature, notably, (i) the correlator displays
a square-root singularity, (ii) the correlation length diverges,
and (iii) dynamical fluctuations are also divergent. All these
features can be shown explicitly in 1RSB-SG [2,4]. In both
cases, the correlations obey the so-called Götze’s equation for
the critical correlator that displays a square root singularity.
Instead, fluctuations are not directly accessible in MCT but
the presence of a diverging correlation length can be demon-
strated within inhomogeneous MCT (IMCT), i.e., studying the
response to spatially inhomogeneous external parameters [15].

MCT and 1RSB-SG are mean-field in the sense that
the average order parameter near the critical temperature
obeys a polynomial equation with coefficients that are regular
functions of the external parameter. To illustrate this point,
let us consider the glassy phase. Here things are simpler
because one can forget about dynamics and study the long-time
limit of the correlator. One finds that it obeys a quadratic
equation of the form τ + q2 = 0, where τ vanishes linearly
at the critical temperature and q is the difference with the
value of the correlator at τ = 0. This equation leads to the
square-root singularity of the solution and is completely
general. In particular, it does not depend on the precise nature
of the approximations we made: whenever we deal with an
approximate closed equation for the averaged order parameter
we will obtain the square-root singularity, i.e., mean-field
behavior.

According to the modern theory of phase transitions,
the mean-field critical exponents can be altered by long-
wavelength fluctuations below the upper critical dimension.
This implies that every mean-field prediction (including those
of MCT) should be tested against these fluctuations. Within
Landau theory, one can argue that this problem can be
studied considering an effective Hamiltonian/action for the
long-wavelength fluctuations that depend on few coupling
constants. The effective action is a simple polynomial of the
order parameter with the symmetries of the original problem.

Let us apply the previous consideration to 1RSB-SG and
supercooled liquids to determine how is the Landau theory
describing their critical point. In general, the long-wavelength
order parameter is defined in terms of the Fourier transform
of the microscopic order parameter at small momenta. In spin
glasses, one typically considers the Fourier transform of the

microscopic overlap at different times:

Q(p,t,t ′) ≡
∑

x

sx(t)sx(t ′)eipx. (22)

In supercooled liquids, the natural order parameter is the
density-density correlator at different times defined as


(p,�,t,t ′) ≡
∫

dDxδρ(x,t)δρ(x + �,t)eipx, (23)

where the density fluctuations are defined as δρ(x,t) ≡∑
i δ(x − xi(t)) − ρ, where xi(t) labels the position of particle

i at time t and ρ is the density. The space coordinate x lies on
a lattice for SG systems while it is continuous in liquids.

In both mean-field 1RSB-SG and MCT near the critical
temperature, the correlator is concentrated near a system-
dependent plateau value on the time-scale of the β regime. The
deviations from the plateau value in the β regime are small and
critical and they should be identified with the critical order
parameter. Within MCT (but the same scenario is obtained
within other treatments [16]), the critical order parameter is
actually the projection of the distance from the plateau on a
system-dependent critical mode H̃�, we thus have

Q(p,t,t ′) ≈ qδ(p) + g(p,t,t ′),


(p,�,t,t ′) ≈ F�δ(p) + H̃� g(p,t,t ′), (24)

and the problem is to determine the effective theory obeyed by
g(p,t,t ′) in order to compute the average order parameter:

〈Q(p,t,t ′)〉 ≈ qδ(p) + 〈g(p,t,t ′)〉,
〈
(p,�,t,t ′)〉 ≈ F̃�δ(p) + H̃� 〈g(p,t,t ′)〉. (25)

Fourier transform of the previous expression with respect to
the real space variable � leads to the MCT expression

〈δρk(t)δρ−k+p(t ′)〉 ≈ Fkδ(p) + Hk 〈g(p,t,t ′)〉. (26)

From higher-order powers of (24), one obtains that higher
order connected correlations are also expressed near the critical
temperature as averages of the critical field

〈Q(p,t,t ′) . . . Q(p′,t ′′,t ′′′)〉c ≈ 〈g(p,t,t ′) . . . g(p′,t ′′,t ′′′)〉c,
(27)

〈δρk(t)δρk+p(t ′) . . . δρk′(t ′′)δρk′+p′ (t ′′′)〉c
≈ 〈g(p,t,t ′) . . . g(p′,t ′′,t ′′′)〉c Hk . . . Hk′ . (28)

The above relationships hold at large distances, i.e., for
small values of p, while the typical k’s are those of the
static structure factor. A description in terms of an effective
theory is valid provided the order parameter is small and
this explains why the present treatment focuses on the time
scales of the β regime. I recall that in order to have small
deviations of the order parameter, one needs to consider
large enough wavelengths corresponding to small p; indeed,
deviations on large values of p are local and therefore large.
Once short-distance fluctuations are integrated out, Landau
theory claims that the effective theory for the long-wavelength
fluctuations takes a simple polynomial form. For instance, in
the Curie-Weiss model, the local spins are Ising and thus have
a strongly nonlinear distribution while the total magnetization
becomes Gaussian in the thermodynamic limit.
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In the field-theoretical description of dynamics of the
previous section, the order parameter can be written as Q(ab)
(I will first remove the p dependence by considering the
zero-dimensional case, space-dependence will be reintroduced
later). Let us start considering the effective action in the FM
limit. As we saw before, in this limit, all dynamical correlations
must assume an RS-like structure, therefore the effective action
in the FM limit must be also RS-like. Furthermore, the physics
of the problem implies that the correlator at equal times is
not critical. In the context of supercooled liquids, this follows
from the known fact that the static structure factor Sk is regular
as a function of the temperature while the ergodicity breaking
parameter Fk displays a square-root singularity. We can thus
set the fluctuations of Q(aa) to zero without loss of generality.
No other symmetries should be imposed and thus we identify
the effective theory with the generic replica-symmetric theory
with Q(aa) = 0. The corresponding action will be written
explicitly below, see expression (31).

The critical properties of this theory in the replica formalism
(i.e., when a,b = 1, . . . ,n) have been studied in Ref. [17].
Unexpectedly, it turned out that at all orders in the loop
expansion, the critical properties of the theory are the same
with those of a quadratic stochastic equation. This result is
somehow spoiled by the fact that the quadratic stochastic
equation is ill-defined beyond perturbation theory. In the
following, I will also derive again this result diagrammatically.
Within the diagrammatic treatment one can see that the very
same mapping to an ill-defined static stochastic equation
holds for dynamics in the FM limit. Indeed, in the FM limit,
all correlators are RS-like and the only difference between
dynamics and replicas occurs when we perform integrals over
the indices, but, since we have

∫
da = 1 in both cases, the

result is exactly the same. As discussed in Refs. [5] and [18],
in order to go beyond this problem and obtain a well-defined
theory near the avoided singularity, one must abandon the FM
limit and consider dynamics on a finite, albeit large, time scale,
i.e., the β regime.

On a finite time scale the action must contain terms
depending on 1/�0 that break the RS-like structure of the
dynamical theory and restore time ordering leading to a
correlation C(t) that is a nontrivial function of time. This can
be checked explicitly in mean-field SG models [12,14]. Thus
it is highly nontrivial that we can study dynamics in the β

regime using the very same RS-like effective action valid in the
FM limit, i.e., without the �0-dependent terms. Indeed, it was
shown in Ref. [14] that the mean-field dynamical equations
in the FM limit admit also non-FM solutions describing the
time evolution of the correlator in the β regime. When written
explicitly, the equations become identical to Götze’s equation
for the critical correlator thus supporting the assumption that
the GCT is the Landau theory corresponding to MCT. All
these technical results will be discussed again in details in the
following sections.

At this point, it should be clear that the connection between
MCT and SBR is established at the level of the MCT
equation for the critical correlator, without any reference to the
microscopic derivation of MCT. The absence of the �0 terms
leads to a spurious time-scale invariance of the theory that can
be removed by matching arguments. This time-scale invariance
is a well-known feature of the MCT critical correlator.

C. The action and the order parameter

In this section, I define the mathematical problem I will
address in this paper. I consider an order parameter that is a
symmetric two-index object Q(ab) = Q(ba) such that

Q(aa) = 0, (29)

and I want to compute a generic average of the order parameter
of the form

〈Q(ab) . . . Q(cd)〉 ≡ 1

Z

∫ ⎛
⎝∏

(ab)

dQ(ab)

⎞
⎠

×Q(ab) . . . Q(cd) exp(−L). (30)

Where the zero-dimensional GCT is defined as

L = 1

2

(
− τ

∫
(da db)Q(ab) + m2

∫
(da db dc)Q(ab)Q(ac)

+m3

∫
(da db dc dd)Q(ab)Q(cd)

)

− 1

6
w1

∫
(da db dc)Q(ab)Q(bc)Q(ca)

− 1

6
w2

∫
(da db)Q3(ab). (31)

The coupling constants obey various constraints.4 The normal-
ization constant Z guarantees that 〈1〉 = 1. Formally, the same
action describes the static and dynamical problem, the main
difference being in the nature of the order parameter Q(ab).
An important difference is that in the dynamical case we
need an additional prescription in order to make the problem
of computing averages (30) with action (31) well-defined. I
will discuss this point later in the context of the mean-field
equation. I note that the symmetries of the action allow the
presence of other types of cubic terms [19] but they are
irrelevant for the final result as will be briefly explained in
Appendix.

Let us discuss the differences between statics and dynamics.
In the static treatment [17,20], the indices label different
replicas a = 1, . . . ,n, and the limit n → 1 must be taken at the
end of the computation. As a consequence, the order parameter
is a n × n symmetric real-valued matrix. In the dynamical
formalism, the indices a and the integral

∫
da have the

structure discussed previously and the order parameter q(ab)
is parameterized by four functions of the time coordinates ta
and tb. In both cases, however, we expect the averages of the
order parameter to be much simpler objects.

In the static case, the average order parameter is naturally an
RS matrix described by a single scalar q(ab) = q and q(aa) =
0. In the dynamical case, we expect on physical grounds that
the average order parameter obeys TTI and FDT and therefore
it is parameterized by the form (16) with a function C(t) such
that C(0) = 0. In the static case, it is clear that the action is

4The expression of the bare propagator, to be presented below,
implies m2 � 0 and m2 + m3 � 0. Without loss of generality, I
assume w1 > 0. Additional conditions also derived below imply
1/2 < w2/w1 < 1 that leads to w2 > 0 and w1 − w2 > 0.
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invariant under permutations of the replica indices and the RS
solution is an invariant too. In the dynamical case, by analogy, I
will define a matrix Q(ab) with the structure (16) an invariant.
In the next section, I will show that the invariant nature of the
average order parameter can be proven perturbatively: first,
one shows that at the mean-field level the average can be
described by an invariant, then one shows that corrections to
the mean-field expression preserve the invariant character at
all orders. It is likely that a nonperturbative proof can be found
but I leave this for future work.5 In the following, I will also
use a notion of generalized invariant that applies to objects
that depend on any number of indices (a, . . . ,c). In the replica
case, it is just an RS tensor while in the dynamical case the
extension is slightly more complex and it is defined in the
Appendix.

A property of any invariant matrix q(ab) with q(aa) =
0 that will be crucial in the following developments is the
following: ∫

da q(ab) = 0. (32)

In the replica treatment, the invariant is RS (q(ab) = q) and the
result is just (n − 1)q, which vanishes for n = 1. In dynamics,
the physical origin of the condition can be traced back to FDT
and TTI, at any rate it can be proven starting from the structure
(16) and of C(0) = 0 and it is discussed in Appendix.6 There
are many properties (e.g.,

∫
da = 1) like (32) that hold both

in the replicated and dynamical formalism (also beyond FM)
and allow a parallel treatment of the two problems. At the
technical level, this is one of the keys to the solution of the
problem.

III. THE LOOP EXPANSION

In this section, I will discuss the computation of the averages
(30) by means of a loop expansion in order to compute
systematically corrections to the mean-field result. First, I will
study the problem at the mean-field level, then study the bare
propagator and finally setup the diagrammatic loop expansion.
I will then show that the mapping to SBR holds at all orders
for the most diverging terms. In the end, I will generalize the
results to finite dimension adding a gradient term to the GCT.
I will discuss at the same time the replica and dynamical case.
In dynamics, the action will be expanded around the non-FM
solution of the mean-field equation of state corresponding
to the equation for the critical correlator of MCT. These
solutions do not have an RS-like form and therefore the
equivalence with the replica computation of [17] will be
lost.

5We note that in a full-fledged superfield formulation [12,13] one
can derive FDT and TTI from symmetries of the action but here we
choose the more compact setting of the first subsection, i.e., without
fermions.

6In the general case of invariant matrices with q(aa) �= 0,
∫

daq(ab)
is equal to qd (the diagonal value of the matrix in the replica treatment)
or to C(0) in dynamics.

A. The mean-field solution

The mean-field value q(ab) of the average order parameter
is given by the solution of the equation ∂L/∂q = 0:

0 = −τ + m2

∫
dc[q(ac) + q(bc)] + 2 m3

∫
(dc dd)q(cd)

−w1(q2)(ab) − w2 q2(ab). (33)

The above equation is valid for a �= b, and in the summation
over the indices we must recall that q(aa) = 0.7 The equation
admits invariant solutions [i.e., RS in replica formalism or
with the structure (16) in dynamics] and we will restrict the
discussion to them. As a consequence, the terms depending on
m2 and m3 will not contribute because of the property (32). In
the replica treatment, the above equation for an RS solution
q(ab) = q reduces to

0 = −τ + 2m2(n − 1)q + 2 m3n(n − 1)q

−w1(n − 2)q2 − w2q
2 (34)

giving for n = 1 and positive values of τ 8

q =
√

τ

w1 − w2
. (35)

Thus the static treatment at the mean-field level implies the
existence of a glassy solution for τ > 0 characterized by a
squared root singularity at the critical value τ = 0. In the
dynamic case, an invariant q(ab) is parameterized by a real-
valued function of time C(t) and the equation can be rewritten
as an equation for C(t). As shown in Ref. [14] and explained
in Appendix the equation reads

τ = −w2 C2(t) + w1
d

dt

∫ t

0
C(t − t ′)C(t ′)dt ′. (36)

This is the well-known Götze equation for the critical corre-
lator in mode-coupling theory. An important feature of this
equation is that it is time-scale invariant, in the sense that
if C(t) is a solution, C(s t) is also a solution for any real
s. Thus, strictly speaking, the mathematical problem defined
by Eqs. (31) and (30) is ill-defined dynamically: we have
a family of solutions related by a rescaling of time and we
need a prescription to choose one of them. I will consider the
following prescription. The action (and thus the mean-field
equation) contains additional hidden terms that affect the
small-time behavior of the solution leading to the condition

lim
t→0

C(t)ta = 1, (37)

where the value one is conventional (it can be replaced by any
constant through a rescaling of time), but it is crucial that it
does not depend on τ . The exponent a will be defined below.
The prescription can be justified physically with reference
to the previous section. Indeed, the hidden terms are those
proportional to 1/�0 that appear when we abandon the fast
motion limit. Their precise form is important for the dynamics

7Note the presence of the factor 2 in front of the m3 term that is
absent in the definitions of [21] and [14].

8The positive solution is the stable one according to the assumption
w1 > 0.
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on microscopic times. Instead, on the larger time-scale of the β

regime, their effect is just to remove the time-scale invariance
and they can be replaced by the prescription (37). Furthermore,
since the precise form of the 1/�0 terms is irrelevant, it is
also clear that the precise nature of microscopic dynamics
(Langevin versus Hamiltonian) is irrelevant as well.

Let us recall the main properties of the solution of Eq. (36).
Depending on the sign of τ , we have

C(t) =
√

|τ |/w1 g±(t/τβ), (38)

where the undetermined constant τβ encodes the time-scale
invariance of the solution. The two functions g±(t) obey the
following equation:

± 1 = −λ g2
±(t) + d

dt

∫ t

0
g±(t − t ′)g±(t ′)dt ′, (39)

where the so-called parameter exponent is given by λ = w2/w1

[14,22]. The functions g±(t) diverge as 1/ta for t → 0. In the
large time limit, they behave differently, g+(t) goes to the
constant value 1/

√
1 − λ while g−(t) goes to minus infinity as

−tb. The exponents a and b are determined by the well-known
expression

λ = �2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
. (40)

I recall that the above relationship implies additional con-
straints on w2/w1.9 Note that the divergence of the correlator
g±(t) at small times can be considered again a spurious
consequence of time-scale invariance and, indeed, it is also
fixed by the presence of the 1/�0 terms.

The above prescription to choose a unique C(t) allows us to
express τβ as a function of τ leading to the well-known MCT
scaling law:

τβ = t0
1

τ
1

2 a

, (41)

where the constant t0 is model dependent. I note that in both the
static and dynamical treatment, the deviations of the correlator
from the plateau value are O(|τ |1/2) in the β regime. Instead,
we expect on physical grounds that at any finite time, the
variations of the correlator are linear with τ , i.e., they vanish
at leading order. This is the physical origin of the condition
q(aa) = 0; as I said already, it corresponds to the well-known
feature that the static structure factor in MCT is linear in τ

at the transition. In the static treatment, time differences are
either zero (a = b) or infinity (a �= b) and q(aa) = 0 is the
only consequence. Instead, in the dynamical treatment, time
scales are not clearly separated. This leads to the additional
implication that the correlator C(t) cannot be O(|τ |1/2) for
t → 0, and this implies that the prescription (37) does not
depend on τ leading to the scaling (41).

9In particular, λ � 1 (the equality corresponding to a tricritical
point not described by the present theory) and λ > 1/2 that follows
from b < 1 under the assumption of complete monotonicity (that is
satisfied, e.g., by correlation functions with Langevin dynamics).

B. The bare propagator

In this section, I will study the equation for the bare
propagator of the theory. Here, the time-scale invariance of
the mean-field equation leads to a spurious zero mode in the
propagator that is removed by the prescription (37). From this
point on, all results are presented for the first time.

By expanding the action (31) around the solution of the
mean-field equation (33), I obtain an equation for the bare
propagator G(ab)(cd):∫

d(a′b′)G(ab)(a′b′)M1(a′b′)(cd)

+m2

∫
dc′[G(ab)(c′d) + G(ab)(cc′)]

+ 2m3

∫
(dc′dd ′)G(ab)(c′d ′) = δ(ab)(cd), (42)

where M1(ab)(cd) comes from the quadratic part of the action,
i.e., it satisfies a generic matrix v(ab):∫

d(cd)M1(ab)(cd)v(cd)

≡ −2w2q(ab)v(ab)

−w1

∫
dc(q(ac)v(cb) + v(ac)q(cb)). (43)

The operators M1 and G are defined on the space of symmetric
matrices with zero diagonal, therefore Eq. (42) and the above
definition of M1 hold only for a �= b. Equation (42) must be
supplemented with the condition

G(ab)(cc) = 0 (44)

that follows from the constraint Q(aa) = 0. In the
RHS, δ(ab)(cd) is a delta function in the space of
symmetric matrices Q(ab) with Q(aa) = 0 such that∫

d(a′b′)A(ab)(a′b′)δ(a′b′)(cd) = A(ab)(cd), where the inte-
gration over the couples of different indices can be written in
terms of integrations over single indices as∫

d(ab) · · · ≡ 1

2

∫
da db (1 − δ(ab)) . . . . (45)

Note the following relationship that will be essential in the
following: ∫

d(ab) = 0. (46)

I recall that in the replica treatment the above result only
holds for n = 1, its general expression being n(n − 1)/2.
More technical details on the use of restricted (d(ab)) and
unrestricted (da db) integrations are given later.

The exact expression for the bare propagator will be given
at the end of this section, but it is instructive to consider the
following quantity first:

χ (ab) ≡
∫

d(cd)G(ab)(cd). (47)

It is easy to see that χ (ab) is the (mean-field) longitudinal
susceptibility, i.e., the derivative of the solution of the
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mean-field equation with respect to τ :

χ (ab) = dq(ab)

dτ
, (48)

thus its expression can be obtained by derivation with respect
to τ of the solution. In the replica case, we have χ (ab) = χ

and from (35) the derivative yields

χ = 1

2
√

τ

(
1

w1 − w2

)1/2

. (49)

In the dynamical case, deriving expression (38), we obtain that
χ (ab) is an invariant matrix parameterized by a function χ (t)
given by

χ (t) = dC(t)

dτ
= ± 1

2
√|τ |w1

f±(t/τβ), (50)

where the scaling function f±(x) is given by

f±(t) ≡ g±(t) + t

a

dg±
dt

(t), (51)

the above scaling function has already been discussed in
Ref. [23] (the additional factor 1/2 in Eq. (15) of Ref. [23] is a
typo). Since the leading correction to the small time behavior
1/ta of g±(t) is O(ta) [1], one obtains that f±(t) = O(ta)
at small times. For large times, we have f−(t) ∝ tb and
f+(t) = 1/

√
1 − λ (as in the static case).

It is instructive to check that, as it should, the above
expressions satisfy the equation for χ (ab) that can be obtained
integrating equation (42) over d(ab). We have∫

d(a′b′)χ (a′b′)M1(a′b′)(cd) + m2

∫
dc′[χ (c′d) + χ (cc′)]

+ 2m3

∫
(dc′ dd ′)χ (c′d ′) = 1. (52)

Note that in both the replicas and the dynamical treatment, we
have ∫

db χ (ab) = 0, (53)

this is because in both cases χ (ab), being the derivative of
an invariant matrix with zero diagonal, is itself an invariant
matrix with zero diagonal and thus satisfies expression (32).
As a consequence, the two terms depending on m2 and m3

vanish. In the replica case then, it is immediate to check that
the equation is verified, while the dynamical case is less trivial.
We can rewrite χ (ab) in the dynamical case as

χ (ab) = 1

2 τ
q(ab) + 1

2 τ a
q0(ab), (54)

where q0(ab) is defined as the invariant matrix parameterized
by t dC(t)/dt . The first term is already a solution of Eq. (52)
because q(ab) is a solution of the mean-field equation (33),
thus∫

d(cd)M1(ab)(cd)q(cd) = −2 w1 (q2)(ab) − 2 w2 q2(ab)

= 2τ. (55)

It follows that q0(ab) must be, and indeed is, a zero mode
of the operator M1. The reason why there is a zero mode

lies in the time-scale invariance of the mean-field equation
discussed previously. This can be seen starting from the fact
that C(s t) is a solution of the mean-field equation for any s

and deriving the mean-field equation with respect to s at s =
1. Therefore the equation

∫
d(a′b′)χ (a′b′)M1(a′b′)(cd) = 1

leaves the constant in front of the zero mode unspecified. In
order to fix it, we must resort to the prescription (37) of the
previous subsection. The very same 1/�0-dependent terms
that control the small-time behavior of the mean-field equation
will also be present in the equation for the bare propagator.
Their effect will be to impose that χ (t) goes to zero at small
times fixing the constant of the zero mode to 1/(2τa). One may
consistently notice that when we obtained χ (ab) by derivation
with respect to τ , the second term in (51) came from the
derivative of the time scale τβ , which was previously fixed
by removing the time-scale invariance using the small-time
prescription.

In order to proceed with the computation of the bare
propagator, let us observe that the mass matrix in the critical
region (where |τ | is small) is made of a small O(

√|τ |) term
(i.e., M1) and two other terms that do not vanish as τ → 0.
One should identify the modes to which these finite masses
m2 and m3 correspond and argue that their fluctuations remain
finite at τ = 0, i.e., they are not critical. From a critical point
of view, one would argue that all components of the bare
propagator diverge as O(1/

√|τ |) except those corresponding
to the massive modes that remain finite and can be considered
to be zero on the scale O(1/

√|τ |) of the propagator. As we
will see in both statics and dynamics, what happens is quite
different from these expectations and leads to the mapping to
the stochastic equations.

A key observation is that the structure of the finite terms is
the same in the replicated and dynamical formalism and we
can build on results from the SG literature [19]. In particular,
we can rewrite the mass matrix M(ab)(cd) as

M(ab)(cd) = M1(ab)(cd) − m2PA + 4(m2 + m3)NL, (56)

where the operators PA and NL are defined (in both static and
dynamics) as

(PAφ)(ab) ≡ −
∫

dc (φ(ac) + φ(bc)) + 2
∫

(dc dd)φ(cd),

(57)

(NLφ)(ab) ≡
∫

d(cd)φ(cd). (58)

One can check thatPA is a projector P2
A = PA on the so-called

anomalous subspace (in the replica case this is true if n → 1, in
dynamics it follows from the condition

∫
da = 1). This is the

space of matrices Q(ab) with Q(aa) = 0 that can be written
(for a �= b) as Q(ab) = ψ(a) + ψ(b) with

∫
daψ(a) = 0. The

operatorNL in matrix form is a constant, i.e.,NL(ab)(cd) = 1;
it transforms any matrix into a constant but it is not a projector,
instead it is nilpotent N 2

L = 0. In both dynamics and statics,
this property follows from Eq. (46) and it is essential in the
following developments, we will see that the NL term will
increase fluctuations instead of reducing them.

To proceed, let us make some qualitative considerations.
Given that the anomalous sector has a finite mass, we would
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expect that the leading divergent behavior of the propagator
would not be changed if we just put the corresponding
component to zero. More precisely, we could write

PAG = O(1), (59)

which is equivalent to∫
dc G(ab)(cd) + O(1) =

∫
(dc dd)G(ab)(cd) ≡ 2χ (ab).

(60)

If we substitute the above expressions into Eq. (42), we have∫
d(a′b′)G(ab)(a′b′)M1(a′b′)(cd)

+ 4(m2 + m3)χ (ab) = O(1), (61)

now multiplying by M−1
1 , we have

G(ab)(cd) = −4(m2 + m3)χ (ab)
∫

d(a′b′)M−1
1 (a′b′)(cd)

+O
(
M−1

1

)
. (62)

Multiplying by M−1
1 the equation

∫
d(ab)χ (ab)M1(ab)(cd) =

1, we have ∫
d(a′b′)M−1

1 (a′b′)(cd) = χ (cd) (63)

from which we finally arrive at

G(ab)(cd) = −4(m2 + m3)χ (ab)χ (cd) + O
(
M−1

1

)
, (64)

this implies that G(ab)(cd) has a double pole, i.e., while the
small mass M1 is O(

√
τ ) and thus the longitudinal suscepti-

bility χ (ab) is O(M−1
1 ) = O(1/

√|τ |), the full propagator is
O(1/|τ |), i.e., it is proportional to the squared inverse mass.
This has to be contrasted with the following integrals of the
propagator ∫

(dc dd)G(ab)(cd) ≡ 2 χ (ab), (65)∫
dc G(ab)(cd) ≡ 2 χ (ab) + O(1), (66)

that are less divergent, note that upon integration the
double-pole contribution in G(ab)(cd) vanishes because of∫

daχ (ab) = 0 according to (32).
We will now present the exact expression of the bare

propagator. We define

�M ≡ M1(ab)(cd) − m2PA, (67)

therefore the equation for the propagator becomes

(�M − vNL)G = I (68)

with the following definition:

v ≡ −4(m2 + m3). (69)

The exact solution is

G(ab)(cd) = 1

�M
(ab)(cd) + v χ (ab)χ (cd), (70)

where χ is the longitudinal susceptibility defined before, i.e.,
it is the solution of the following equation in the space of
symmetric matrices with zero on the diagonal:

χ · �M = χM1 = nL, (71)

where nL is defined as the matrix with all el-
ements equal to one nL(ab) = 1 and nL(aa) = 0.
Equation (68) holds because we have NLχ = PAχ = 0,
(NL�M−1)(ab)(cd) = nL(ab)χ (cd), which cancels with the
term (�Mχ )(ab)χ (cd) = nL(ab)χ (cd).

Note that we have derived above the explicit expression
for χ (ab) but we cannot write down in explicit form neither
1/�M nor 1/M1. However, in order to proceed, we do not need
these quantities explicitly. The only information we will use is
that 1/�M is O(1/

√|τ |) for |τ | small, i.e., it is less divergent
than the leading-order O(1/|τ |) term. This follows because
(i) 1/M1 scales exactly as O(1/

√|τ |) because the mean-field
solution q(ab) is proportional to

√|τ | and (ii) PA is a projector
and thus it can reduce fluctuations in the anomalous sector
without changing the scaling of the components that remain
critical.

Summarizing, the key point is that PA is a projector,
whereas the operator NL is not. As a consequence, while the
presence of PA does not change the scaling of 1/�M with
respect to 1/M1, the presence of NL leads to a completely
different scaling behavior of G with respect to 1/�M with
appearance of a double pole.

C. The diagrammatic loop expansion

Let us rewrite the glassy critical theory in terms of the
deviation of the order parameter Q(ab) from the mean-field
solution q(ab) obtained before. The action (31) reads

L = 1

2
(δQG−1δQ)−1

6
w1

∫
(da db dc)δQ(ab)δQ(bc)δQ(ca)

− 1

6
w2

∫
(da db)δQ3(ab), (72)

where δQ(ab) ≡ Q(ab) − q(ab) and G(ab)(cd) is the bare
propagator studied above. We consider now the loop expansion
obtained by using the Taylor series for the terms proportional
to w1 and w2. The various terms in the expansion are given
by all Feynman diagrams with vertices of degree three. The
diagrams contributing to a correlation function of the form
(30) involving the order parameter to the power E are given
by the (infinite) set of diagrams with E external lines. The
generic average of the form (30) picks up contributions from
both connected and disconnected diagrams. Diagrams where
there is a disconnected component that does not contain any
external line are called fully disconnected diagrams and do
not contribute, being canceled by the normalization factor
(see, e.g., Ref. [24]). Connected correlations obtained from the
generic correlation (30) correspond to connected diagrams.

In Fig. 1, we display some of the Feynman diagrams that
need to be considered for various objects. To each line in a
given diagram, we must attach the bare propagator (70), and
to each vertex we must attach the contributions given by w1 and
w2 in (72). For instance, if we consider the diagram (g) of Fig. 1
that contributes to the dressed propagator 〈Q(ab)Q(cd)〉c, we
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

FIG. 1. Some of the (infinite) cubic diagrams for the computation
of Z and for correlations with an order parameter to the power E =
1,2,3,4. Diagrams (i) and (m) are disconnected and contribute to the
correlations but not to connected correlations. Diagrams (f) and (n)
are fully disconnected and do not contribute at all.

will have four contributions:

w2
1

∫
(dm dn dl)(dm′ dn′ dl′) G(ab)(mn) G(lm)(l′m′)

×G(ln)(l′n′) G(m′n′)(cd)

+w1 w2

∫
(dm dn dl)(dm′ dn′) G(ab)(mn) G(lm)(m′n′)

×G(ln)(m′n′) G(m′n′)(cd)

+w1 w2

∫
(dm′ dn′ dl′)(dm dn) G(ab)(mn) G(mn)(l′n′)

×G(mn)(m′l′) G(m′n′)(cd)

+w2
2

∫
(dm′ dn′)(dm dn) G(ab)(mn) G(mn)(m′n′)

×G(mn)(m′n′) G(m′n′)(cd). (73)

Note that the action (31) is written in terms of unrestricted
integrals over the coordinates a,b,c, i.e., in principle, it
depends also on Q(aa), therefore the condition Q(aa) = 0
must be explicitly enforced whenever we use unrestricted
integrations as we did below Eq. (33) and in (44). When
evaluating the Feynman diagrams, we can use the unrestricted
expressions for the vertices [as we did above in (73)] because
the constraint δQ(aa) = 0 is automatically enforced by the
propagator through the condition G(ab)(cc) = 0.

Given that the propagators attached to the lines diverge as
1/|τ |, we expect that each diagram will also be divergent. In
particular, the naive expectation would be that each of the four
terms in expression (73) should be divergent as |τ |−4. Instead,
this is wrong, because it turns out that the leading O(τ |−4)
term has a zero prefactor. In order to see this, let us replace
G(ab)(cd) in the above expressions with its most diverging
term vχ (ab)χ (cd) according to (70). We can check that the

summation at each vertex can now be done independently. For
a vertex of type w1, we have a contribution given by∫

(dm dn dl)χ (mn)χ (ml)χ (ln), (74)

while for a vertex of type w2, we have a contribution∫
(dm dn)χ3(mn), (75)

the key point is that both contributions vanish. This can be seen
starting from the property (proved in the Appendix) that given
two invariant matrices A(ab) and B(ab) both A(ab)B(ab)
and the matrix product (AB)(ab) are also invariant matrices.
Since χ (ab) is a zero-diagonal invariant matrix, χ3(ab) is also
a zero-diagonal invariant matrix, therefore the property (32)
implies that the prefactor (75) vanishes. The prefactor (74) can
be rewritten in terms of the matrix χ (mn)(χ2)(mn), which is
zero on the diagonal and property (32) can again be used. We
have thus shown that∫

(dm dn dl)χ (mn)χ (ml)χ (ln) = 0, (76)∫
(dm dn)χ (mn)(χ2)(mn) = 0. (77)

In order to see which contributions are nonzero, let
us now introduce a graphical representation of the prop-
agator G(ab)(cd) by associating the most divergent term
vχ (ab)χ (cd) = O(|τ |−1) to a crossed line and the less
divergent term �M−1 = O(|τ |−1/2) to a full line. This repre-
sentation is borrowed from the literature on the random-field
Ising model (RFIM), see, e.g., Ref. [25]. Now the diagram,
say, (g) of Fig. 1 can be rewritten as the sum of 16 diagrams
(see Fig. 2 where only nine diagrams are shown because
the remaining seven can be obtained by symmetries). The
most diverging contribution is obtained by putting crossed
lines on all lines, this corresponds to diagram (a) in Fig. 2.
However, we have already seen that if we put a crossed line
on each of the three legs of a given vertex, we will have a
vanishing contribution, either (74) or (75). The above property
leads to the following necessary condition to have a nonzero
contribution: each vertex must have at least a full line attached
to it. This implies that both diagrams (a) and (b) in Fig. 2
vanish.

In order to obtain the maximum degree of divergence of
a given cubic diagram, we have to maximize the number of
crossed lines while satisfying the above necessary condition.
The necessary condition can be fulfilled by connecting the
vertices through treelike (no-loop) structures of full lines.
Indeed, suppose that there is a loop of full lines on the
Feynman diagram [as in diagrams (g), (d), and (i) in Fig. 2],
we can open the loop by replacing one full line with a crossed
line obtaining a more divergent diagram that still verifies the
necessary condition that each vertex has a full line attached to
it [respectively, (f), (e), and (h)].

Actually, the condition that each vertex must have at least
a full line attached to it is necessary but not sufficient to give a
nonzero contribution. The necessary and sufficient condition,
which will be discussed in the Appendix, is that if we split
the graph into subgraphs by cutting all crossed lines, every
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(a)

(b)

(c)

(d)

(i)

(e)

(f)

(g)

(h)

FIG. 2. Diagrams contributing to the two point correlation in the
crossed lines representation. Seven other diagrams can be obtained
from symmetries. The necessary condition implies that diagrams
(a) and (b) vanish, the necessary and sufficient condition implies
that diagrams (g) and (e) also vanish. All remaining diagrams give
diverging contributions with nonzero prefactors. The maximal degree
of divergence is given by the terms where the full lines are organized
on trees, i.e., diagrams (f) and (c).

subgraph must contain at least one external line. Therefore
the condition of maximal divergence is that each vertex in the
diagram must be on a tree of full lines and each tree must be
connected to an external line. With respect to Fig. 2, we have
the following: the necessary condition implies that diagrams
(a) and (b) vanish, the necessary and sufficient condition
implies that diagrams (g) and (e) also vanish. All remaining
diagrams give diverging contributions with nonzero prefactors.
The maximal degree of divergence is given by the terms where
the full lines are organized on trees, i.e., diagrams (f) and (c). It
should be clear that the previous discussion applies to any cubic
diagram with any number of external legs and any number of
vertices, i.e., at all orders in the loop expansion.

D. Mapping to the stochastic equation

In the previous section, we have shown that the leading
divergent diagrams are those associated to trees and now we
will proceed to show that these diagrams are precisely those
that are generated by the solutions of a stochastic equation.

Let us rewrite the quadratic part of the action (31) in terms
of the operators PA and NL introduced in Sec. (III B) as

1

2

(
−τ

∫
(da db)Q(ab) + m2

∫
(da db dc)Q(ab)Q(ac)

+m3

∫
(da db dc dd)Q(ab)Q(cd)

)

= −τ

∫
d(ab)Q(ab) − m2

2
(QPAQ)

+ v

2

(∫
d(ab)Q(ab)

)2

. (78)

The last term can be rewritten in terms of a random shift of τ

using the identity

exp

[
−v

2

(∫
d(ab)Q(ab)

)2
]

=
∫

ds√
2πv

e− s2

2v exp

[
s

∫
d(ab)Q(ab)

]
(79)

and the generic correlation (30) can now be rewritten as

〈Q(ab) . . . Q(cd)〉 = 〈Q(ab) . . . Q(cd)〉sZs

Zs

, (80)

where the overline means average with respect to a Gaussian
variable s with zero mean and variance v. The suffix s in the
averages 〈. . . 〉s and in Zs means that they are evaluated with
a weight exp(−Ls) with

Ls ≡ −(τ + s)
∫

d(ab)Q(ab) − m2

2
(QPAQ)

− 1

6
w1

∫
(da db dc)Q(ab)Q(bc)Q(ca)

− 1

6
w2

∫
(da db)Q3(ab). (81)

With the above transformation, the analogy with a stochastic
equation is much more plausible but one should also recognize
that the two objects are essentially different, and indeed, as we
will see, only their leading divergent behavior is the same. An
essential property is that independently of s we have Zs = 1
(and also Z = 1) exactly and therefore it can be dropped from
the above expression giving

〈Q(ab) . . . Q(cd)〉 = 〈Q(ab) . . . Q(cd)〉s . (82)

This implies that while the mapping to a stochastic equation is
approximate, there is instead an exact mapping to a problem
with Gaussian quenched disorder. The condition Zs = 1 is
essential in this mapping because otherwise the disorder s

would not be an independent Gaussian variable, i.e., it would
not be quenched. The proof of the identity Zs = 1 is postponed
to the Appendix. We note, however, that in the replicated case
is almost trivial. It follows from ln Z = O(n − 1), which is
valid at all orders in the loop expansion. In the dynamical
context, it is closely related to the system being at equilibrium
and does not hold for off-equilibrium dynamics. A detailed
discussion of the mapping to the quenched problem will be
given in the next section. In the following, we will use it to
complete the perturbative analysis of the previous subsection.

Let us consider the expression of the correlations
〈Q(ab) . . . Q(cd)〉s before averaging over the disorder. They
can be computed in a loop expansion as well. Although s and τ

play the same role in Ls , in order to make contact with the loop
expansion of the GCT, it is appropriate to study the expansion
of the correlations in powers of the source s and of the coupling
constants w1 and w2. The mean-field solution of the action L0

with zero source is therefore the same as the solution of L.
Indeed, they differ by a term − v

2 (
∫

d(ab)Q(ab))2 that, as we
saw before, is irrelevant for the solution of the equation. The
difference becomes apparent at the level of the bare propagator,
which is now given by the sole term 1/�M . Therefore the
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(b')

(c')

(e')

(g') (h')

(f')

(i')

(d')

(a')

FIG. 3. Diagrams contributing to the loop expansion of
〈Q(ab)Q(cd)〉s before averaging.

correlation function of a product of E Q’s before averaging
is given by the sum of all cubic diagrams with E external
lines, bare propagators 1/�M , the same vertices w1 and w2

and sources s. The sources will be represented by arrows and
we must attach to the body of the arrows a bare propagator
1/�M and to the head the field s. In Fig. 3, we display
some of the diagrams contributing to the two-point correlation
〈Q(ab)Q(cd)〉s . The diagram (a′) corresponds to the bare
propagator 1/�M . Note that the integration of the indices
at the head of the arrow can be done explicitly and we obtain
for the total contribution of an arrow∫

d(cd)
1

�M
(ab)(cd) s = s χ (ab). (83)

We can now see how the diagrammatic expression of
〈Q(ab) . . . Q(cd)〉 in terms of full and crossed lines obtained
in the previous subsection can be also obtained from the above
diagrammatic expression of 〈Q(ab) . . . Q(cd)〉s in terms of
full lines and arrows after averaging over the random term s.
Indeed, the Gaussian average over s selects the diagrams with
even powers of s, each couple of sources gives a contribution
s2 = v, this can be represented graphically by saying that
two arrows, each one with an associated term sχ , are joined
to form a crossed line associated to a term vχχ . Let us
consider explicitly a few examples; (i) diagrams (a′) and (b′)
give precisely the bare propagator of the GCT, Eq. (70), (ii)
diagrams e′) and f′) vanish because the average of s is zero,
and (iii) the other diagrams correspond to diagrams of the

GCT shown in Fig. 2: c′)→(d), d′)→(h), g′)→(i), h′)→ (c),
and i′)→ (b).

Up to this point, no approximation has been made, we have
just explained how the exact equation (82) can be verified at all
orders comparing the diagrammatic expansions of its left-hand
and right-hand sides. In the previous section, however, we have
argued that in the critical region, where the bare propagator
G(ab)(cd) is large, the most diverging contributions to a
given cubic diagram (those of Fig. 1) are those where each
vertex belongs to treelike networks of full lines 1/�M in the
crossed-lines representation (as in Fig. 2). Since the process
of averaging over s does not alter the structure of the full lines
1/�M , this implies that the most divergent diagrams had a
treelike structure also before the s averaging, meaning that we
can replace 〈Q(ab) . . . Q(cd)〉s with its expression computed
only with treelike diagrams:

〈Q(ab) . . . Q(cd)〉 ≈ 〈Q(ab) . . . Q(cd)〉tree
s . (84)

A classic field-theoretical result is that the sum of all treelike
diagrams is given exactly by the following expression:

〈Q(ab) . . . Q(cd)〉tree
s = qs(ab) . . . qs(cd), (85)

where qs(ab) is the solution of the mean-field equation in
presence of the source s:

0 = −(τ + s) − m2(PAqs)(ab) − w1
(
q2

s

)
(ab) − w2 q2

s (ab).

(86)

In the dynamical case, we must remember that the above
equation is time-scale invariant and leaves qs(ab) undeter-
mined up to a rescaling of time. As discussed before, this
invariance is removed by the prescription (37) that follows
from the presence of hidden terms in the action controlling
the small-time behavior of the order parameter. Since Ls is
obtained from L through (79), one can easily see that these
terms are also present in Ls and therefore the very same
prescription (37) must be used to determine qs(ab).

Let us write down the result explicitly in the static and
dynamical case. In the static case for a correlation of order E,
we have

〈Q(ab) . . . Q(cd)〉 ≈ qE
s , (87)

where qs is the solution of

0 = −(τ + s) + (w1 − w2) q2
s → qs =

√
τ + s

(w1 − w2)
. (88)

Thus we have rederived diagrammatically the result of
Ref. [17]. Note that a real solution qs to the equation exists
only for τ + s � 0, therefore the expression qE

s is ill-defined
because it involves an integration over s on the whole real axes.
This suggests that 〈Q(ab) . . . Q(cd)〉 is actually ill-defined in
the replica case. Instead, in the dynamical case, if we specialize
to the correlation component of the order parameter Q(ab) (no
η’s), we have

〈C(ta,tb) . . . C(tc,td )〉 ≈ Cs(ta − tb) . . . Cs(tc − td ), (89)

where Cs(t) is a solution of the time-scale invariant dynamical
equation

τ + s = −w2 C2
s (t) + w1

d

dt

∫ t

0
Cs(t − t ′)C(t ′)dt ′ (90)
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with the prescription (37). The function Cs(t) exists for all
values of s and therefore the average (89) is perfectly well
defined, at variance with the replica expression (87). The full
solution can easily be written in terms of the two solutions
g±(t) of (39):

Cs(t) =
√

|τ + s|/w1gsign(τ+s)(t/(|τ + s|/w1)1/2a). (91)

The above equations define SBR in the zero-dimensional case.
We have thus proven that at each order in the loop expansion,
the leading divergent terms of the GCT are the same of SBR,
as anticipated in Ref. [5].

In the replica case, a correlation 〈Q(ab) . . . Q(cd)〉 of order
E takes different values depending on the number of indices
that are different. Note, however, that these differences do not
show up at the leading order because they are all given by qE

s

according to (87). These features are corrected by subleading
terms that cannot be associated to the stochastic equation.10 A
similar feature is present in the dynamical case: the left-hand
side of (89) depends explicitly on all time differences while the
RHS depends only on ta − tb, . . . ,tc − td . Again, this property
does not hold exactly due to subleading terms that cannot be
mapped to a stochastic equation.

E. Finite dimension

We now add a space dependence to the order parameter
Qx(ab) with the same properties described in the previous
sections. In Landau theory, the standard way to modify the
action is to add a term proportional to the squared gradient
of the order parameter, arguing that all other terms depending
on spatial derivatives are less important in the critical region.
Thus we are now interested in computing the averages

〈Qx(ab) . . . Qy(cd)〉

≡ 1

ZD

∫ ⎛
⎝ ∏

(ab),z

dQz(ab)

⎞
⎠

× Qx(ab) . . . Qy(cd) exp

(
−

∫
dx ′Lx ′

)
, (92)

where

Lx ≡ 1

2

∫
d(ab)|∇Qx(ab)|2 + L[Qx] (93)

and L[Qx] means the action (31) evaluated for Q(ab) →
Qx(ab). In order to setup the perturbative computation of the
above averages, we perform the same steps of the previous
section.

The mean-field equation is the same of (33) plus an
additional Laplacian term ∇2Qx(ab). I will consider a
translational invariant solution Qx(ab) = q(ab). Thus the
Laplacian is irrelevant and the solution q(ab) is the same as in
Sec. III A. Recall once again that the mean-field equation is
time-scale invariant and the action must be supplemented with

10Actually, some less divergent correlations of order E can be
obtained from the stochastic equation by deriving k times with respect
to τ the correlations of order E − k. These kind of correlations are
called connected in the RFIM literature.

the prescritpion (37) to have a unique mean-field solution.
In the space-dependent context, we have to generalize the
prescription by assuming that the same local terms are present
at each point in space in order to have the same prescription
everywhere and thus a constant mean-field solution.

The bare propagator instead changes with respect to the
zero-dimensional case. As usual, it is conveniently diagonal-
ized in Fourier space:

Gk,k′(ab)(cd) = Gk(ab)(cd)δ(k + k′), (94)

where Gk satisfies the equation

(k2 + �M + vNL)Gk = I (95)

that generalizes Eq. (68). The quantities �M , NL, and v have
the same definitions of Eq. (68). The exact solution is

Gk(ab)(cd) = 1

k2 + �M
(ab)(cd) + v χk(ab)χk(cd), (96)

where χk(ab) is the solution of the equation

χk(k2 + �M) = 1. (97)

The physical meaning of the function χk can be understood
considering the response of the system to a space-dependent
perturbation on τ . This can be implemented by the following
replacement in the expression of the action:

τ

∫
dx

[∫
d(ab)Qx(ab)

]
→

∫
dx τx

[∫
d(ab)Qx(ab)

]

=
∫

dk τ−k

[∫
d(ab)Qk(ab)

]
. (98)

A uniform value of τx corresponds in Fourier space to τk =
τ0 δ(k), meaning that all components of the mean-field solution
but k = 0 vanish. A nonconstant τx induces a nonconstant
mean-field solution meaning that the components qk(ab) are
different from zero also for k �= 0. One can see that the
susceptibility of qk(ab) to τk′ at the constant solution τx = τ

is determined by χk , more precisely, we have

dqk

dτk′
(ab)

∣∣∣∣
τx=τ

= δ(k + k′)χk(ab). (99)

The above relationship generalizes Eq. (48) and can be
verified by deriving the mean-field equation with respect to
τk′ obtaining thus Eq. (97) for the susceptibility.

Given that, both in the static and dynamical case, the
solution qk(ab) in presence of a inhomogeneous τx is an
invariant, the matrix χk(ab) is also an invariant. In the
dynamical treatment, the corresponding function χk(t) obeys
the following equation:

k2χk(t) − 2w2C(t)χk(t) + 2w1
d

dt

∫ t

0
C(t − t ′)χk(t ′)dt ′ = 1.

(100)

At variance with the k = 0 case, the function χk(t) does not
have a simple expression in terms of the mean-field solution
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C(t). Note that χk(t) should be naturally identified with the
scaling function for the so-called three-point susceptibility in
the β regime in the context of IMCT, although Eq. (100) does
not appear explicitly in Ref. [15]. A detailed discussion of
χk(t) is not essential here, indeed, to proceed, we only need
the property that χk(ab) is an invariant.

We can now repeat the analysis of the leading divergences of
the diagrams, the only difference being that each vertex carries
a momentum dependence to be integrated upon. Before the
momentum integration we can already see that the contribution
of a vertex that has three crossed lines at his legs is zero. Indeed,
we have the two contributions

w2

∫
d(ab)χk(ab)χk′(ab)χ−k−k′(ab), (101)

w1

∫
(da db dc)χk(ab)χk′(bc)χ−k−k′ (ca), (102)

and again both vanish because χk(ab) is an invariant with zero
diagonal. Therefore the same necessary condition leads to the
choice of treelike structures in order to maximize the degree
of divergence of a graph. The analysis of the zero-dimensional
case can now be extended in a straightforward fashion.

One rewrites the quadratic term in the GCT introducing
a quenched space-dependent Gaussian fluctuation s(x) as in
(79),

s(x)s(y) = δ(x − y) v. (103)

In this way, the averages (92) can be rewritten as in (80):

〈Qx(ab) . . . Qy(cd)〉 = 〈Qx(ab) . . . Qy(cd)〉sZs

Zs

. (104)

Once again, it turns out that the partition function is equal
to one independently of the realization of the random fluctu-
ations: Zs = 1. This leads to the fundamental result that the
GCT is exactly equivalent to a theory with quenched disorder:

〈Qx(ab) . . . Qy(cd)〉 = 〈Qx(ab) . . . Qy(cd)〉s . (105)

The perturbative loop expansion of the GCT is divergent at
all orders as τ → ±0. Once again, in the crossed lines repre-
sentation, the maximally divergent contribution of any given
diagram is given by the necessary and sufficient condition
discussed above. On the other hand, this corresponds to select
diagrams that are treelike before averaging and these in turn
are generated by the solution of the mean-field equation in
presence of the sources s(x). We have therefore the following:

〈Qx(ab) . . . Qy(cd)〉 ≈ qx,s(ab) . . . qy,s(cd), (106)

where qx,s(ab) is the solution of the mean-field equation in
presence of the source s(x):

0 = −τ − s(x) − ∇2qs,x − w1
(
q2

s,x

)
(ab) − w2 q2

s,x(ab).

(107)

Note that we have not written the term depending on m2 in (86)
since it gives a vanishing contribution because the solution qs,x

is an invariant.
In the dynamical case, we must remember that the above

equation is time-scale invariant and leaves qx,s(ab) undeter-
mined up to a rescaling of time. As discussed previously, this

invariance is removed by the prescription (37) that follows
from the presence of hidden terms in the action controlling
the small-time behavior of the order parameter. Since Ls is
obtained by L, one can easily see that these terms are also
present and therefore the very same prescription must be used
to determine qx,s(ab).

In the static/replicated case, the above stochastic equation
is rewritten in terms of its RS solution qs,x(ab) = qs,x , where
qs,x is the solution of a quadratic stochastic equation:

0 = −τ − s(x) − ∇2qs,x + (w1 − w2)
(
q2

s,x

)
. (108)

This equation does not admit a real solution in finite dimension
in the thermodynamic limit, because even for large positive
values of τ there will be always regions where the local
temperature τ + s(x) is negative. We have thus recovered
diagrammatically the results of Ref. [17].

We now turn to the dynamical case. As before, we specialize
equation (107) to the correlation component of the order
parameter:

〈Cx(ta,tb) . . . Cy(tc,td )〉 ≈ gs,x(ta − tb) . . . gs,y(tc − td ),

(109)

where gs,y(t) is the solution of the SBR equation

τ + s(x) = −∇2gs,x(t) − w2 g2
s,x(t)

+w1
d

dt

∫ t

0
gs,x(t − t ′)gs,x(t ′)dt ′ (110)

with the prescription (37). At variance with the static case,
the function gs,x(t) exists for all values of s(x), therefore
the dynamical theory is perfectly well defined. The above
equations define SBR in the finite-dimensional case. We have
shown that at each order in the loop expansion the leading
divergent terms of the GCT are the same of SBR, thus
completing the proof of the results anticipated in Ref. [5].
As already noted in the introduction, only the averaged order
parameter was mentioned in Ref. [5], while it should be clear
from the above discussion that the connection with SBR holds
as well for all higher-order correlation functions (92).

IV. BEYOND PERTURBATION THEORY

Let us summarize the results of the previous section. We
started from the GCT action (31), which at the mean-field level
exhibits a dynamical transition. Loop corrections to the mean-
field expressions are all divergent as we approach the transition
and we have shown that the most divergent contribution of each
diagram is the same generated by the loop expansion of SBR.
For later reference, we note that this is also what happens for
the RFIM or for branched polymers in purely static/replicated
context [26].

In general, below the upper critical dimension and above
the lower critical dimension, a system exhibits a critical
behavior different from mean field. However, one can use
the perturbative expansion around the mean-field solution to
extract the non-mean-field critical exponents by resumming
them appropriately. Note that to apply these resummation
techniques one does not need the whole loop expansion but
only the leading divergent terms at each order. Thus, if the
leading-order divergent terms are the same as those of a
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stochastic equation, one would argue that the critical behavior
is exactly the same. In other words, the mapping between the
effective theory and the stochastic equation holds only at the
leading order, i.e., it is approximate but it is exact as long as
we discuss critical behavior. Indeed, in the case of branched
polymers, one can show that the critical exponents of the two
theories are the same [26].

In the present context, however, the situation is rather
different. When we consider the GCT beyond the mean-field
approximation, the critical point is avoided and nothing is
divergent. As a consequence, there is no guarantee that,
first, we can replace the actual model under study with the
effective GCT, and, second, we can replace the GCT with
SBR. These kind of problems occur when we are below the
lower critical dimensions and are not often considered in the
theory of critical phenomena which is focused by definition
on what happens between the upper and lower critical
dimension.

The first problem is generic to any Landau theory and
cannot be discussed within the theory itself. It depends on
the system under study, more precisely its long-wavelength
Hamiltonian must verify two properties: (1) the coefficient
τ of the linear term must vanish for some temperature and
(2) higher-order terms (quartic and so on) and all other terms
that are present in the full action but not in the GCT can be
neglected. A sufficient condition for this to happen is that the
system under study exhibits mean-field-like critical behavior
in some range of temperatures above the (pseudo)-critical
temperature. This means that, in that range of temperatures,
we can replace the integral of the action (31) with its value on
the mean-field solution. If this is the case, we can describe the
critical region, where corrections are instead important, with
the GCT. In practice, if a given supercooled liquid exhibits
approximately the scaling laws of ideal MCT, then one can
expect that the GCT provides an accurate description in the
crossover region.

The second problem, i.e., the mapping between the GCT
and SBR, is less standard. The zero-dimensional case is the
paradigm of the system below the lower critical dimension
and therefore it is a good starting point for the discussion.
In the previous section, we have shown that there is an exact
mapping between the GCT and a GCT with quenched disorder
s on τ :

1

Z

∫ ⎛
⎝∏

(ab)

dQ(ab)

⎞
⎠Q(ab) . . . Q(cd) exp(−L)

= 1

Zs

∫ ⎛
⎝∏

(ab)

dQ(ab)

⎞
⎠Q(ab) . . . Q(cd) exp(−Ls),

(111)

where the overline means average over a Gaussian random
variable with zero mean and variance v. The above formula
is the result of an Hubbard-Stratonovich integration combined
with Zs = Z = 1. We recall that the importance of this last
condition should not be underestimated because otherwise s

could not be considered an independent (quenched) Gaussian
variable. The result Zs = 1 is proven in the Appendix at all

orders in perturbation theory but it seems to have a deeper
physical origin: the fact that system is at equilibrium and
therefore TTI holds.

Now we clearly see what kind of approximation we
are making when we replace the original GCT with SBR:
we are treating the action Ls at the mean-field level, i.e.,
replacing Q(ab) with the solution of the equation dLs/dQ =
0. The quality of this approximation depends on the coupling
constants of the GCT. In order to proceed let us rescale s to
make its variance equal to one. In this case, we have

Ls = −(τ + v1/2s)
∫

d(ab)Q(ab)

− 1

6
w1

∫
(da db dc)Q(ab)Q(bc)Q(ca)

− 1

6
w2

∫
(da db)Q3(ab), (112)

where we have neglected again the term dependent on m2

because they are not relevant for the present discussion.
Performing the rescalings

Q(ab) = bQQ̃(ab), τ = bτ τ̃ , (113)

with

bQ ≡ v1/4 w
−1/2
1 , bτ ≡ v1/2 , (114)

we have

Ls = C

[
−(τ̃ + s)

∫
d(ab)Q̃(ab)

− 1

6

∫
(da db dc)Q̃(ab)Q̃(bc)Q̃(ca)

− λ

6

∫
(da db)Q̃3(ab)

]
, (115)

where

C = v3/4 w
−1/2
1 . (116)

When Ls is rewritten in the above form, one can easily argue
that perturbative corrections to the mean-field approximation
are given by an expansion in powers of O(1/C) and therefore
the condition for its validity is that the constant C must be large.
Even if C is large, the random fluctuations can be neglected if
|τ̃ | 
 1. This condition defines the temperature regime where
not only Ls but also the original GCT (L) are both well
described by the mean-field approximation. Summarizing, if
the constant C is large, the GCT can be described by the
mean-field approximation for large τ̃ , while for τ̃ = O(1) the
mean-field approximation is wrong. Nevertheless, the random
action Ls can still be approximated at the mean-field level,
meaning that the crossover is well described by SBR.

Clearly, the condition that C is large is violated if the
random temperature fluctuations are too small, i.e., v � 1.
In this case, the mapping to the stochastic equation is not
granted and the crossover is described by the pure cubic theory.
Different scalings should be considered, the critical region
is still given by τ̃ = O(1) but we should set bτ = w

1/3
1 and

bQ = w
−1/3
1 . We note that the condition that C is large is the

counterpart for an avoided critical point of the so-called Harris
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criterion, which for a genuine critical point determines weather
or not the disordered and the pure system are in different
universality classes [27]. Similarly, the condition τ̃ = O(1)
should be identified with the so-called Ginzburg criterion that
identifies the region where the mean-field approximation is
wrong and takes a different form depending on weather the
Harris criterion is verified or not.

There is at least one case in which the two questions
discussed so far can be both answered positively, i.e., the
problem of finite-size corrections to mean-field models. In this
case, all coupling constants in the Hamiltonian are proportional
to the system size, say N , and it follows that higher order terms
not present in the GCT are irrelevant in the crossover region.
Furthermore, the fact that v and w1 are O(N ) implies

C = O(N1/4) (117)

meaning that the constant C grows with the system size and
therefore can be taken as large as we want by considering large
enough systems. In particular, this implies that SBR describes
the finite-size corrections to the dynamics of mean-field 1RSB-
SG models. Note that in this case, τ is proportional to T − Tc

times an O(N ) constant and the crossover region described by
SBR is

|T − Tc| = O(N−1/2), (118)

while ideal MCT scalings hold outside this region. This scaling
is different from what happens in a pure cubic theory where
instead T − Tc = N−2/3 and it shows that the definition of the
Ginzburg criterion depends on weather the Harris criterion is
verified or not.

In the present framework, one can also discuss the time scale
of the β regime. A Landau theory holds as long as the order
parameter is somehow small. Clearly, this condition is violated
for small enough times (when the correlator is approaching the
plateau) and for large enough times (when the correlator leaves
the plateau). This allows to rationalize the divergence of the
correlator at small and large times as 1/ta and −tb. In both
cases, the divergences must be interpreted as the correlator
respectively entering and exiting the β regime where the GCT
applies. Given that the order parameter is O(bQ), the time scale
of the β regime can be obtained from bQ(t0/τb)−a = 1, where
t0 is the scale of the initial dynamics and it is finite. This leads
to

τβ = t0b
−1/a

Q . (119)

Note the analogy with (41) that can be obtained from the
scaling bQ = √

τ that holds outside the crossover region. Sim-
ilarly, the (early) α regime can be obtained from bQ(τατβ)−b =
1 and gives

τα = t0b
−2γ

Q , (120)

where γ ≡ 1/(2a) + 1/(2b). For the models mentioned above,
whose coupling constants are O(N ) we have bQ = O(N−1/4)
and thus

τβ = O(N
1

4a ) , τα = O(Nγ/2). (121)

Note that the above scalings describe the increase of the α and
β time scales when increasing N at fixed τ̃ . The behavior at
fixed N and increasing τ̃ can be discussed in the context of

SBR, see Refs. [5–7] and displays a satisfactory power-law-
to-exponential crossover.

In the following, we generalize the above treatment to
generic dimension D. In the most general case, the constant in
front of the space derivative term takes a value α:

Lx ≡ α

2

∫
d(ab)|∇Qx(ab)|2 + L[Qx]. (122)

We need also a rescaling of the space-dependent variable x

according to x = bxx̃ and thus also of the random temperature
s = bs s̃ in order to have [s̃(x̃)s̃(ỹ)] = δ(x̃ − ỹ). With the
rescalings

bτ = α
2D

D−8 v− 4
D−8 w

− D
D−8

1 , (123)

bQ = α
D

D−8 v− 2
D−8 w

− 4
D−8 −1

1 , (124)

bx = α− 4
D−8 v

1
D−8 w

2
D−8
1 , (125)

bs = α
2D

D−8 v
D

16−2D w
− D

D−8
1 , (126)

we can rewrite the action as

Ls = C

∫
dDx̃

[
1

2

∫
d(ab)|∇Q̃(ab)|2−(τ̃+s̃)

∫
d(ab)Q̃(ab)

− 1

6

∫
(da db dc)Q̃(ab)Q̃(bc)Q̃(ca)

− λ

6

∫
(da db)Q̃3(ab)

]
, (127)

where the adimensional constant C is given by

C = α− D
D−8 v

2
D−8 +1w

4
D−8
1 . (128)

The zero-dimension discussion can now be repeated along
the same lines. If the constant C is large enough, the action
before disorder average can be treated at the mean-field level
and the mapping to SBR is accurate in the crossover region.
For |τ̃ | 
 1, we are outside the crossover region and also
the action after averaging, i.e., the GCT, can be treated at
mean-field level. In this region, the ideal MCT scalings apply,
including an apparent O(|τ̃ |−1/4) divergence of the correlation
length that is smeared in the crossover region. The crossover
region is identified by the Ginzburg criterion τ̃ = O(1), where
τ̃ is defined through Eq. (123) provided C is large enough.11

The C 
 1 condition is the analog of the Harris criterion
and depends on the specific model considered. Similarly to
the zero-dimensional case, one can define ad hoc models
where the two conditions discussed previously hold provided
a tunable parameter M is large. One strategy is to increase
the number of local microscopic components at the price of
loosing quantitative contact with realistic models. For spin

11The Ginzburg criterion can be derived in many ways obtaining
different numerical prefactors, but essentially it corresponds to
comparing τ with a constant of the same dimension formed with α, v,
and w1. The condition τ̃ = O(1) can be matched with the Ginzburg
criterion for quadratic stochastic equations given as Eq. (148) in [16]
by recognizing that mR → (w1τ )1/4.
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systems, a classic way to achieve this is to put M spins
on each given lattice point, see Ref. [28]. Another strategy
is to consider weak long-range interactions, i.e., taking the
so-called Kac limit [29]. For supercooled liquids, the problem
is more complicated (see the discussion in [30]) and at present
no well-established tunable model has been proposed.12 The
key property of these tunable models is that for large but finite
M the constants v, w1, w2, and α are O(M) leading to

C = O
(
M

2
8−D

)
, (129)

which reduces to (117) for D = 0. Similarly to (118), the size
of the crossover region also shrinks with increasing M as

|T − Tc| = O
(
1/M

4
8−D

)
. (130)

The α and β time-scale behavior for increasing M at fixed τ̃

can be derived as before and read

τβ = O
(
M

1
a(4−D/2)

)
, τα = O

(
M

γ

2−D/4
)
. (131)

The corresponding scalings at fixed M and changing τ̃ can
be derived in the context of SBR [7]. We only quote the result
for τα , respectively, for τ̃ → −∞ and for τ̃ → ∞,

τα = O(|τ̃ |−γ ) , ln τα = O(τ̃ 2−D/2). (132)

Previously, we noticed that if a system exhibits MCT-like
scalings in some range of temperatures, then it is natural to
expect that the crossover region is described by the GCT.
Now we want to discuss a practical criterion in order to
determine weather the GCT should be described by SBR in
the crossover region. Approaching the crossover region from
above, one expects that fluctuations (the full propagator) are
well described by the bare propagator. The main feature of
the bare propagator is the presence of the so-called double
pole term proportional to χ (ab)χ (cd), which leads to larger
dynamical fluctuations with respect to those associated to
temperature variations [χ (ab)]. On the other hand, the double-
pole term would have a subdominant prefactor if the constant
C is small and therefore the fact that one observes fluctuations
proportional to χ2 (as reported in some notable case for
supercooled liquids [15]) can be taken as an indication that
the constant C is large and that the crossover region may be
accurately described by SBR.

We conclude this section noticing that the above scalings
with M are singular at D = 8 and make no sense for D > 8.
They were obtained under the implicit assumption that the
GCT and SBR admit a canonical continuous limit in a
field-theoretical sense and the ill-defined scalings for D > 8
must be taken as an indication that the continuous limit is not
well defined for D > 8. As discussed in the conclusions, this
apparently exotic feature has important physical quantities,
pointing to a different nature of the crossover above and below
D = 8.

V. CONCLUSIONS

The starting point of our discussion is the fact that 1RSB-SG
and MCT display a dynamical transition with the same

12The model proposed in [30] has been claimed not to display an
MCT transition in Ref. [31].

features. In particular, the equation for the critical correlator
is the same. The transition is second-order in nature, i.e., it
is characterized by a diverging correlation length, a classic
result in SG that can be also established within MCT through
IMCT. In both cases, the transition is mean-field in nature,
in the sense that the order parameter obeys an equation with
coupling constants that are regular functions of the external
parameters (e.g., temperature or density). This is equivalent
to the assumption that the (dynamical) Gibbs free energy
(i.e., the integral of the action) has also regular coupling
constants. The theory of phase transitions tells us that this
result has to be put under scrutiny and notably fails below
the upper critical dimension. Indeed, physics requires that
the microscopic Hamiltonian (i.e., the action) has a regular
dependence on the external parameter, not the Gibbs free
energy (i.e., the integral of the action). The discussion in
Sec. IV allows to make this point explicit; for |τ̃ | 
 1, one can
take the saddle point in the integral and trade the Hamiltonian
for the Gibbs free energy, but in the critical region |τ̃ | = O(1),
this is not correct. On the other hand, in the critical region,
one can study an effective action that is a simple function (a
polynomial) of the order parameter on long wavelength, i.e., a
Landau theory.

In order to choose this effective theory, we can first consider
the so-called FM limit, in which all dynamical correlation
functions take a simplified (RS-like) structure. It follows that
in the FM limit, the effective action must also display an RS-
like form, indeed, in this way one can show that equilibrium
dynamics becomes equivalent to a replicated problem with
n = 1 replicas. The replicated problem was originally studied
in Ref. [17] and a mapping to a static stochastic equation
was discovered. The stochastic static equation, however, is
ill-defined suggesting that the arrested state is unstable and
that the transition is in fact avoided, as it is expected from the
physics of supercooled liquids. Therefore, in order to have a
well-defined theory of the crossover, one must abandon the
FM limit and the static replica approach (which is only well
defined in the presence of a stable glassy phase).

Outside the fast motion limit, the dynamical correlations do
not have the simplified RS-like structure and correspondingly
the dynamical action contains additional terms depending ex-
plicitly on the microscopic dynamical scale �0. An important
technical point is that the FM/RS mean-field equations admit
also non-FM dynamical solutions. At variance with the static
case, these solutions exist both above and below the critical
temperature and are precisely the same of the critical correlator
in MCT. The absence of �0-dependent terms in the equations
induces a spurious time-scale invariance that can be removed
invoking matching arguments with the physics on microscopic
times. Formally, we supplement the dynamical action with a
prescription to remove time-scale invariance, which is justified
by the presence of the hidden �0-dependent terms.

The identification of the correct effective theory for a given
problem can be done in some cases explicitly, but in general
it is more satisfactory to invoke some symmetry principle. For
1RSB-SG, one can explicitly show that the effective theory
is the GCT given by Eq. (31). For MCT, this is not possible,
because we do not know how to compute within the theory
many quantities, notably four-point correlation functions. On
the other hand, time-scale invariance provides us a principle to
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carry on the identification: ideal MCT is time-scale invariant
and if we require that the effective theory preserves this feature,
we are naturally led to the glassy critical theory.

The main part of the paper was devoted to the study of the
GCT. Given that, as usual, an exact computation of the averages
of the order parameter is not possible, we first resorted to a
diagrammatic loop expansion. Let us recall that, if M is some
large parameter and the coupling constants τ , m2, m3, w1,
and w2 are O(M) (a special situation we discussed thoroughly
in Sec. IV) the loop expansion corresponds to an expansion
in powers of 1/M . As usual, the coefficients of the various
powers of 1/M are divergent as τ → 0 and we have seen
that, at any given order 1/M , the leading divergent term is the
same with the one generated within a similar loop expansion
of SBR. Thus I have provided the proof of the result that
was anticipated in Ref. [5] and further discussed in Ref. [6].
Note that in that paper, only the average two-point function
was discussed, while we have shown here that SBR provides
a description of higher-order correlations as well, e.g., the
four-point function.

In general, if a second-order phase transition is not washed
out by fluctuations, one can appropriately resum the divergent
terms and obtain information on the non-mean-field critical
exponents. In these cases, a mapping with a stochastic equation
would imply that the critical exponents of the original theory
are the same with those of the stochastic equation. In the
present case, however, the transition is avoided and we are
more in the situation that occurs below the lower critical
dimension, therefore the mapping between the GCT and SBR
is only approximate. Furthermore, the avoided nature of the
transition within SBR, as discussed in [5–7], is clearly due
to nonperturbative effects. Therefore one would like to be
sure that the same nonperturbative effects are at work in the
GCT, thus establishing a connection between the two theories
beyond perturbation theory. This problem has been discussed
in the last section. It turned out that one can establish an
exact mapping between the GCT and a theory with quenched
disorder. This allows to understand clearly the approximation
involved in replacing the GCT with SBR: it amounts to making
a mean-field approximation separately on each instance after
the quenched disorder has been generated. In the formulas
the exact mapping corresponds to Eq. (82), while the SBR
approximation corresponds to Eq. (84).

Note that the exact mapping with a quenched problem
was not discussed in Ref. [5] and it is more significant
than the mapping with SBR: the latter holds only for the
leading divergent term at each order in the loop expansion.
Furthermore, the mapping allows a compact quantitative and
nonperturbative discussion of the range of the coupling
constants where the mapping to SBR is valid. Besides,
even if for some values of the coupling constants, SBR
cannot be applicable quantitatively, qualitatively, the idea that
dynamical arrest is washed away by random fluctuations of
the temperature may remain valid.

The exact mapping implies that one can drop the perturba-
tive loop expansion of the second section altogether and study
only the quenched theory and its relation with SBR. I have
chosen not to do so because the diagrammatic expansion is very
instructive but also because the mapping with the quenched
problem relies on the property Z = Zs = 1, which was proven

at all orders in the Appendix. Much as the crucial property of
invariant matrices (32), they appear to be a consequence of the
system being at equilibrium and thus could likely be proven
nonperturbatively as well.

An additional remark note, while the static replica treatment
is not able to describe the dynamical crossover, it is instead
applicable to problems where there is a genuine second-order
phase transition at the mean-field level, i.e., pinned systems
[32,33]. In the replica case, the condition Zs = 1 is almost
trivial and allows us to establish in a definitive way a mapping
between pinned systems and systems with quenched random
fields that have been advocated often in recent literature
[32–35].

The discovery of Ref. [17] that the static/replicated action
leads to an ill-defined static stochastic equation opened the
quest for a well-defined theory. Given that the static/replicated
problem is equivalent to a spinodal in the RFIM, one could
think that their solution is also the same. For instance, the
authors of Ref. [36] recently claimed that “The theoretical
understanding of the spinodal of the RFIM in finite dimensions
is therefore the crucial missing step to conclusively assess
the physical content of the MCT and the status of the
dynamical transition predicted by the MF theory of glass-
forming liquids.” Furthermore, they argued in favor of the
survival of the RFIM spinodal beyond mean field, pointing to
a discrepancy with SBR where the transition instead is avoided.

Both results are likely correct, the problem is which one is
relevant to fix the ill-defined static theory associated to MCT.
Now that the complete derivation has been presented, it should
be clear that SBR provides the sole correct answer. This is
because I extended the very same derivation of Ref. [17] from
a static to a dynamical context and this was enough to obtain a
well defined theory. One can now see that the analogy between
the MCT crossover and the RFIM spinodal holds at the level
of the statics but not at the level of the dynamics. The essential
difference is that introducing dynamics in the field theory is
not helpful in the RFIM spinodal problem. Let us consider
again the zero-dimensional case. By a standard computation,
one can show that the problem is equivalent to a dynamical
stochastic equation of the following form:

d

dt
gs(t) = τ + s − w g2

s (t), (133)

to be compared with the SBR expression

w1

(
−g2

s (t) + d

dt

∫ t

0
gs(t − t ′)gs(t

′)dt ′
)

= τ + s − w g2
s (t),

(134)

where w = w1 − w2 > 0. The difference between the two
equations is the LHS, which governs the dynamics and it
is absent in a purely static context. For negative τ + s, the
solution of SBR goes to −∞ at large times as −tb and it
is therefore defined at all times, this implies that the average
over solutions gs(t) is also well defined. Instead, the solution
of the spinodal equation goes to −∞ as −1/(tL − t) in a
finite time tL ∝ 1/|τ + s|1/2. As a consequence, the average
over solutions gs(t) is still ill-defined for the spinodal RFIM
problem because |τ + s| in the average can be as large as
we want yielding a contribution that diverges before any
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finite time. One can argue that the problem is not fixed by
the presence of the gradient term and remains also in finite
dimension. Of course, the problem of the RFIM spinodal must
have its own solution, although at present not fully understood.
The point is that the corresponding problem in MCT has
already its solution and it is provided by SBR.

Given the analogy between the replicated problem and
the RFIM spinodal of Ref. [17], one can easily derive a
Ginzburg criterion for the perturbative expansion leading to
an upper critical dimension Du = 8. Both the notion of an
MCT universality class and that of an upper critical dimension
Du = 8 have been often employed in subsequent discussions
of MCT criticality. However, one should not omit that they
are meaningless concepts in a purely static context given
that the corresponding stochastic equation is ill-defined. As
discussed in the last section, SBR allows instead to give a
precise meaning to these notions.

For a genuine second-order phase transition, universality
means that the critical region can be described by a unique
effective-field theory that does not depend on the microscopic
details of the model. Below the upper critical dimension, this
theory is the renormalized theory. For D > Du, the renormal-
ized theory does not exist, meaning that the continuum limit
of the field theory is not defined. Still, the critical region is
described by a unique model-independent theory, which is
nothing but the Gaussian theory.

In the case of MCT, there is no upper critical dimension
because there is no transition, still D = 8 plays a special
role. In the last section, we saw that for D < 8, all coupling
constants in the GCT except λ and C can be factored out.
Then, assuming that C is large, one can replace the GCT with
SBR, obtaining an object that depends only on λ. Therefore
there is a kind of weak universality: the effective theory of the
crossover depends on the original model solely through a single
nonuniversal constant λ. Instead, a genuine second-order
phase transition has no model-dependence at all, because the
coupling constant has a universal value.

For D > 8, we argued that the continuum limit of SBR
does not exist. Again, this is similar to what happens for a true
second-order phase transition. In the last case, however, the
Gaussian theory describes the critical point and the critical
exponents take their mean-field values. Instead, for MCT,
there is no such thing as a Gaussian/mean-field theory of the
crossover; by definition, the crossover is the region where
mean-field behavior is violated. This implies that the nature of
the crossover must be qualitatively different above and below
D = 8, SBR applies for D < 8, while the D > 8 case is an
open problem. Actually, I expect that for D > 8 the system
is more “mean-field” in the sense that the crossover region
is smaller. This notion can be made more precise for tunable
models for values of the parameter M large but not infinite.
In the last section, we saw that the crossover region decreases
as M− 4

8−D in the large-M limit. This scaling-law must break
down for D > 8 where we expect a smaller value, most likely
exponentially small in M .

Recently, it has been shown that hard-spheres models
display an ideal MCT transition in the infinite-dimension
limit D → ∞ [37]. In principle, this opens the way to an
expansion in 1/D, although at present a characterization of the
crossover in large but finite dimension is lacking. The previous

considerations, however, suggest that such an expansion would
be useless down to the physical dimension because the nature
of the crossover changes at D = 8. I conclude by noticing that
tunable models are also important because they guarantee that
both the GCT and SBR are fully consistent theories from a
physical point of view, included their less intuitive properties.
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APPENDIX A: INVARIANT MATRICES

In the dynamical treatment, the order parameter has the
structure of a matrix A(b):

A(ab) = CA(ta,tb) + R̃A(ta,tb)nb + R̃A(tb,ta)na

+XA(ta,tb)nanb. (A1)

Thus the matrix A(ab) is parameterized by three functions
C, R̃, and X and the symmetry A(ab) = A(ba) implies that
C(t,t ′) = C(t ′,t) and X(t,t ′) = X(t ′,t), the function R̃(t,t ′)
instead is not symmetric. When we integrate an action of the
form (31) over the order parameter, all components C, R̃, and
X to be integrated upon are independent, however, an essential
role is played by the notion of invariant in which the matrix is
parameterized in terms of a single function CA(s) defined for
s � 0:

A(ab) → CA(s) (A2)

according to

CA(t,t ′) = CA(|t − t ′|), (A3)

R̃A(t,t ′) = R̃A(t − t ′) = θ (t − t ′)
d

dt ′
CA(t − t ′), (A4)

XA(t,t ′) = 0. (A5)

Two important properties that we have used extensively
in the paper concern products of invariant matrices. The first
one is that given two invariant matrices A and B the product
A(ab)B(ab) is also an invariant parameterized by a function
CA(t)CB(t):

A(ab)B(ab) → CA(s)CB(s). (A6)

The second property is that the matrix product∫
A(ac)B(cb)dc with respect to the integral

∫
A(c)dc ≡∫

0+ A(tc,ηc)dtcdηc + A(0,0) is also an invariant (and therefore
invariant matrices commute). A straightforward computation
shows that the function CA·B(t) that parameterizes the dot
product takes the form∫

A(ac)B(cb)dc → CA·B(s) = CA(0)CB(s) + CA(s)CB(0)

− d

ds

∫ s

0
CA(s − y)CB(y)dy. (A7)
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The above expression has been used in Sec. III A to show
that the mean-field equation gives the equation for the critical
correlator of MCT. One can easily verify that

∫
A(ab)da does

not depend on b for an invariant matrix, indeed, we have∫
A(ab) da =

∫ tb

0
R̃A(tb,ta)dta + CA(tb,0)

= −
∫ tb

0

dCA

ds
ds + CA(tb) = CA(0). (A8)

In the case in which the invariant matrix satisfies also A(aa) =
0 → CA(0) = 0, we obtain the essential relationship (32).
Note that the property of having CA(0) = 0 is clearly stable
under the product. It is also invariant under the dot product,
indeed, we have

CA·B(0) = CA(0)CB(0). (A9)

If the limits CA(∞) and CB(∞) exist, we have

CA·B(∞) = CA(0)CB(∞)+CB(0)CA(∞)−CB(∞)CA(∞),

(A10)

and one can verify the matching with the corresponding
expressions for RS matrices in the limit n → 1,

(AB)d = adbb + (n − 1)aoffboff,

(AB)off = adboff + bdaoff + (n − 2)aoffboff, (A11)

where the subscript d and off refer to the diagonal and
off-diagonal elements of the RS matrices. Thus we see that
the stability of the zero-diagonal condition is specific of the
formalism, it does not hold for n �= 1 and for off-equilibrium
dynamics.

1. Generalized invariants

The notion of invariant matrix can be generalized to objects
that depend on many indices:

A(abc . . . m). (A12)

In the replica case, a generalized invariant must be invariant
under a permutation of the indices:

A(π (a)π (b)π (c) . . . π (m)) = A(abc . . . m). (A13)

In the dynamical case, we define an invariant by the following
properties. (i) It must be time-translational invariant. (ii) The
η component associated with the maximum time must vanish,
i.e., if, say ta = max(ta,tb,tc . . . td ,te) and we introduce the
following notation for the scalar and η components:

A(a,b,c, . . . ,d,e) = Asa
(ta,b,c, . . . ,d,e)

+Aηa
(ta,b,c, . . . ,d,e)ηa, (A14)

we have

Aηa
(ta,b,c, . . . ,d,e) = 0. (A15)

This condition enforces causality: a correlation function is
unaffected by a perturbation at later times.

(iii) If, say, te is the minimum time, i.e., te =
min(ta,tb,tc . . . td ,te), then with the notations above we have

Aηe
(a,b,tc, . . . ,d,te) = d

dte
Ase

(a,b,c, . . . ,d,te). (A16)

Therefore depending on the ordering of the time
{ta,tb,tc, . . . ,td ,te}, we have the two relations above for the
components of the maximum and of the minimum. Note
that condition (ii) is consistent with causality: a correlation
function is unaffected by a perturbation at later times and
condition (iii) is consistent with FDT. Thus it is natural to
expect that generic equilibrium averages have the structure of
generalized invariants.

It can be checked that the product of two invariants is also
an invariant in the sense that the three properties above are
verified. This includes the case in which some of the indices
are the same:

A(abc . . . de)B(a′bc . . . de). (A17)

Another important property is that the integral of an invariant∫
deA(abc . . . de) (A18)

is still an invariant. In order to prove this statement, let us
assume without loss of generality that when the index e is
integrated out, ta is the largest time and td is the smallest time.
If we write,

A(a,b,c, . . . ,d,e) = Ase
(a,b,c, . . . ,d,te)

+Aηe
(a,b,c, . . . ,d,te)ηe, (A19)

we have that∫
deA(abc . . . de) = Ase

(a,b,c, . . . ,d,0)

+
∫

dteAηe
(a,b,c, . . . ,d,te). (A20)

Applying the properties (ii) and (iii), we have∫
deA(abc . . . de) = Ase

(a,b,c, . . . ,d,td )

+
∫ ta

td

dteAηe
(a,b,c, . . . ,d,te).

(A21)

From the above formula, we can easily check that the LHS
remains TTI after the integration. We also see that in the
above expression, ta is always the maximum time therefore
the LHS satisfies also the causality property (ii). In order to
verify the minimum condition, we write explicitly the scalar
and η components with respect to variable d. Now the ηd

component of (A21) reads

Aηdse
(a,b,c, . . . ,td ,td ) +

∫ ta

td

dteAηdηe
(a,b,c, . . . ,td ,te).

(A22)

The derivative of the scalar component of (A21) is made of
two terms, the first is

d

dtd
Asesd

(a,b,c, . . . ,td ,td )

= Aηdse
(a,b,c, . . . ,td ,td ) + Aηesd

(a,b,c, . . . ,td ,td ),

(A23)
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where we have used property ii of A. The second is

d

dtd

∫ ta

td

dteAsdηe
(a,b,c, . . . ,td ,te)

= −Asdηe
(a,b,c, . . . ,td ,td )

+
∫ ta

td

dte
d

dtd
Asdηe

(a,b,c, . . . ,td ,te)

= −Asdηe
(a,b,c, . . . ,td ,td )

+
∫ ta

td

dteAηdηe
(a,b,c, . . . ,td ,te), (A24)

where the last equality follows from the fact that inside the
integral td is the minimum and Eq. (A16) applies. We see that
the sum of (A23) and (A24) is equal to (A22), thus proving
that the

∫
deA(abcd . . . de) verifies the minimum condition

(A16).
It is clear that higher-order equilibrium correlation func-

tions are associated to generalized invariants much as the
two-time correlations are associated to invariant matrices
defined by (16). Since the generic averages (30) are associated
to equilibrium correlation functions, they must be generalized
invariants, this indeed can be verified self-consistently at every
order in the expansion around the mean-field solution.

APPENDIX B: THE PARTITION FUNCTION

In this section, we want to show that the partition function
Zs and Z are both equal to one exactly. In order to do so,
we will show that ln Zs is zero on the mean-field solution
qs(ab) and that corrections to the mean-field values vanish at
all orders.

Every term in the actions L and Ls has an RS-like structure.
The general RS-like term is formed considering a product
of Q’s where some indices are equal and integrating over
all indices. According to the previous subsection it follows
that such a procedure leads to a generalized invariant, more
specifically if we consider one Q(ab) in the product and
integrate over all the remaining indices we will end up with
an expression of the form

∫
dadbq(ab)E(ab), where E(ab) is

the result of all the other integrations and it is thus an invariant.
Since q(aa) = 0, it follows that q(aa)E(aa) = 0 and therefore
the condition (32) implies that the result is equal to zero when
evaluated over an invariant Q(ab). This implies that the result

L[q(ab)] = 0 (B1)

holds for any RS-like action, not only for the cubic actions
considered here and also for any invariant q(ab), not only for
the solution of the mean-field equation. The above result is
trivial in the replica case, it follows from the fact that every RS
term is proportional to n − 1 when evaluated on a RS matrix.

Neglecting irrelevant constants the Gaussian correction to
the mean-field result ln Z = 0 is given by the trace of the
logarithm of the bare propagator, Tr ln G. We recall that G

is a symmetric matrix on the vector space of symmetric
zero-diagonal matrices therefore ln G is also a matrix on this
vector space. Now it is important to realize that the bare
propagator G is a generalized invariant as a function of
its four indices. We know that it should be so because it is
associated to an equilibrium four-time correlation, but one can

also prove it self-consistently within the theory noticing that
it is the inverse of the mass matrix that, being obtained from a
RS-like action, is itself an invariant. It follows that ln G is also
a generalized invariant. On the other hand, the trace of a linear
operator A(ab)(cd) is given by

∫
d(ab)A(ab)(ab), therefore

if A(ab)(cd) is an invariant it follows that A(ab)(ab) is also
an invariant and thus the trace vanish. This is also true for the
identity operator for which one has

TrI =
∫

d(ab) = 0 (B2)

according to Eq. (32). It follows that the Gaussian correction
is also exactly zero for a generic RS-like action:

1

2
Tr ln G = 0. (B3)

Again, in the replica case, this result is trivial because the trace
of a RS operator M(ab)(cd) is proportional to n(n − 1).

Higher-order corrections to ln Z are given by all connected
vacuum (no external legs) diagrams, like the ones shown in
the first line of Fig. 1. Given one of these diagrams, we have
to multiply a propagator G(ab)(cd) for each leg and then
perform the integral over the indices at the vertex. Since we
have G(aa)(cd) = 0, the integrals can be made on unrestricted
indices. We are integrating a product of generalized invariants,
thus the result, before and after each integration, is also a
generalized invariant. If we fix a couple of indices, say ab, on
one internal line G(ab)(cd) and integrate over all other indices,
the result E(ab) will be an invariant with zero diagonal,
therefore it will give a vanishing contribution after the final
integration over dadb according to (32). It is clear that this
result holds because the bare propagator is invariant and the
vertices are RS-like and therefore it holds also for the generic
action containing all possible RS-like vertices. This shows
that all vacuum diagrams generated by an RS-like action
give a vanishing contribution and complete the proof that
Z = Zs = 1 exactly. Note that although we have derived this
property diagrammatically, it appears to be intrinsically related
to the system being at equilibrium. By similar arguments,
one can show that the generic averages (30) generated by
an RS-like action expanded near the dynamical mean-field
solution are generalized invariants as expected on physical
grounds.

The previous arguments can be also used to understand the
necessary and sufficient condition for a nonvanishing diagram
discussed in Sec. III C. In the cross-line representation,
each crossed line gives a factorized contribution and can
be opened and replaced with a source s that shifts τ by
an amount

√
v. Therefore one is left with the evaluation of

some disconnected diagrams. According to the discussion of
the previous paragraph if one of the disconnected diagrams
has no external lines, it is a diagram that contribute to ln Zs

and therefore vanishes. This implies that in the crossed line
representation the necessary and sufficient condition for a
graph to give a nonzero contribution is that once all crossed
lines are opened each diagram of full lines contains an external
line.

In principle, the action (31) may contain additional cubic
RS-like terms [19]. The presence of these RS-like terms
therefore does not alter the exact mapping between the GCT
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and the GCT with quenched disorder. Furthermore, at the level
of the mean-field equation, these terms do not play any role,

as the terms proportional to m2 and m3, and therefore they do
not show up in SBR.

[1] W. Götze, Complex Dynamics of Glass-Forming Liquids: A
Mode-Coupling Theory (Oxford University Press, Oxford, UK,
2009).

[2] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58, 2091
(1987); Phys. Rev. B 36, 5388 (1987).

[3] T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev.
A 40, 1045 (1989)

[4] A. Crisanti, H. Horner, and H. Sommers, Z. Phys. B 92, 257
(1993).

[5] T. Rizzo, Europhys. Lett. 106, 56003 (2014).
[6] T. Rizzo and T. Voigtmann, Europhys. Lett. 111, 56008

(2015)
[7] T. Rizzo and T. Voigtmann, arXiv:1504.06263.
[8] G. Adams and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
[9] M. Mezard, G. Parisi, and M. A. Virasoro, Spin-Glass theory

and Beyond (World Scientific, Singapore, 1987).
[10] P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423

(1978).
[11] C. De Dominicis, Phys. Rev. B 18, 4913 (1978).
[12] J. Kurchan, J. Phys. I (France) 2, 1333 (1992).
[13] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

(Oxford University Press, Oxford, 2002).
[14] G. Parisi and T. Rizzo, Phys. Rev. E 87, 012101 (2013).
[15] G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman,

Phys. Rev. Lett. 97, 195701 (2006).
[16] S. Franz, H. Jacquin, G. Parisi, P. Urbani, and F. Zamponi, Proc.

Natl. Acad. Sci. USA 109, 18725 (2012); J. Chem. Phys. 138,
12A540 (2013).

[17] S. Franz, G. Parisi, F. Ricci-Tersenghi, and T. Rizzo, Eur. Phys.
J. E 34, 102 (2011).

[18] T. Rizzo, Philos. Mag. 96, 636 (2016).
[19] T. Temesvari, C. De Dominicis, and I. R. Pimentel, Eur. Phys.

J. B 25, 361 (2002).

[20] G. Szamel, Europhys. Lett. 91, 56004 (2010).
[21] T. Rizzo, Phys. Rev. E 87, 022135 (2013).
[22] F. Caltagirone, U. Ferrari, L. Leuzzi, G. Parisi, F. Ricci-

Tersenghi, and T. Rizzo, Phys. Rev. Lett. 108, 085702 (2012).
[23] L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, and

D. Reichman, J. Chem. Phys. 126, 184503 (2007); 126, 184504
(2007).

[24] G. Parisi, Statistical Field Theory (Addison Wesley, Reading,
MA, 1988).

[25] C. De Dominicis and I. Giardina, Random Fields and Spin
Glasses (Cambridge University Press, Cambridge, 2010).

[26] G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979);
46, 871 (1981).

[27] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge Unversity Press, Cambridge, 1998).

[28] F. Caltagirone, U. Ferrari, L. Leuzzi, G. Parisi, and T. Rizzo,
Phys. Rev. B 83, 104202 (2011)

[29] S. Franz and F. Toninelli, J. Phys. A: Math. Gen. 37, 7433 (2004);
Phys. Rev. Lett. 92, 030602 (2004).

[30] R. Mari and J. Kurchan, J. Chem. Phys. 135, 124504 (2011).
[31] P. Charbonneau, Y. Jin, G. Parisi, and F. Zamponi, Proc. Natl.

Acad. Sci. USA 111, 15025 (2014)
[32] S. Franz and G. Parisi, J. Stat. Mech. (2013) P11012.
[33] G. Biroli, C. Cammarota, G. Tarjus, and M. Tarzia, Phys. Rev.

Lett. 112, 175701 (2014)
[34] C. Cammarota and G. Biroli, Proc. Natl. Acad. Sci. USA 109,

8850 (2012).
[35] S. Franz, G. Parisi, and F. Ricci-Tersenghi, J. Stat. Mech. (2013)

L02001.
[36] S. K. Nandi, G. Biroli, and G. Tarjus, Phys. Rev. Lett. 116,

145701 (2016).
[37] J. Kurchan, G. Parisi, and F. Zamponi, J. Stat. Mech. (2012)

P10012.

014202-22

http://dx.doi.org/10.1103/PhysRevLett.58.2091
http://dx.doi.org/10.1103/PhysRevLett.58.2091
http://dx.doi.org/10.1103/PhysRevLett.58.2091
http://dx.doi.org/10.1103/PhysRevLett.58.2091
http://dx.doi.org/10.1103/PhysRevB.36.5388
http://dx.doi.org/10.1103/PhysRevB.36.5388
http://dx.doi.org/10.1103/PhysRevB.36.5388
http://dx.doi.org/10.1103/PhysRevB.36.5388
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1007/BF01312184
http://dx.doi.org/10.1007/BF01312184
http://dx.doi.org/10.1007/BF01312184
http://dx.doi.org/10.1007/BF01312184
http://dx.doi.org/10.1209/0295-5075/106/56003
http://dx.doi.org/10.1209/0295-5075/106/56003
http://dx.doi.org/10.1209/0295-5075/106/56003
http://dx.doi.org/10.1209/0295-5075/106/56003
http://dx.doi.org/10.1209/0295-5075/111/56008
http://dx.doi.org/10.1209/0295-5075/111/56008
http://dx.doi.org/10.1209/0295-5075/111/56008
http://dx.doi.org/10.1209/0295-5075/111/56008
http://arxiv.org/abs/arXiv:1504.06263
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1103/PhysRevA.8.423
http://dx.doi.org/10.1103/PhysRevA.8.423
http://dx.doi.org/10.1103/PhysRevA.8.423
http://dx.doi.org/10.1103/PhysRevA.8.423
http://dx.doi.org/10.1103/PhysRevB.18.4913
http://dx.doi.org/10.1103/PhysRevB.18.4913
http://dx.doi.org/10.1103/PhysRevB.18.4913
http://dx.doi.org/10.1103/PhysRevB.18.4913
http://dx.doi.org/10.1051/jp1:1992214
http://dx.doi.org/10.1051/jp1:1992214
http://dx.doi.org/10.1051/jp1:1992214
http://dx.doi.org/10.1051/jp1:1992214
http://dx.doi.org/10.1103/PhysRevE.87.012101
http://dx.doi.org/10.1103/PhysRevE.87.012101
http://dx.doi.org/10.1103/PhysRevE.87.012101
http://dx.doi.org/10.1103/PhysRevE.87.012101
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1073/pnas.1216578109
http://dx.doi.org/10.1073/pnas.1216578109
http://dx.doi.org/10.1073/pnas.1216578109
http://dx.doi.org/10.1073/pnas.1216578109
http://dx.doi.org/10.1063/1.4776213
http://dx.doi.org/10.1063/1.4776213
http://dx.doi.org/10.1063/1.4776213
http://dx.doi.org/10.1063/1.4776213
http://dx.doi.org/10.1140/epje/i2011-11102-0
http://dx.doi.org/10.1140/epje/i2011-11102-0
http://dx.doi.org/10.1140/epje/i2011-11102-0
http://dx.doi.org/10.1140/epje/i2011-11102-0
http://dx.doi.org/10.1080/14786435.2016.1158878
http://dx.doi.org/10.1080/14786435.2016.1158878
http://dx.doi.org/10.1080/14786435.2016.1158878
http://dx.doi.org/10.1080/14786435.2016.1158878
http://dx.doi.org/10.1140/epjb/e20020041
http://dx.doi.org/10.1140/epjb/e20020041
http://dx.doi.org/10.1140/epjb/e20020041
http://dx.doi.org/10.1140/epjb/e20020041
http://dx.doi.org/10.1209/0295-5075/91/56004
http://dx.doi.org/10.1209/0295-5075/91/56004
http://dx.doi.org/10.1209/0295-5075/91/56004
http://dx.doi.org/10.1209/0295-5075/91/56004
http://dx.doi.org/10.1103/PhysRevE.87.022135
http://dx.doi.org/10.1103/PhysRevE.87.022135
http://dx.doi.org/10.1103/PhysRevE.87.022135
http://dx.doi.org/10.1103/PhysRevE.87.022135
http://dx.doi.org/10.1103/PhysRevLett.108.085702
http://dx.doi.org/10.1103/PhysRevLett.108.085702
http://dx.doi.org/10.1103/PhysRevLett.108.085702
http://dx.doi.org/10.1103/PhysRevLett.108.085702
http://dx.doi.org/10.1063/1.2721554
http://dx.doi.org/10.1063/1.2721554
http://dx.doi.org/10.1063/1.2721554
http://dx.doi.org/10.1063/1.2721554
http://dx.doi.org/10.1063/1.2721555
http://dx.doi.org/10.1063/1.2721555
http://dx.doi.org/10.1063/1.2721555
http://dx.doi.org/10.1103/PhysRevLett.43.744
http://dx.doi.org/10.1103/PhysRevLett.43.744
http://dx.doi.org/10.1103/PhysRevLett.43.744
http://dx.doi.org/10.1103/PhysRevLett.43.744
http://dx.doi.org/10.1103/PhysRevLett.46.871
http://dx.doi.org/10.1103/PhysRevLett.46.871
http://dx.doi.org/10.1103/PhysRevLett.46.871
http://dx.doi.org/10.1103/PhysRevB.83.104202
http://dx.doi.org/10.1103/PhysRevB.83.104202
http://dx.doi.org/10.1103/PhysRevB.83.104202
http://dx.doi.org/10.1103/PhysRevB.83.104202
http://dx.doi.org/10.1088/0305-4470/37/30/003
http://dx.doi.org/10.1088/0305-4470/37/30/003
http://dx.doi.org/10.1088/0305-4470/37/30/003
http://dx.doi.org/10.1088/0305-4470/37/30/003
http://dx.doi.org/10.1103/PhysRevLett.92.030602
http://dx.doi.org/10.1103/PhysRevLett.92.030602
http://dx.doi.org/10.1103/PhysRevLett.92.030602
http://dx.doi.org/10.1103/PhysRevLett.92.030602
http://dx.doi.org/10.1063/1.3626802
http://dx.doi.org/10.1063/1.3626802
http://dx.doi.org/10.1063/1.3626802
http://dx.doi.org/10.1063/1.3626802
http://dx.doi.org/10.1073/pnas.1417182111
http://dx.doi.org/10.1073/pnas.1417182111
http://dx.doi.org/10.1073/pnas.1417182111
http://dx.doi.org/10.1073/pnas.1417182111
http://dx.doi.org/10.1088/1742-5468/2013/11/P11012
http://dx.doi.org/10.1088/1742-5468/2013/11/P11012
http://dx.doi.org/10.1088/1742-5468/2013/11/P11012
http://dx.doi.org/10.1103/PhysRevLett.112.175701
http://dx.doi.org/10.1103/PhysRevLett.112.175701
http://dx.doi.org/10.1103/PhysRevLett.112.175701
http://dx.doi.org/10.1103/PhysRevLett.112.175701
http://dx.doi.org/10.1073/pnas.1111582109
http://dx.doi.org/10.1073/pnas.1111582109
http://dx.doi.org/10.1073/pnas.1111582109
http://dx.doi.org/10.1073/pnas.1111582109
http://dx.doi.org/10.1088/1742-5468/2013/02/L02001
http://dx.doi.org/10.1088/1742-5468/2013/02/L02001
http://dx.doi.org/10.1088/1742-5468/2013/02/L02001
http://dx.doi.org/10.1103/PhysRevLett.116.145701
http://dx.doi.org/10.1103/PhysRevLett.116.145701
http://dx.doi.org/10.1103/PhysRevLett.116.145701
http://dx.doi.org/10.1103/PhysRevLett.116.145701
http://dx.doi.org/10.1088/1742-5468/2012/10/P10012
http://dx.doi.org/10.1088/1742-5468/2012/10/P10012
http://dx.doi.org/10.1088/1742-5468/2012/10/P10012



