Mirror and Triplet Energy Differences within Density Functional Theory

P. Bączyk J. Dobaczewski M. Konieczka T. Nakatsukasa K. Sato W. Satuła

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw

Trento, 13th June 2017

Nucleon-nucleon (NN) interaction

$$V_{nn} \stackrel{?}{=} V_{pp} \stackrel{?}{=} V_{pn}$$

- What are the consequences in atomic nuclei?
- Can we built a successful theoretical description?

Isobaric analog states (IAS)

without Coulomb

Isobaric analog states (IAS)

with Coulomb

Mirror Displacement Energy (MDE)

Triplet Displacement Energy (TDE)

The need of ISB nucleon-nucleon interaction is well established:

- Hartree-Fock calculations,
- ab initio calculations,
- Shell Model calculations.

How can our approach contribute?

- implementation within a robust model based on DFT
- full non-perturbative Coulomb force
- transparent way of treating CSB and CIB
- applicability to any nucleus (including odd-odd systems)
- a lot of ISB effects in one model

Hohenberg-Kohn theorem

A-body wave-function of the nuclear ground-state is an unambiguously defined functional of a single-particle density.

DFT strategy

- the existence of an exact functional leading to exact many-body solution is proven, but the way of finding it is unknown
- constructing the nuclear density functional explores formal similarity between the DFT method, in particular in the Kohn-Sham formulation, and the HF approximation

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{eff}(\mathbf{r})\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Skyrme interaction

$$\begin{split} \hat{V}_{Sk}(\vec{r}_{1},\vec{r}_{2}) &= t_{0}(1+x_{0}\hat{P}_{\sigma})\delta(\vec{r}_{1}-\vec{r}_{2}) \\ &+ \frac{1}{2}t_{1}(1+x_{1}\hat{P}_{\sigma})\left(\delta(\vec{r}_{1}-\vec{r}_{2})\vec{k}^{2}+\vec{k}'^{2}\delta(\vec{r}_{1}-\vec{r}_{2})\right) \\ &+ t_{2}(1+x_{2}\hat{P}_{\sigma})\vec{k}'\delta(\vec{r}_{1}-\vec{r}_{2})\vec{k} \\ &+ \frac{1}{6}t_{3}(1+x_{3}\hat{P}_{\sigma})\rho_{0}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right)\delta(\vec{r}_{1}-\vec{r}_{2}) \\ &+ iW_{0}(\vec{\sigma}_{1}+\vec{\sigma}_{2})\vec{k}'\times\delta(\vec{r}_{1}-\vec{r}_{2})\vec{k} \end{split}$$

Short characteristics

- Iow-momentum transfer expansion
- composed of various terms: central, spin-orbit, density dependent...
- successful description of bulk properties in broad range of masses
- only 10 parameters

Parametrisations used in our work:

- SV: Hamiltonian-derived interaction (no density-dependent term), well-suited for projections and No-Core Configuration Interaction (NCCI) method
- SkM*: describing well properties of nuclei, fitted in particular to fission barriers
- SLy4: well-established and widely-used parametrization

Classification of Henley and Miller

class I – isospin independent

$$V_I^{NN}(i,j) = a + b ec{ au}(i) \cdot ec{ au}(j)$$

• class II – introduces CIB

$$V_{II}^{NN}(i,j) = c \left[\tau_3(i)\tau_3(j) - \frac{1}{3}\vec{\tau}(i)\cdot\vec{\tau}(j) \right]$$

• class III – introduces CSB

$$V_{III}^{NN}(i,j) = d\left[\tau_3(i) + \tau_3(j)\right]$$

• class IV - mix isospin already at two-body level

$$V_{IV}^{NN}(i,j) = e \left[\vec{\sigma}(i) - \vec{\sigma}(j) \right] \cdot \vec{L} \left[\tau_3(i) + \tau_3(j) \right] \\ + f \left[\vec{\sigma}(i) \times \vec{\sigma}(j) \right] \cdot \vec{L} \left[\vec{\tau}(i) \times \vec{\tau}(j) \right]_3$$

E.M. Henley, and G.A. Miller, in Mesons in Nuclei (North Holland, Amsterdam, 1979), p. 405

New terms implemented as **effective zero-range corrections** to conventional Skyrme modifying **central part**.

$$V^{ISB}(i,j) = V^{Skyrme}(i,j) + V^{II}(i,j) + V^{III}(i,j)$$

$$V''(i,j) = t_0'' \,\delta\left(\vec{r}_i - \vec{r}_j\right) \left(1 - x_0'' \,\hat{P}_{ij}^{\sigma}\right) \left[3\tau_3(i)\tau_3(j) - \vec{\tau}(i) \cdot \vec{\tau}(j)\right]$$

$$V^{III}(i,j) = t_0^{III} \,\delta\left(\vec{r}_i - \vec{r}_j\right) \left(1 - x_0^{III} \hat{P}_{ij}^{\sigma}\right) \left[\tau_3(i) + \tau_3(j)\right]$$

Skyrme parametrizations used: SV, SKM*, SLy4

Implementation Energy densities

$$\begin{aligned} \mathcal{H}^{II} &= \frac{1}{2} t_0^{II} \bigg[\rho_n^2 + \rho_p^2 - 2\rho_n \rho_p - 2\rho_{np} \rho_{pn} \\ &- \vec{S_n}^2 - \vec{S_p}^2 + 2\vec{S_n} \cdot \vec{S_p} + 2\vec{S_{np}} \cdot \vec{S_{pn}} \bigg] \\ \mathcal{H}^{III} &= \frac{1}{2} t_0^{III} \left(\rho_n^2 - \rho_p^2 - \vec{S_n}^2 + \vec{S_p}^2 \right) \end{aligned}$$

Implementation

$$\mathcal{H}^{II} = \frac{1}{2} t_0^{II} \left[\rho_n^2 + \rho_p^2 - 2\rho_n \rho_p - 2\rho_{np} \rho_{pn} - \vec{S_n^2} - \vec{S_p^2} + 2\vec{S_n} \cdot \vec{S_p} + 2\vec{S_{np}} \cdot \vec{S_{pn}} \right]$$

$$\mathcal{H}^{III} = \frac{1}{2} t_0^{III} \left(\rho_n^2 - \rho_p^2 - \vec{S_n}^2 + \vec{S_p}^2 \right)$$

Implementation Energy densities

Conclusion: pn-mixing is needed only in class II

Data used for fitting

Calculations for:

- isospin doublets $T = \frac{1}{2}$ with A = 11 - 75 \Rightarrow MDEs
- isospin triplets T = 1with A = 10 - 58 \Rightarrow MDEs, TDEs

Experimental values of binding energies taken from AME2012

M. Wang et al., CPC 36, 1603 (2012)

Parameters with uncertainties

Fit results:

Parametrization	SV	SkM*	SLy4
$t_0^{\prime\prime}$ (MeV fm ³)	17 ± 5	24 ± 8	22 ± 7
t_0^{III} (MeV fm ³)	-7.3 ± 1.9	-5.5 ± 1.3	-5.5 ± 1.1

ISB part does not depend strongly on underlying parametrization!

Results for MDE in doublets and triplets SV parametrization

One parameter accounts for MDE in both doublets and triplets!

Results for TDE in triplets SV parametrization

A = 4n versus A = 4n + 2 staggering reproduced for the first time!

A link to scattering lengths

Assumption

proportionality between the strength of the interaction and the scattering length

Relation

$$\begin{split} \frac{t_0^{II}}{t_0^{III}} &= \frac{2}{3} \frac{\Delta a_{CIB}}{\Delta a_{CSB}} = -2.5 \pm 0.5 \\ \Delta a_{CSB} &= a_{nn} - a_{pp} = -1.5 \pm 0.3 \text{ fm} \\ \Delta a_{CIB} &= \frac{1}{2} (a_{pp} + a_{nn}) - a_{pn} = 5.7 \pm 0.3 \text{ fm} \end{split}$$

Isobaric Multiplet Mass Equation (IMME)

$$BE_{A,T,I}(T_z) = a + bT_z + cT_z^2 = \sum_{n \le 2T} a_{A,T,I}^{(n)} Q_n(T, T_z)$$

$$Q_0 = 1, \ Q_1 = T_z,$$

$$Q_2 = \frac{1}{2} (3T_z^2 - T(T+1))$$

Comparison of DFT and Green Function Monte Carlo (GFMC) calculations

- Both calculations reproduce empirical coefficients comparably well.
- Staggering of a⁽²⁾ and TDE is attributed to time-odd CIB mean-field.
- J. Carlson *et al.*, Rev. Mod. Phys. **87**, 1067 (2015) P. Bączyk *et al.*, in preparation

With IMME predictions of BE and S_p of heavy N pprox Z nuclei are possible.

Mirror Energy Differences (MED) – Preliminary

$$MED(I) = E^*(I, T, T_z = -T) - E^*(I, T, T_z = +T)$$

Calculations of MED in ⁴⁵Ti-⁴⁵V isospin doublet done with:

- the charge-symmetry-breaking force of class III,
- recently developed DFT-rooted formalism: No-Core Configuration-Interaction (NCCI) W. Satula et al., Phys. Rev. C 94, 024306 (2016).

*M.A. Bentley et al., Phys. Rev. C 92, 024310 (2015).

What has been done?

- successful implementation of ISB forces in the DFT formalism
- MDEs and TDEs reproduced with only two-parameters model
- new terms depend weakly on parametrization a possibility to study fundamental aspects of ISB

What can be done?

- MED and TED for rotational bands
- influence of ISB forces on β decay
- E1 transition strengths in mirror nuclei