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Abstract
The ferromagnetic XY model on sparse random graphs in a randomly oriented 
field is analyzed via the belief propagation algorithm. At variance with the fully 
connected case and with the random field Ising model on the same topology, 
we find strong evidence of a tiny region with replica symmetry breaking 
(RSB) in the limit of very low temperatures. This RSB phase is robust against 
different choices of the external field direction, while it rapidly vanishes when 
increasing the graph mean degree, the temperature or the directional bias in 
the external field. The crucial ingredients to have such a RSB phase seem to be 
the continuous nature of vector spins, mostly preserved by the O(2)-invariant 
random field, and the strong spatial heterogeneity, due to graph sparsity. We 
also uncover that the ferromagnetic phase can be marginally stable despite the 
presence of the random field. Finally, we study the proper correlation functions 
approaching the critical points to identify the ones that become more critical.

Keywords: spin glass, disordered systems, continuous models, XY model, 
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1.  Introduction

Ferromagnetic systems in random magnetic fields are the archetypal of disordered systems, 
representing the simplest way to introduce a certain degree of quenched disorder into an 
ordered substrate. The most famous among them, the random field Ising model (RFIM), has 
been already introduced more than forty years ago by Larkin [1] in the context of supercon-
ductors. From then, the RFIM has been the object of countless speculative studies [2–7], as 
well as applied in a huge number of fields, from condensed matter [8] to strongly correlated 
electronic systems [9–11], from liquids and colloid mixtures [12, 13] to opinion dynamics and 
social interactions [14, 15].

Despite their effectiveness in numerous applications, random field systems still lack of 
a general theoretical framework that takes into account their static and dynamic properties. 
In particular, two issues on the RFIM have generated a long debate over the years: the cor-
rectness of the dimensional reduction by Parisi and Sourlas [16] and the presence of a glassy 
phase. In particular, the latter debate has finally found a definitive answer only a few years 
ago, thanks to the argument according to which a replica symmetry broken (RSB) phase can 
not be observed for the RFIM on any topology [17, 18], provided the system is at thermal 
equilibrium. Indeed, given the positive couplings of the model, connected correlation func-
tions are always nonnegative and hence spin glass susceptibility is always upper bounded by 
the ferromagnetic one. This crucial observation rules out the possibility of a proper spin glass 
phase, while nothing can be deducted from it about the behaviour of the RFIM exactly at the 
critical point, where at variance some evidences of the presence of many states in the Gibbs 
measure [19] have been recently found.

A natural extension of the previous argument from scalar to vector spins has not yet been 
accomplished, and the reason is that it is not possible. Indeed, when taking into account small 
fluctuations of vector spins around their equilibrium configurations, negative effective cor-
relations could in principle take place thanks to the small-fluctuation mechanism of vector 
spins, even if all the couplings are ferromagnetic. So the argument of [17] can not be applied 
for vector spins.

At this point, we wonder if these low-energy excitations are enough to break the symme-
try between replicas and hence yield a RSB phase for some suitable vector spin models with 
ferromagnetic couplings in a random field. This is the main aim of this work. We will focus 
on the simplest magnetic model with continuous variables, the XY model, where spins are 
m  =  2-component vectors of unit norm. Since in the fully connected case there is no chance of 
getting RSB when the system is purely ferromagnetic, we move to the case of sparse random 
graphs, where the heterogeneity provided by the sparsity can enhance the disordering effect 
of the random field.

If on one hand the local treelike topology of these graphs will allow us to exactly solve 
the model via belief-propagation (BP) algorithms, on the other hand we will also be able to 
analyze the features of the typical low-energy excitations of the system, exploiting the tools 
already developed when characterizing the instabilities of the spin glass XY model in an exter-
nal field [20]. Moreover, we will mostly focus on the zero-temperature behaviour of the XY 
model, recalling and extending the discretization arguments already presented in [21]. Finally, 
we will complete the description of the XY model on diluted graphs in a random field by 
defining and studying suitable correlation functions, identifying their behavior in each phase. 
The critical points of the model will be naturally interpreted via the divergence of a suitable 
correlation length, so recognizing the kinds of correlations that become critical in each case.

Notice that traces of a glassy behaviour for a ferromagnetic XY model in a random field 
have been already found on d  =  2 regular lattices, despite additional hyphoteses were added 
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to the original model in order to prevent other kinds of long-range order—as the Berezinskiĭ–
Kosterlitz–Thouless phase [22, 23]—, e.g. by removing the 2π-periodicity of the spins [24] or 
by changing the periodicity of the external random field [25]. In our model, instead, it is the 
random topology that prevents the appearance of vortices and spin waves, while spins are the 
usual 2π-periodic ones in a random external field with the same periodicity.

This paper is organized as follows. In section 2 we introduce the XY model and we briefly 
recap the belief-propagation algorithm, that will allow us to solve it on sparse random graphs. 
In section 3 we will then write down and solve the corresponding BP equations, drawing the 
entire field versus temperature phase diagram and actually finding a replica symmetric (RS) 
unstable region in the very low-temperature regime. In section 4 we will comment the nature 
of this RS unstable region, checking its robustness and trying to better characterize the role of 
small fluctuations that invalidate the argument preventing RSB in the RFIM. The expected con-
nection between a second-order phase transition and the divergence of some correlation length 
at the critical point is finally attained in section 5. Final remarks are exposed in section 6.

2. The XY model

The simplest magnetic model with continuous variables is represented by the XY model, 
where spins σi’s are unit vectors lying in the xy plane. Due to the normalization constraint, 
there is just a unique degree of freedom per spin, that can be effectively described by an angle 
θi ∈ [0, 2π). The external field is a m  =  2-dimensional vector as well, with modulus Hi and 
direction φi ∈ [0, 2π). Given a purely ferromagnetic interaction of strength J  >  0 between 
each couple of spins—corresponding to undirected edges (i, j)’s in the edge set E of the inter-
acting graph G—the random field XY model is ruled by the following Hamiltonian:

H[{θi}] = −J
∑

(i,j)∈E

cos (θi − θj)−
∑

i

Hi cos (θi − φi).�
(1)

In a previous work of ours [21] we showed that in the low-temperature region vector spin 
glass models are by far more unstable toward glassiness than scalar models, due to the pos-
sibility of small fluctuations around equilibrium configurations of spins. This continues to 
be true also in presence of an external field, provided the local directions φi’s of the field are 
randomly distributed [20], as also pointed out for the first time by Sharma and Young [26]. So 
let us assume φi being a random variable drawn from a suitable probability distribution Pφ. In 
order to enhance the most the disordering effect of the field, we take Pφ(φi) = 1/2π over the 
[0, 2π) interval, while Hi can be set equal to H on each site without any loss of generality [20].

In order to exactly solve the random field XY model, we assume the underlying graph G to 
be drawn from the ensemble of random regular graphs (RRGs) of fixed connectivity C, also 
generically referred to as Bethe lattices [27, 28]. In this way, due to the local treelike structure 
of such graphs, Bethe approximation [29] successfully leads to the replica symmetric solution 
via the belief propagation algorithm [30], equivalent to the replica symmetric cavity method 
[31, 32].

3.  RS solution via belief propagation

3.1.  BP equations and the population dynamics algorithm

The basic object to look at in the belief-propagation algorithm is—for each directed edge 
i → j—the probability distribution ηi→j(θi) of the angle θi in the modified graph without such 
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edge, also known as cavity message. Indeed, these objects allow to compute one-point and 
two-point probability distributions

ηi(θi) =
1
Zi

e βH cos (θi−φi)

×
∏
k∈∂i

∫
dθk e βJ cos (θi−θk) ηk→i(θk)

� (2a)

ηij(θi, θj) =
1
Zij

e βJ cos (θi−θj) ηi→j(θi) ηj→i(θj)� (2b)

and from them any physical observable in the Bethe approximation [30].
Cavity messages ηi→j’s satisfy a set of recursive relations, widely known as cavity equa-

tions or better belief-propagation equations [33]:

ηi→j(θi) ≡ F [{ηk→i}, J,φi]

=
1

Zi→j
e βH cos (θi−φi)

×
∏

k∈∂i\j

∫
dθk e βJ cos (θi−θk) ηk→i(θk).

�

(3)

These equations can be numerically solved on a given instance of the problem—namely 
on a fixed graph G with a given set of field directions φi’s—or directly in a disorder-averaged 
frame, provided by the Population Dynamics Algorithm (PDA) [34]. This approach focuses 
on the probability distribution of the cavity messages P[ηi→j] as if they were random variables, 
actually solving the distributional version of BP equations (3):

P[ηi→j] = EG,φ

∫ C−1∏
k=1

Dηk→i P[ηk→i]

× δ
[
ηi→j −F [{ηk→i}, J,φi]

]
.

�
(4)

In this way, the fixed point {η∗i→j} of BP equations (3) on a given graph G is substituted by 
their fixed-point probability distribution P∗[ηi→j] over the whole graph ensemble.

Equations (3) can be numerically solved by reproducing P[ηi→j] via a set of N  cavity mes-
sages, with a very mild dependence on the size N  of the population, such that the thermody-
namic limit can be easily attained. Indeed, distributional version of BP equations are said to 
solve the model on an infinite tree.

A crucial issue in these numerical simulations is how to deal with probability distributions 
over continuous variables. If these functions are particularly regular, e.g. 2π—periodic, then 
it is convenient to project them onto orthonormal polynomials, as actually done for the spin 
glass XY model at zero field [21, 35–37]; but when the function is not so smooth it may be 
convenient to discretize it [38]. Due to the presence of the external field that does not allow 
a Fourier expansion around the uniform solution ηi→j(θi) = 1/2π  as in [21], we follow the 
second approach, dividing the [0, 2π) interval into Q equal bins and hence moving from the 
XY model to the Q-state clock model [21, 37, 39–43].

Even though seeming inefficient, in fact we showed that the Q-state clock model represents 
both an efficient and reliable proxy for the spin glass XY model, with an error going to zero 
exponentially fast in Q both at finite and zero temperature [21]. Indeed, the convergence is 
actually boosted by the disordering effect provided by the quenched disorder. In this case, 
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however, because of the polarizing effect induced by the ferromagnetic couplings, in the zero-
temperature limit the Q-dependence could get worse, hence we will have to carefully deal 
with it.

Finally, we redirect the reader to [20, 21, 44] for further details about the numerical solu-
tion of the XY model on Bethe lattices via the Q-state clock model, in particular for what 
regards the involved zero-temperature limit, the analysis of the linear stability and the arise of 
metastable solutions when an external field is present.

3.2.  RS solution

By exploiting the PDA with N = 106 on a Q-state clock model with Q  =  64, we can actually 
find the replica symmetric solution of the ferromagnetic XY model in a random field at finite 
temperature, provided that finite-Q corrections can be already neglected in this regime [21]. 
Notice also that, despite dealing with the discretized version of the initial model, the distribu-
tion Pφ of the field direction can still be considered as continuously defined over the [0, 2π) 
interval.

Large values of the temperature T and of the field intensity H yield the paramagnetic solu-
tion, which of course is no longer the uniform one over the [0, 2π) interval, due to the presence 
of the random field. Then, when getting closer to the small-field—small-temperature region, 
such solution becomes unstable and an ordered phase takes place, characterized by a nonvan-
ishing global magnetization continuously growing from zero when trespassing the critical 
point. So far, the picture is similar to usual random field models, as e.g. the Ising model on 
Bethe lattices [45]. In particular, in the zero-field limit such instability line matches the insta-
bility point on the T axis given by the analytic condition

I1(βcJ)
I0(βcJ)

=
1

C − 1� (5)

for a C-RRG, as derived in [21, 35–37].
The exact location of the second-order critical line between paramagnetic and ferromagn

etic phases can be found via the Susceptibility Propagation approach [20, 21], namely the 
stability analysis of the BP fixed point P∗[ηi→j]. In more detail, the perturbations {δηi→j} of 
the fixed-point cavity marginals {η∗i→j} evolve according to the linearized version of the BP 
equations (3), with a global growth rate λBP then defined as

λBP ≡ lim
t→∞

1
tN

∑
(i→j)

ln

∫
|δηi→j(θ)|dθ� (6)

and evaluated over the N -sized population of cavity messages and related perturbations. 
Stability is hence highlighted by a negative λBP, with the critical line then identified by the 
condition λBP = 0.

Notice also that taking the average of the logarithm of perturbation norms in equation (6) 
means considering their typical value, which indeed is what rules the stability of the BP fixed 
point. Otherwise, if we perform the linear average of perturbation norms before taking the 
logarithm, the stability parameter λBP will be dominated by the atypically large (or small) 
changes in the norm of perturbations, that in fact do not have any effect in the large-N  limit 
regarding the true location of the transition in our system. This is not always the case, as e.g. 
in [46], where at variance the largest eigenvalues of the adjacency matrix play a role in the 
assessment of robustness of complex networks.
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3.3. The zero-temperature limit

When working directly at T  =  0, it is the case to move to the large-deviation representation 
of the cavity messages, ηi→j(θi) ≡ exp {βhi→j(θi)}, where cavity fields hi→j’s are normalized 
up to an additive constant so to have maximum at zero height and satisfy the following zero-
temperature BP equations [21, 44]:

hi→j(θi) ≡ F0[{hk→i}, J,φi]

∼= H cos (θi − φi) +
∑

k∈∂i\j

max
θk

[hk→i(θk) + J cos (θi − θk)].� (7)

Once again, linear stability can be studied by looking at the global growth rate λBP  
of perturbations, δhi→j’s, that evolve according to the linearized version of equations  (7)  
and are additively normalized such as to be zero at the argmax θ∗i  of the corresponding cav-
ity field hi→j (this ensures the maximum of the perturbed log-marginal stays in zero and the 
marginal remains well normalized).

Numerically, the discrete nature of the Q-state clock model poses a problem in the evo
lution of the perturbations, that in principle would behave as those of a truly discrete model 
(e.g. the Ising model). To restore the continuous nature of perturbations and hence of the 
model numerically simulated, it is enough to evaluate argmax’s in the linearized zero-temper
ature BP equations over the real values rather than picking from the Q-discretized subset, 
through a second-order polynomial interpolation of the cavity fields and of their perturbations. 
Otherwise, without this precaution, all the perturbations will eventually collapse identically 
to zero, instead of being continuously enlarged or shrank at each iteration of BP. Hence, the 
wrong handling of zero-temperature perturbations leads to a completely wrong analysis of the 
stability, e.g. resulting in a macroscopically wrong estimate of the critical point.

3.4.  Extrapolation in Q

Let us now actually solve the BP equations. We start directly from the T  =  0 case, looking 
for the BP fixed point separately for each value of the field modulus, eventually averaging the 
resulting physical observables over r = 5 independent runs. In this way, we are sure to deal 
with a numerical precision high enough to clearly detect any possible phase transition.

The careful analysis of the stability of BP fixed points so obtained allowed us to uncover a 
tiny region of instability with respect to both the paramagnetic and the ferromagnetic solutions, 
located exactly in-between them. In figure 1 we reported the C  =  3 case, where such instabil-
ity region can be well appreciated. Let us refer to the two critical values of the field modulus 
for the P  −  SG and SG  −  F phase transitions as H(+)

c  and H(−)
c , respectively. Despite the 

necessary interpolation over the real-valued angles in the zero-temperature algorithm—that 
allowed us to recover the continuous nature of perturbations—it is clear from the figure that a 
residual dependence on Q is still present for the λBP(H) curves, and hence an explicit Q → ∞ 
extrapolation is needed in order to recover the XY values of H(+)

c  and H(−)
c . Indeed, it is evi-

dent that the larger Q, the wider ∆Hc, namely the width of the RSB region.
In order to extrapolate the correct value for the XY model, we divided the region of interest 

in four intervals, where the λBP(H) curve can be reliably approximated as a linear function. 
Then, for each interval, the two parameters m (the slope) and q (the intercept) of the linear 
approximation seem to suffer from power-law corrections with respect to their Q → ∞ limit:
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m(Q) ∼ m(∞) +
a

Qα
, q(Q) ∼ q(∞) +

b
Qα� (8)

with α that can be reliably assigned to the [0.8, 1.0] interval (inset of figure 1).
Since the range of Q values does not span many orders of magnitude, the Q-dependence 

of m and q could be even fitted with an exponential function, with a characteristic scale 
Q∗ ∼ O(102). However, the resulting Q → ∞ extrapolation is consistent with the power-law 
one shown above, within the confidence interval about the α exponent.

These power-law corrections could seem as in contrast with the conclusions of [21], where 
an exponential convergence of the physical observables was observed, with a characteristic 
scale Q∗ ∼ O(1). In fact, there are two main points to be taken into account: (i) as already 
stated in the aforementioned work, the convergence of physical observables is still exponential 
in Q even at T  =  0, provided there is an ‘enough’ disordering action by the quenched cou-
plings, and here it is not the case; otherwise, when the ordering effect of the (ferromagnetic) 
couplings prevails, it has been already argued that the convergence could have dramatically 
slowed down to a power-law (i.e. the characteristic scale of the exponential decay could have 
diverged) ; (ii) in the same work, we also observed that some critical lines used to converge 
dramatically fast in Q, as the one between the paramagnetic and the spin glass phases, while 
other did not, as the one between the RS ferromagnetic and the mixed RSB phase close to the 
zero-temperature and ‘ordered model’ axes; again, it is due to the combined ordering effect of 
both the temperature and the couplings.

Figure 1.  Main plot: stability parameter λBP for the ferromagnetic XY model in 
a randomly oriented field of fixed intensity H on a C  =  3 RRG, at T  =  0. The Q-
dependence is not negligible, leading to an increase of width of the RSB region in the 
Q → ∞ limit. In the region of interest, the λBP(H) curve can be reliably described 
by a piecewise linear function. The extrapolation is then performed on the two 
parameters (slope m and intercept q) for each of the four intervals, following a power-
law, Q−α, with α reliably belonging to the [0.8, 1.0] interval. The corresponding region 
of extrapolation is highlighted in light red between the two black curves. Inset: the 
power-law Q → ∞ extrapolation performed on the third linear interval (the one from 
H/J ∼ 0.9 to H/J ∼ 1.10), plotted for α = 1.0 as reference. The left y  axis refers to 
the scale for the slope m, the right y  axis to the scale for the intercept q. The represented 
data-points go from Q  =  48 (the rightmost one) to Q  =  256 (the leftmost one), while 
the data-point for Q  =  32 has been excluded from the fit for both m and q.
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The Q → ∞ extrapolated values for the two critical fields are reported in table 1 for many 
values of the connectivity C of the RRG graphs, together with the amplitude ∆Hc of the RSB 
region at T  =  0. We rescaled the couplings of 1/(C − 1) so to get finite C → ∞ results. As a 
consequence of this, also H and T get rescaled by the same amount, namely 1/(C − 1), with 
respect to the usual J  =  1 choice. Within the numerical precision we attained—mainly due 
to the systematic error on the choice of α, rather than to the statistical error on the single 
measures—we are confident that the width ∆Hc of the RSB region shrinks to zero linearly in 
C, likely going to zero in the (7, 8) interval. However, an exponentially-small (or power-law) 
RSB region cannot be in principle ruled out for C � 8, given the difficulty to further enhance 
the numerical precision we obtained. What is sure, is that exactly in the fully-connected (or 
SK) limit, there is no RSB region at all—as well known in the literature and also shown here 

in appendix—and H(+)
c = H(−)

c = 1/2.
For H < H(−)

c  we observe that λBP is constant and slightly negative for any finite value of 
Q. In the Q → ∞ limit it becomes zero, signaling a marginal ferromagnetic phase. We will 
discuss below in more detail this ferromagnetic marginal phase.

One may also wonder why λBP has a cusp in the spin glass phase. This is due to one more 
phase transition taking place at that field value, where the magnetization becomes different 
from zero. In figure 2 we show the magnetization modulus M as a function of the external 
field intensity H, computed at the BP fixed point. We observe a phase transition in the mag-
netization exactly at the point where λBP has a cusp. So on the right of the cusp we have an 
unmagnetised spin glass phase, while on the left we have a mixed phase, i.e. spin glass with 
non-zero magnetization, usual for disordered systems with a directional bias in the couplings 
or in the external field. It is worth reminding that the location of this phase transition is only 
approximate, as one should use an ansatz with RSB in order to compute it exactly [47].

Table 1.  End-points of the RSB phase in the phase diagram of the ferromagnetic XY model 
in a random field on random C-regular graphs. The coupling strength J = 1/(C − 1) 
has been chosen such to have a finite value for limC→∞ Tc(H = 0) = 1/2, as well as 
for limC→∞ Hc(T = 0) = 1/2. From C  =  5 the RSB area is no longer detectable with 
finite-T numerics, while it disappears for C � 8 even from the T  =  0 results, with H(−)

c  
and H(+)

c  coinciding within the numerical precision used. The last line refers to the SK 
analytic results from appendix.

C H(−)
c H(+)

c ∆Hc T*

3 0.367(3) 0.578(3) 0.211(4) 0.012(1)
4 0.503(3) 0.667(4) 0.164(5) 0.004(1)
5 0.560(3) 0.667(4) 0.107(5) /
6 0.578(4) 0.646(4) 0.068(6) /
7 0.577(4) 0.611(5) 0.033(6) /
8 0.575(5) 0.575(5) 0.000(6) /
12 0.554(5) 0.554(5) 0.000(6) /
16 0.539(5) 0.539(5) 0.000(6) /
20 0.530(5) 0.530(5) 0.000(6) /
… … … … …
∞ 1/2 1/2 0 0
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3.5.  Finite-T results and the whole phase diagram

In order to assess the robustness in temperature of the RSB phase detected with the T  =  0 
algorithm, let us move to the finite-T numerics. For large enough values of T, we exploit the 
cooling protocol of [20], to speedup the convergence to the correct BP fixed point. For temper
ature values too small, e.g. below T/J  =  0.020 for the C  =  3 case, we instead prefer to look for 
the BP fixed point separately for each value of the field modulus, exactly as in the T  =  0 case. 
However, a single run per temperature and field value is here sufficient.

As a first evidence of the reliability of the T  =  0 algorithm, the presence of the RSB region 
is revealed also by the finite-T results, exactly in the same region where it was expected. 
However, the robustness in temperature of this RSB phase is very weak, as it can be appre-
ciated in figure 3, where we plotted the λBP(H) curves of the stability parameter for some 
very small values of the temperature, down to the numerical precision allowed by the finite-
temperature algorithm. For comparison, we also reported the data collected directly at T  =  0, 
as usual represented by the confidence interval α ∈ [0.8, 1.0] for the Q → ∞ extrapolation. 
At variance, the finite-T data are substantially Q-independent already at Q  =  64 within our 
numerical precision.

Finite-T results for the C  =  3 case are also useful to double-check the reliability of the criti-
cal values H(+,−)

c  obtained exactly at T  =  0. Indeed, being Q-independent (within the error 
bars represented) at T  >  0, we expect the T → 0 extrapolation of the critical values H(+,−)

c (T) 
to match the T  =  0 values. It is exactly what can be observed in the inset of figure 3, where a 
square-root-like extrapolation is exploited:

H(±)
c (T) ∼ H(±)

c ∓ c(±) Tγ� (9)

Figure 2.  Modulus M of the global magnetization as a function of the field modulus H for 
the ferromagnetic XY model in a randomly oriented field of fixed intensity H at T  =  0. 
The underlying topology is again the C  =  3 RRG ensemble. M drops continuously to 
zero in correspondence of the cusp in the λBP(H) curve, signaling the phase transition 
between the magnetized mixed phase (on the left) and the unmagnetized spin glass 
phase (on the right), both RS-unstable. The datapoints refer to Q  =  64, and the cusp 
location is coherent with this choice. The Q → ∞ extrapolation does not qualitatively 
change the picture, only resulting in a slight shift of the cusp (see figure 1).
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with γ � 0.36 for the lower branch and γ � 0.45 for the upper branch. The same fit also 
allows us to easily evaluate the temperature T* of the tricritical point, that is T*/J  =  0.012(1) 
for C  =  3.

Analogous results hold for the C  =  4 case, where the RSB region can still be detected 
through the finite-T numerics. Instead, T* becomes too small for C � 5 to be detected at finite 
T (last column of table 1).

The entire (H, T ) phase diagram for the ferromagnetic RFXY model on RRGs can be 
finally depicted in figure 4 for several values of the connectivity C of the graph, again suit-
ably rescaling the couplings by 1/(C − 1). As an interesting comparison, we also depict the 
C → ∞ curve, corresponding to the SK limit, that has been analytically obtained in appendix 
by performing the dense limit of the BP equations, as in [20]. The convergence of the large-
C curves toward the fully-connected one is quite fast, as already observed in similar models 
[20]. Then, an interesting feature can be appreciated already for the C  =  16 and C  =  20 cases, 
and even more clearly in the SK limit: the non-monotonicity of the critical line between the 
paramagnetic and the ferromagnetic line. It is an unexpected feature, since usually decreasing 
values of the temperature requires higher and higher values of the external field modulus in 
order to move from the ferromagnetic phase to the paramagnetic phase; here, at variance, the 
critical value of the external field modulus firstly increases with the temperature, resulting in 
an enhanced stability of the ferromagnetic phase at intermediate temperatures.

Figure 3.  Main plot: stability parameter λBP(H) for the ferromagnetic XY model in 
a randomly oriented field of fixed intensity H on the C  =  3 RRG ensemble, for some 
very small values of the temperature T. A piecewise linear fit is also reported, useful 
to estimate the two critical values of the field at each value of T. The RSB solution 
survives also at finite temperature, though being not very robust against the temperature 
increase. For comparison, we finally plot also the T  =  0 data, depicted again as a 
confidence interval referred to the Q → ∞ extrapolation (while for finite-T data the 
finite-Q correction is below the precision we are working with). Inset: the T → 0 
extrapolation of the finite-T critical fields, as in equation  (9), is compatible with the 
confidence interval for the values estimated directly at T  =  0, represented here by the 
two colored horizontal stripes. Notice the two different y -axis scales, in J units, that 
refer to the extrapolation of the two different branches of the RS instability line.
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4. The RSB phase and the low temperature physics of the RFXY model

4.1.  Robustness of the RSB phase

At this point, it is clear that it is the combined presence of two key elements that makes pos-
sible the onset of the glassy phase in our model: the extreme dilution of interactions (giving 
a strong spatial heterogeneity) and the continuous nature of the spins. Indeed, as soon as the 
connectivity C is increased above a certain value, the RSB area can no longer be detected even 
via the zero-temperature algorithm. Whether its width is still finite for large but finite C, or it 
is identically zero, remains an open question. However, as previously shown, it is no longer 
appreciable for C � 8 to the best of our numerical efforts. Analogously, if not performing 
accurately the Q → ∞ extrapolation, we get an enhanced stability for the RS solution, with 

values of λ(Q)
BP  systematically smaller than their Q → ∞ extrapolation.

If our hypothesis were correct, the RSB phase should be robust against small changes in the 
field distribution, provided there is no strong directional bias that could inhibit the rotational 
freedom of the spins. In order to check this, let us change our field distribution from the one 
with fixed modulus Hi  =  H and random direction φi uniformly drawn from the flat distribu-
tion, to the Gaussian one

Hi,x ∼ Gauss(µx,σ2)

Hi,y ∼ Gauss(0,σ2)
� (10)

where we decided to orient the potential ferromagnetic bias along the x̂ axis (µy = 0) without 
any loss of generality. Moreover, let us just focus on the T  =  0 plane, where the effects of RSB 
(if any) should be more evident and hence more easily detectable.

Figure 4.  Main plot: Phase diagram of the RFXY model with Hi  =  H for each site 
and φi ∼ Unif[0, 2π), for several values of the connectivity C of the RRG ensemble. 
The strength of the coupling, J = 1/(C − 1), is such to allow a proper match with 
the SK fully-connected (C → ∞) case, whose critical line is given by condition 
(A.7). Large values of C only allow for the usual paramagnetic (top right corner) and 
ferromagnetic (bottom left corner) phases, while for C  =  3 and C  =  4 a small glassy 
region can be detected close to the zero-temperature axis. Inset: Zoom of the glassy 
region, numerically visible at finite T only for C  =  3 and C  =  4.
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Also in this case, the infinite-Q extrapolation can be performed by means of a power-law 
fit, with the exponent α reliably belonging to the same interval [0.8, 1.0] as for the randomly-
oriented field with constant modulus. Again, in the O(2)-symmetric case (µx = µy = 0), the 
zero-temperature algorithm exhibits a RS instability in a non-zero-measure interval of σ val-
ues (top curve in figure 5; for clarity, only the extrapolated curve for α = 0.8 is shown).

Furthermore, by exploiting the field distribution in equation  (10), we can evaluate the 
effects on the width of the RSB region when the O(2) symmetry is explicitly broken, e.g. by 
means of a tiny directional bias µx  along the x̂ axis, as previously suggested. As soon as µx  
is switched on, the ferromagnetic phase disappears from the phase diagram, being the O(2) 
symmetry already explicitly broken by the external field. However, the zero-temperature algo-
rithm is still able to detect a RS instability, in a region of σ values that continuously shrinks 
to zero with the increase of µx  (further curves in figure 5). The end-point of this phase is then 
reached at a certain critical value of the ferromagnetic bias, µ∗

x , above which any σ value can 
only yield a paramagnetic ordering. Of course, the estimate of the value of µ∗

x  depends on 
the α exponent used for the extrapolation; this systematic error is then taken into account by 
assigning a suitable uncertainty to the estimate of µ∗

x  (in units of J)

µ∗
x = 0.065 ± 0.003.� (11)

From a further inspection of figure 5, we can realize that there are two main effects caused 
by the switch-on of the ferromagnetic bias µx . First of all, a smoothing of the λBP(σ) curves 
around the point of maximal instability, directly caused by the breaking of the O(2) sym-
metry of the field, and the consequent inhibition of the rotational freedom of the spins in the 
configuration space. The disappearance of the cusp for positive values of µx  hence reflects 
the corresponding disappearance of the phase transition (still present for µx = 0) between the 
mixed and the unmagnetized glassy phase, being left only with a magnetized spin glass phase. 
Secondly, a south-east shift of the curves, resulting in a larger µx-dependence of the critical 
point σ(−)

c  compared to σ(+)
c .

Finally, the shift of the λBP(σ) curves has a further important consequence, that we will 
further discuss in the following section: the sudden loss of the marginal ferromagnetic phase 
as soon as the directional bias µx  is switched on.

The resulting phase diagram (µx,σ) on the T  =  0 plane is finally shown in figure 6, where 
the confidence interval for the Q → ∞ extrapolation of the critical lines is again represented 
by the light-red region. If we plotted the whole 3d phase diagram by also taking into account 
the temperature, we would also in this case recognize a shrinking to zero of the RSB region on 
the µx = 0 surface when increasing the temperature, so resulting in the overall picture of a tiny 
RSB region, weakly robust with respect to the increase of either the temperature or the field 
anisotropy. At variance, the ferromagnetic phase would remain relegated in the µx = 0 plane.

Concluding, we verified the robustness of the RSB region with respect to slight changes in 
the field distribution, confirming the strong sparsity and the rotational freedom of the spins as 
the major actors of the onset of the glassiness, while ruling out unessential details of the field 
distribution as a small ferromagnetic bias (explicitly breaking the rotational symmetry) or the 
randomness in the local field strength.

4.2.  Marginality of the ferromagnetic phase

Another surprising feature of the random field XY model can be found in the ferromagnetic 
phase, just below the glassy phase. Indeed, as already suggested by the analysis of figure 3, the 
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ferromagnetic phase at T  =  0 is characterized by a marginal stability, that is preserved even 
when switching on the temperature.

The connection with the continuous nature of the XY spins is straightforward: as long as Q 
is finite, then λBP is strictly negative (although very close to zero) for H < H(−)

c  and the corre
sponding ferromagnetic solution is strictly stable. Conversely, when properly extrapolating to 
the continuous limit (Q → ∞), we get a value for the stability parameter compatible with zero 
in the whole ferromagnetic phase.

In general the presence of an external field—even better if disordered and site-uncorre-
lated—eliminates any potential zero mode due to symmetries of the Hamiltonian. In this case, 
notwithstanding the presence of the random field, we observe a marginal ferromagnetic phase. 
A careful analysis of this marginally stable solution reveals that, although the global mag-
netization is non-zero (due to the ferromagnetic long-range order), all XY spin variables can 
coherently rotate without paying a substantial energy cost thanks to the global O(2) symmetry 
of the random field distribution. In other words, although on each site the random field locally 
breaks the O(2) symmetry and introduces a preferential direction, at the global level the field 
distribution is O(2) symmetric and thus has a zero mean: this allows the global magnetization 
to rotate without paying a substantial energy cost.

In practice for finite-N systems, infinitesimal perturbations can propagate through the 
entire system, thus leading to a slow global rotation with a global energetic cost that goes to 
zero in the thermodynamic limit. This has been observed also while running the PDA at finite 
temperatures for long enough times.

As an evidence of what explained above, when explicitly breaking the symmetry of the 
external field—e.g. by switching on µx  in the Gaussian case—the marginality is suddenly lost, 
resulting in a negative value for λBP, which is smaller the larger µx  (see figure 5).

Figure 5.  Stability parameter λBP for the ferromagnetic XY model in a Gaussian-
distributed random field as in equation (10), for the C  =  3 RRG ensemble of graphs at 
T  =  0. The Q → ∞ curves are again obtained by a power-law extrapolation Q−α; only 
the curves for α = 0.8 are represented for clarity, with the curves for α = 1.0 being 
slightly below. The difference in the location of the critical points according to the 
different extrapolations can be appreciated in figure  6. It is evident how the RSB 
region—quite wide when the O(2) symmetry of the field is unbroken—shrinks to zero 
when a sufficiently large ferromagnetic bias is inserted. µx  values are again measured 
in J units.
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Notice finally that the marginality of the whole ferromagnetic phase is entirely related to 
the Goldstone modes of the model that survive notwithstanding the random field, thanks to 
its unbroken O(2) symmetry. A more physical interpretation of these zero modes in terms of 
correlations will be then provided in section 5. At variance with this, there are other continu-
ous ferromagnetic models that also exhibit marginality in the ordered phase [48]. However, its 
nature is very different and related to diverging fluctuations in the modulus of the spin vectors, 
which is instead fixed in the XY model we are studying.

4.3.  Meaning of the RS instability

At this point, we go back to the argument provided in [17] against the presence of a RSB phase 
in the RFIM. The basic observation is that connected correlation functions 〈σi σj〉c = 〈δσi δσj〉 
are always nonnegative if the model is purely ferromagnetic, due to the solely possibility 
of longitudinal perturbations of equilibrium configurations for Ising spins. So ferromagnetic 
susceptibility χF  represents an upper bound for the spin glass one χSG  and hence no transition 
toward a spin glass phase can be realized out of the zero-measured P  −  F critical point.

In fact, vector spins allow not only longitudinal perturbations, but also transverse ones 
around the equilibrium configuration, as thoroughly studied for the spin glass XY model in an 
external field [20]. More formally, connected correlations for m-dimensional vector spins are 
no longer scalars, but m × m matrices 〈δσi,µ δσj,ν〉—with m  =  2 for the XY model—whose 
entries can be either positive or negative, irrespective of the presence of the ferromagnetic cou-
plings, and being related to the longitudinal and the transverse responses to excitations in the 
system. Finally, this is enough to provide a negative effective correlation even between near-
est-neighbor spins joined by a positive coupling, and eventually to cause enough frustration 

Figure 6.  Phase diagram on the T  =  0 plane of the RFXY model with the Gaussian-
distributed external field as in equation (10). The light-red region indicates the confidence 
interval of the Q → ∞ extrapolated lines, bounded by the fitted datapoints for α = 0.8 
(purple points on the upper curve) and α = 1.0 (green points on the lower curve). The 
black curves are given by a 7th-order polynomial fit over the extrapolated datapoints. 
The glassy RSB region (SG) is the one under such area, while the remaining portion of 
the T  =  0 plane corresponds to the paramagnetic phase (P). Finally, the ferromagnetic 
phase (F) is restricted to the µx = 0 axis for σ < σ

(−)
c , since suddenly vanishing when 

switching on µx .

C Lupo et alJ. Phys. A: Math. Theor. 52 (2019) 284001



15

to make room for glassiness. To check this, let us compute connected correlations in the next 
section.

5.  Correlation function in the diluted XY model

In order to compute the matrix M of connected correlations of two spins σi  and σj

M(i, j) ≡ 〈σi σ
ᵀ
j 〉c

=

∫
dσi dσj P(σi,σj)σi σ

ᵀ
j

−
∫

dσi P(σi)σi

∫
dσj P(σj)σ

ᵀ
j

=

∫
dσi dσj Pc(σi,σj)σi σ

ᵀ
j

� (12)

we need to know their connected joint probability distribution, defined as:

Pc(σi,σj) ≡ P(σi,σj)− P(σi)P(σj).� (13)
Let us focus on the m  =  2 case, so moving again to angular variables θ’s. When nodes i 

and j  are at distance r  =  1, BP already provides the probability distributions we need. Indeed, 
from equations (2a) and (2b):

Pc(θi, θj) = ηij(θi, θj)− ηi(θi) ηj(θj)� (14)

and in turn these ones can be computed by e.g. directly sampling from the fixed-point cavity 
distribution P∗[ηi→j] in the PDA. However, the most relevant information content is hidden 
into the long-distance decay of correlations, that have to be computed in a different way.

5.1. The computation along a chain

To this aim, we will exploit the well known computation of correlation functions along a chain 
[45], generalizing it from the Ising case to the XY case. Let us start from a r  =  1-long chain, 
where the full joint probability distribution reads, from equation (2b)

P(θi, θj) ∼= e βJ cos (θi−θj) ηi→j(θi) ηj→i(θj)� (15)

neglecting the obvious normalization. We can distinguish two key ingredients: i) the 
‘external legs’ ηi→j(θi) and ηj→i(θj), and ii) the ‘amputated correlation’ Pa(θi, θj) =  
exp {βJ cos (θi − θj)}. Then, the connected joint probability distribution can be computed as 
in equation (13), getting the single-variable probability distributions by marginalization.

When moving to a r  =  2-long chain, by e.g. extending it on the right side, we have to add 
the contribution of the external field Hj acting on site j , the link exp {βJ cos (θj − θk)} with 
the new ‘right leg’ ending in site k, and the remaining C  −  2 contributions to j  from the sides 
of the chain, namely the neighbors of site j  different from i and k. Finally, the new amputated 
contribution is obtained by integrating over θj:

Pa(θi, θk) ∼=
∫

dθj Pa(θi, θj) e βJ cos (θj−θk)

× e βH cos (θj−φj)
C−2∏
l=1

η̂l→j(θj)

�
(16)
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where η̂l→j(θj) is the convolution of the cavity message ηl→j(θl) with the compatibility func-
tion of the interaction between sites l and j :

η̂l→j(θj) ∼=
∫

dθl ηl→j(θl) e βJ cos (θl−θj).� (17)

The full joint P(θi, θk) can be then obtained by multiplying the amputated one with the exter-
nal leg contributions, ηi→j(θi) and ηk→j(θk), and in turn the connected one from it as before.

In this way, we can actually iterate the procedure and so obtain the connected joint prob-
ability distribution Pc(σi,σj) of two generic spins σi  and σj  at distance r along a chain.

From the numerical point, being one-variable probability distributions approximated as 
Q-component vectors, then two-variable probability distributions are represented as Q × Q 
matrices. Finally, these matrices can be projected onto the m × m ones in the magnetization 
space as in equation (12), which for the XY model explicitly becomes





Mxx(i, j) ≡ 〈σi,x σj,x〉c

= 1
(2π)2

∫
dθi dθj Pc(θi, θj) cos θi cos θj

Mxy(i, j) ≡ 〈σi,x σj,y〉c

= 1
(2π)2

∫
dθi dθj Pc(θi, θj) cos θi sin θj

Myx(i, j) ≡ 〈σi,y σj,x〉c

= 1
(2π)2

∫
dθi dθj Pc(θi, θj) sin θi cos θj

Myy(i, j) ≡ 〈σi,y σj,y〉c

= 1
(2π)2

∫
dθi dθj Pc(θi, θj) sin θi sin θj

� (18)

with i and j  being at distance r along the given chain. These 2 × 2 matrices encode the longi-
tudinal and transverse responses to small excitations in the system, which we believe are the 
ones explicitly bearing the signatures of the marginality of the ferromagnetic phase and of the 
RS instability of the glassy phase.

5.2.  Decay of correlations

In what we did before, the RS instability has been detected by looking at growth rate λBP (in 
the time domain) of the global norm of the perturbations to the BP fixed point P∗[ηi→j]—both 
at finite and zero temperature—, which of course represents a reliable tool, providing results 
that match with the analytic predictions where the latter ones are available. However, once 
having in our hands connected correlation functions, we can study their exponential decay 
with the distance

C(r) ∼ e−r/ξ� (19)

and hopefully match the divergence of their correlation length ξ with the critical point already 
detected before.

In order to do that, since correlations are computed along a chain—and eventually averaged 
over a large enough number of chain realizations—, the corresponding correlations on the 
original graph ensemble can be recovered by multiplying C(r) by the inverse branching ratio 
to the rth power, (C  −  1)r, i.e. the average number of neighbors at distance r on the graph. 
The resulting correlation length ξ′ is finally expected to diverge exactly in correspondence of 
second-order transitions detected by the condition λBP = 0 in the PDA.

A first, rapid check of the coherence of the two approaches can be attained by looking at 
the average decay rate of the �2 norm of the Q × Q matrix representing Pc(θi, θj). For example, 
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if we fix the temperature T and perform an annealing in the field modulus H, then compute 

the decay rate 1/ξ′ at each BP fixed point, we exactly recover the critical values H(−)
c (T) and 

H(+)
c (T) given by the well assessed stability study in the PDA.

5.3.  Critical correlations

However, the knowledge of correlation functions gives us by far more information than the 
location of the critical points. Indeed, we can characterize which correlations are the relevant 
ones in each thermodynamic phase, and then also understand which of them become critical 
at each phase transition.

To this aim, let us look at the single entries of matrix M(r = |i − j|). Being the heterogene-
ity a key feature of disordered systems on diluted topologies—even more in our case, where it 
is a necessary ingredient for the onset of the RSB phase—, we firstly look at their probability 
distribution over 106 realizations of different chains, every time picking the necessary cavity 
messages from the BP fixed point P∗[ηi→j]. In figure 7 we reported them for five different 
values of the field modulus, for the C  =  3 case at fixed temperature T/J  =  0.01: two in the fer-
romagnetic phase, one in the middle of the glassy region, and two in the paramagnetic phase.

The general behavior when looking at large distances is a shrinking in the distributions, 
quantifiable through the decay of both mean and variance with r; indeed, we will look at it 
after. Before, let us qualitatively appreciate the difference between the three phases, in order to 
validate (or not) our picture. Notice the vertical axis being in the log scale and with the same 
range in all the panels, in order to better appreciate the different large-r decay of correlations, 
otherwise not visible if using the linear scale.

In the ferromagnetic phase (first and second rows of panels in figure 7), a global mag-
netization of order one characterizes the system. Hence, fluctuations have to take it into 
account, resulting in histograms of the diagonal entries Mxx  and Myy  (namely, the longitu-
dinal responses with respect to the perturbation) almost entirely lying in the positive region. 
However, at variance with the Ising case, a small tail is also present in the negative region, as 
a signature of the negative effective correlations that can take place in the XY model, already 
at distance r  =  1. Then, the two first moment of diagonal entries are in general different, 
depending on the angle between the direction of the spontaneous breaking of the O(2) sym-
metry and the x̂ axis (notice indeed the difference between H/J  =  0.50 and H/J  =  0.70, being 
independent runs and hence having a different direction for the global magnetization). At the 
same time, the two off-diagonal entries (namely, the transverse responses with respect to the 
perturbation) acquire a very similar distribution, with the same width and centered around the 
same mean, which in turn can be either negative (e.g. for the run at H/J  =  0.70) or positive 
(e.g. for the run at H/J  =  0.50) depending again on the direction of the global magnetization.

When moving to the paramagnetic phase (fourth and fifth rows of panels in figure 7), the 
O(2) symmetry is no longer spontaneously broken, so that diagonal correlations Mxx  and 
Myy  now have the same distribution, with a fatter tail in the positive domain. Also off-diag-
onal entries have the same distribution, but now centered around zero and symmetric, due to 
symmetry arguments.

The spin glass phase (central panels in figure 7) is quite indistinguishable from the para-
magnetic one, according to Mµν distributions. Indeed, the O(2) symmetry is locally broken, 
though along incoherent directions throughout the system, so that the overall picture is quite 
the same of the paramagnetic one. Diagonal entries behave the same and have a positive mean, 
while off-diagonal entries have again a symmetric distribution around the zero.
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From the qualitative analysis of the features of the distributions in figure 7, we can now 
properly choose the moments of such distributions whose decay may become critical at the 
critical points. Indeed, in the ferromagnetic phase, both the longitudinal and the transverse 
entries of the matrix M have a non-vanishing first moment E[Mµν ], whose decay with the 
distance r can be well appreciated in the first two panels of figure 8. As already said, the 
longitudinal ones are always positive, but in general with different values; instead, the trans-
verse ones have the same value, either negative or positive depending on the direction of the 
global magnetization. At variance, both in the spin glass phase (central panel of figure 8) and 

Figure 7.  Probability distributions of the entries Mµν(r = |i − j|) at different distances 
r over 106 realizations of a chain, computed according equation  (18) in the C  =  3 
case. We set T/J  =  0.01 and five different values of H so to study all the three phases: 
ferromagnetic, spin glass and paramagnetic. The corresponding critical values of the 
field modulus are H(−)

c = 0.843(2) for the F  −  SG transition and H(+)
c = 0.973(2) 

for the SG  −  P transition, in units of J. The two axes keep the same ranges for all 
the panels, to favour the comparison; notice also the log scale on the vertical axis, 
useful to appreciate the different decay at large distances. The different behavior of the 
distributions in the three phases is discussed in the main text.
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in the paramagnetic phase (last two panels of figure 8), we can actually verify that E[Mxx] 
and E[Myy] lie on the same curve as functions of r, while E[Mxy] and E[Myx] are zero within 
uncertainty bars. So the decay of the transverse components is in fact described by their sec-
ond moments, respectively V[Mxy] and V[Myx].

To finally check which of these moments become critical at the two transitions, we have to 
multiply them by the inverse branching ratio (C  −  1)r and then evaluate their new slope 1/ξ′ 
in the log scale (figure 9). As expected, the four first moments E[Mµν ]—once rescaled with 
the inverse branching ratio—cease to exponentially decay with the distance and stay critical 
in the whole ferromagnetic phase. Of course, it is not surprising to see that not only transverse 
fluctuations are critical, but also the longitudinal ones, being related to the well known simul-
taneous divergence of the longitudinal susceptibility χ‖ and the transverse susceptibility χ⊥ in 
the explicitly unbroken O(2) symmetry [49].

The spin glass phase, then, seems to be characterized by a critical decay of the longitudinal 
first moments (or maybe a slight divergence, within our resolution), while the transverse sec-
ond moments are clearly showing unstable fluctuations. So the instability of the RS solution in 
the glassy region seems to be mainly due to long-range transverse fluctuations, as we guessed 
at the beginning of our analysis.

Figure 8.  Mean E[·] and variance V[·] of the entries Mµν(r) when increasing the 
distance r, from the same 106 realizations of a chain used for figure 7. Being C  =  3 and 
having set T/J  =  0.01, we have a ferromagnetic phase for H/J = {0.50, 0.70}, a spin 
glass phase for H/J  =  0.90 and a paramagnetic phase for H/J = {1.10, 1.30}. Vertical 
axes have all the same range, with values reported in the leftmost panel. The different 
behavior of the moments in the three phases is discussed in the main text.

Figure 9.  Same mean E[·] and variance V[·] of the entries Mµν(r) as in figure  8, 
now corrected with the inverse branching ratio (C  −  1)r so to move from the chain 
ensemble to the C-RRG graph ensemble. Vertical axes have all the same range, with 
values in the log10 scale reported in the leftmost panel. It is very clear the marginality 
of the ferromagnetic phase, the instability of the glassy phase and the stability of the 
paramagnetic phase. When r � 10, finite-size fluctuations become too relevant and 
overcome the expected large-r behavior.
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Finally, the paramagnetic phase is again characterized by integrable fluctuations of both 
the mean of longitudinal components and the variance of transverse ones (up to r � 10, where 
finite-size fluctuations become too strong), as expected for a RS-stable phase.

6.  Conclusions

We have obtained the analytic solution to the random field XY model on a RRG at the RS level 
by solving the BP equations via a discrete approximation and finally taking the continuous 
limit. We have derived all possible phase diagrams with different field distributions and we 
have found some surprising results.

The model possesses a RSB phase where spin glass long-range order develops. This phase 
is present at very low temperatures and is clearly visible only for RRGs of small degree. So a 
strong sparsity seems to be a key ingredient for the existence of long-range spin glass order, 
together with the continuous nature of the XY variables (indeed in random field Ising models 
the RSB phase can not exist). We have also checked that the RSB phase is robust with respect 
to the field distribution: e.g. it survives also in presence of a random field with a non-zero 
mean, as long as this mean value is small enough.

Another unexpected result is the observation that the ferromagnetic phase is marginally 
stable. This comes as a surprise, since the presence of a random field locally breaks the O(2) 
symmetry and defines a preferential direction for each XY spin. However, if the distribution 
of the random field is O(2) symmetric, then the global O(2) symmetry of the field allows for 
the coherent rotation of all XY spins without paying an extensive energy cost. These collective 
fluctuations make the ferromagnetic phase marginally stable.

We have finally identified the correlations that seem to be the most informative in order 
to identify the kind of long-range order that takes place in the system. Having measured the 
2 × 2 matrix of correlations between the components of two spins at a fixed distance, we have 
studied how the distributions of the diagonal and off-diagonal elements evolve with the dis-
tance in the different phases. The symmetry of the distribution of the off-diagonal elements is 
related to the phase symmetry, thus allowing to identify the ferromagnetic phase. Instead the 
transition from paramagnetic to spin glass phase is signaled by the critical decay of the mean 
of diagonal elements or the variance of the off-diagonal ones (whose mean is always zero in 
these phases).
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Appendix. The SK limit

The critical line of the random field XY model in the dense (or SK) limit can be easily obtained 
by performing the C → ∞ limit of the BP equations. Once assessed the general strategy, as 
thoroughly explained in [20], the random field XY model with ferromagnetic couplings turns 
out to be a very simple case.
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Indeed, given that all the J’s take on the same value and are of order 1/(C − 1) ∼ 1/N , in 
the expansion of equations (A54) and (A56) in [20], we can just retain the field term and the 
first-order term in J:

hi→j(σi) � Hi · σi + J
∑

k∈∂i\j

σi · 〈σk〉k.
� (A.1)

Hence, when exploiting the vectorial ansatz for the cavity field, hi→j(σi) ≡ ξi→j · σi, we get:

ξi→j = Hi + J
∑

k∈∂i\j

〈σk〉k� (A.2)

where the average 〈σk〉k can be analytically computed by means of Bessel functions:

〈σk〉k ≡
∫

dσk exp [βhk→i(σk)]σk∫
dσk exp [βhk→i(σk)]

=
I1(βξk→i)

I0(βξk→i)

ξk→i

ξk→i
.

�
(A.3)

When summing over the O(N) neighbors, the second term in the right hand side of equa-
tion (A.2) concentrates around its mean, namely the vector of the global magnetization M . 
Dropping the edge notation in the dense limit, vectors ξ’s are hence random variables satisfying

ξx = H cosφ+ Mx

ξy = H sinφ+ My
� (A.4)

where the randomness is just given by the field direction φ.
Explicitly breaking the symmetry along the x̂ axis, we have that My  identically vanishes in 

both the paramagnetic and the ferromagnetic phase. We are only left with the self-consistency 
equation for Mx:

Mx = Eφ

[
ξx
]
= Eφ

[
I1(βξ)

I0(βξ)

ξx

ξ

]
� (A.5)

where ξx = H cosφ+ Mx  and ξy = H sinφ.
In the paramagnetic phase, Mx vanishes as well; it continuously grows from zero when 

moving to the ferromagnetic phase, so that a small-Mx expansion in the right-hand side of 
self-consistency equation (A.5)

Mx = Eφ

[
I1(βξ)

I0(βξ)

ξx

ξ

]

� Eφ

[
d

d Mx

(
I1(βξ)

I0(βξ)

ξx

ξ

)∣∣∣∣
Mx=0

]
Mx

=
β

2

(
1 − I2

1(βH)

I2
0(βH)

)
Mx

� (A.6)

gives the condition related to the location of the critical line in the dense limit

β

2

(
1 − I2

1(βH)

I2
0(βH)

)
= 1� (A.7)

in the (H, T) plane.
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The critical line in figure 4 is exactly given by the condition above. Apart from the well 
known end-point on the H  =  0 axis, namely Tc  =  1/2, it is also worth observing the other end-
point, Hc  =  1/2 on the T  =  0 axis, that comes out from the large-argument expansion of Bessel 
functions. Finally, it is also worth noting the non-monotonicity of the Hc(T) curve in the SK 
limit, quite unusual for magnetic systems with quenched disorder: indeed, it approaches its 
maximum H∗

c  at a finite temperature and then it goes down to H/J  =  1/2 on the T  =  0 axis. In 
other words, by performing an annealing in temperature at fixed field H/J ∈ (1/2, H∗

c ), we 
can pass from the paramagnetic phase to the ferromagnetic phase and then back again to the 
paramagnetic one. Evidences of this feature can be already collected on diluted graphs with 
large but finite values of the connectivity C, as shown in figure 4 by the curves C  =  16 and 
C  =  20.
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