Interfacing Many-Body methods and EFT interactions

Mehdi Drissi

June 13th 2017

Doctoral Training Program ECT*

1 Reminders on Nuclear interactions

- Historical review of interactions
- Generalities about EFT
- Going to many-body observables

Interfacing ab initio many-body methods with EFT

- Self-Consistent Green's Function for nuclear matter
- Recent results about neutron matter

1 Reminders on Nuclear interactions

- Historical review of interactions
- Generalities about EFT
- Going to many-body observables

2 Interfacing ab initio many-body methods with EFT

- Self-Consistent Green's Function for nuclear matter
- Recent results about neutron matter

Brief history of nuclear interactions

- 1935 : Yukawa potential
 - \rightarrow Birth of Meson Theory
- 40s -50s : Pions Theories
 - \rightarrow Troubles with multi-pions, anti-nucleons diagrams, ...
- 60s -00s : One-Boson-Exchange Model ($\rho, \sigma, \omega, \dots$)
 - \rightarrow Good data fitting
 - \rightarrow But no systematic

No renormalization group invariance

- 90s today : EFT based interactions [S.Weinberg 90 91]
 - \rightarrow *Pragmatic* view : Break RG invariance + estimate error

[Entem, Machleidt 03] [Epelbaum, Glöckle, Meißner 05]

 $\rightarrow\ {\it Canonical}\ {\rm view}$: Modify power counting and adapt Many-body methods

[Kaplan, Savage, Wise 96] [Nogga, Timmermans, van Kolck 05]

Interfacing Many-Body methods and EFT interactions

1 Reminders on Nuclear interactions

- Historical review of interactions
- Generalities about EFT
- Going to many-body observables

2 Interfacing ab initio many-body methods with EFT

- Self-Consistent Green's Function for nuclear matter
- Recent results about neutron matter

Folk Theorem

The quantum field theory generated by the most general Lagrangian with some assumed symmetries will produce the most general S matrix incorporating quantum mechanics, Lorentz invariance, unitarity, cluster decomposition and the assumed symmetries. [5.Weinberg 79]

Motivations for interaction based on EFTs

Folk Theorem

The quantum field theory generated by the most general Lagrangian with some assumed symmetries will produce the most general S matrix incorporating quantum mechanics, Lorentz invariance, unitarity, cluster decomposition and the assumed symmetries. [S.Weinberg 79]

Inputs

- Degrees of Freedom
 - Nucleons
 - Pions
 - ...
- Symmetries
 - Space-time
 - Internal
- \triangleright LECs \rightarrow Fit to data

Motivations for interaction based on EFTs

Folk Theorem

The quantum field theory generated by the most general Lagrangian with some assumed symmetries will produce the most general S matrix incorporating quantum mechanics, Lorentz invariance, unitarity, cluster decomposition and the assumed symmetries. [S.Weinberg 79]

Inputs

- Degrees of Freedom
 - Nucleons
 - Pions
 - ...
- Symmetries
 - Space-time
 - Internal
- \triangleright LECs \rightarrow Fit to data

Advantages

- Direct connection to underlying theory
- Hierarchy of terms in potential
- Same framework for all A-body interactions
- Estimations of uncertainty and range of validity

cea

Regularization procedure needed

- $\rightarrow~\mbox{Regulator}=\mbox{modify}$ high energy physics
- $\rightarrow~$ Introduce an arbitrary cut-off scale Λ

cea

Regularization procedure needed

- $\rightarrow~\mbox{Regulator}=\mbox{modify}$ high energy physics
- $\rightarrow~$ Introduce an arbitrary cut-off scale Λ

 $\mathsf{EFT} + \mathsf{Regulator} \equiv \mathsf{Well}\mathsf{-defined} \text{ theory}$

Regularization procedure needed

- $\rightarrow~\mbox{Regulator}=\mbox{modify}$ high energy physics
- $\rightarrow~$ Introduce an arbitrary cut-off scale Λ

 $\mathsf{EFT} + \mathsf{Regulator} \equiv \mathsf{Well}\mathsf{-defined} \text{ theory}$

Matching procedure

- \rightarrow Compute observables $O(c_i(\Lambda), \Lambda)$ at a given order N
- $\rightarrow\,$ Fit LECs to experimental data or to the underlying theory
- \rightarrow High energy physics taken into account in $c_i(\Lambda)$

Regularization procedure needed

- $\rightarrow~\mbox{Regulator}=\mbox{modify}$ high energy physics
- $\rightarrow~$ Introduce an arbitrary cut-off scale Λ

 $\mathsf{EFT} + \mathsf{Regulator} \equiv \mathsf{Well}\mathsf{-defined} \text{ theory}$

Matching procedure

- \rightarrow Compute observables $O(c_i(\Lambda), \Lambda)$ at a given order N
- $\rightarrow\,$ Fit LECs to experimental data or to the underlying theory
- \rightarrow High energy physics taken into account in $c_i(\Lambda)$

Renormalization features

- High energy physics fully included in LECs
- Independence of the observables from the regularization

Degrees of freedom : non-relativistic nucleons (+ photons, ...)

$$\rightarrow \quad \mathcal{L}_{\neq EFT} = N^{\dagger} (i\partial_0 + \frac{\vec{\nabla}^2}{2m_N})N + C_0 (N^{\dagger}N)^2 + D_0 (N^{\dagger}N)^3 + \dots$$

• Low energy observables in nuclear systems : $Q \ll m_\pi$

Degrees of freedom : non-relativistic nucleons (+ photons, ...)

$$\rightarrow \quad \mathcal{L}_{\neq EFT} = N^{\dagger} (i\partial_0 + \frac{\vec{\nabla}^2}{2m_N})N + C_0 (N^{\dagger}N)^2 + D_0 (N^{\dagger}N)^3 + \dots$$

• If $Q \sim m_{\pi}$: D.o.F Nucleons + pions (+ delta + ...)

$$\rightarrow \mathcal{L}_{\chi EFT}$$

• Low energy observables in nuclear systems : $Q \ll m_\pi$

Degrees of freedom : non-relativistic nucleons (+ photons, ...)

$$\rightarrow \quad \mathcal{L}_{\neq EFT} = N^{\dagger} (i\partial_0 + \frac{\vec{\nabla}^2}{2m_N})N + C_0 (N^{\dagger}N)^2 + D_0 (N^{\dagger}N)^3 + \dots$$

• If
$${\it Q} \sim m_{\pi}$$
 : D.o.F Nucleons + pions (+ delta + ...)

$$\rightarrow \mathcal{L}_{\chi EFT}$$

Truncation scheme

 \rightarrow What diagrams to compute for Nth order?

- Separation of scale
 - $\rightarrow~$ Low energy observable Q
 - \rightarrow Breakdown scale M

- Separation of scale
 - \rightarrow Low energy observable Q
 - \rightarrow Breakdown scale M
- Expansion of observables $O_N \propto \left(\frac{Q}{M}\right)^N$

- Separation of scale
 - $\rightarrow~$ Low energy observable Q
 - \rightarrow Breakdown scale M
- Expansion of observables $O_N \propto \left(\frac{Q}{M}\right)^N$
- What diagram contribute to Nth order?

- Separation of scale
 - $\rightarrow~$ Low energy observable Q
 - \rightarrow Breakdown scale M
- Expansion of observables $O_N \propto \left(\frac{Q}{M}\right)^N$
- What diagram contribute to Nth order?
- Start with a guess on LECs size then do power counting

- Separation of scale
 - \rightarrow Low energy observable Q
 - \rightarrow Breakdown scale M
- Expansion of observables $O_N \propto \left(\frac{Q}{M}\right)^N$
- What diagram contribute to Nth order?
- Start with a guess on LECs size then do power counting

Consistency check

- Convergent observables in negative power of $\boldsymbol{\Lambda}$
 - \rightarrow Observable \bot higher energy scale (except through LECs)
- Convergence of observable to experiment when Nth increases
 - \rightarrow Fail? Try another guess on LECs
 - $\rightarrow\,$ No consistent power counting works? might be wrong D.o.F

#EFT for Nuclear systems

• Guess on LECs size \rightarrow Proposed power counting for #EFT

[Van Kolck 97] [Kaplan, Savage, Wise 98] [Bedaque, Hammer, van Kolck 98 99] ...

• Consistency check : LO A = 4, 6, 16[Contessi, Lovato, Pederiva, Roggero, Kirsher, van Kolck 17] & NLO up to A = 3[Vanasse et al. 13][König et al. 16]

Need to extend consistency check to general *A*-body observables ! This is where *ab initio* many-body methods enter the game

1 Reminders on Nuclear interactions

- Historical review of interactions
- Generalities about EFT
- Going to many-body observables

2 Interfacing ab initio many-body methods with EFT

- Self-Consistent Green's Function for nuclear matter
- Recent results about neutron matter

• Traditional view : V_{int} as black box

• Traditional view : V_{int} as black box

• Adapt many-body scheme to assess proposed power counting

Power counting rules

Reminders on Nuclear interactions

- Historical review of interactions
- Generalities about EFT
- Going to many-body observables

2 Interfacing ab initio many-body methods with EFT

- Self-Consistent Green's Function for nuclear matter
- Recent results about neutron matter

General perturbation theory

Choose a split of the hamiltonian $H \equiv H_0 + V$ and consider (un)correlated states, related by the Lippmann-Schwinger equation

$$\begin{array}{ll} \mathcal{H}_{0}|\phi\rangle \equiv \mathcal{E}|\phi\rangle & |\psi\rangle = |\phi\rangle + \frac{1}{\mathcal{E} - \mathcal{H}_{0}}V|\psi\rangle \\ \mathcal{H}|\psi\rangle \equiv \mathcal{E}|\psi\rangle & \Longrightarrow & \mathcal{T} = \mathcal{V} + \frac{1}{\mathcal{E} - \mathcal{H}_{0}}\mathcal{T} \end{array}$$

Thus we get the perturbation expansion

$$T = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \dots$$

Main features

- $\rightarrow\,$ Choice of ${\it H}_0 \sim$ From what state to start the expansion
- $\rightarrow\,$ Order of expansion

Brief overview of many-body perturbation methods

Courtesy of P. Arthuis, T. Duguet

1 Reminders on Nuclear interactions

- Historical review of interactions
- Generalities about EFT
- Going to many-body observables

2 Interfacing ab initio many-body methods with EFT

- Self-Consistent Green's Function for nuclear matter
- Recent results about neutron matter

 $\bullet\,$ Solve A-body Schrödinger equation $\rightarrow\,$ perturbation development

- $\bullet\,$ Solve A-body Schrödinger equation $\rightarrow\,$ perturbation development
- Strong interaction \rightarrow Resummation scheme (non-perturbative)

- Solve A-body Schrödinger equation \rightarrow perturbation development
- Strong interaction \rightarrow Resummation scheme (non-perturbative)
- Work on Green's functions, e.g. one-body Green's function

$$\mathcal{G}_{lphaeta}(t,t')\equiv -irac{\langle\Psi_0^N|\mathcal{T}[a_lpha(t)a^{\dagger}_eta(t')]|\Psi_0^N
angle}{\langle\Psi_0^N|\Psi_0^N
angle}$$

- Solve A-body Schrödinger equation \rightarrow perturbation development
- Strong interaction \rightarrow Resummation scheme (non-perturbative)
- Work on Green's functions, e.g. one-body Green's function

$$G_{lphaeta}(t,t')\equiv -irac{\langle\Psi_0^N|\mathcal{T}[a_lpha(t)a^{\dagger}_eta(t')]|\Psi_0^N
angle}{\langle\Psi_0^N|\Psi_0^N
angle}$$

Dyson equation to be solved self consistently $G = G^0 + G^0 \Sigma^I G$ + Σ^I

Ladder approximation of the self-energy

Ladder ansatz for the self-energy

SCHF

2nd Born

Ladder approximation of the self-energy

Ladder ansatz for the self-energy

The self-consistent equation (T-matrix formulation)

$$\Sigma' = T = \bullet - O + T$$

System considered

- Many-body system : neutron matter
 - Infinite homogeneous system of neutron at T = 0
 - Density can be tuned

System considered

- Many-body system : neutron matter
 - Infinite homogeneous system of neutron at T = 0
 - Density can be tuned
- ▷ Interaction considered : *#EFT* at LO
 - Guess for power counting \rightarrow only C_0 matters at LO
 - un-natural scattering length a = $-18.9~{
 m fm}
 ightarrow {
 m multi-loop}$ diagram LO
 - Two different types of regulators : δ -shell and Gaussian

System considered

- Many-body system : neutron matter
 - Infinite homogeneous system of neutron at T = 0
 - Density can be tuned
- ▷ Interaction considered : *#EFT* at LO
 - Guess for power counting \rightarrow only C_0 matters at LO
 - un-natural scattering length $a=-18.9~{
 m fm}
 ightarrow{
 m multi-loop}$ diagram LO
 - Two different types of regulators : δ -shell and Gaussian

$$\delta$$
-shell

Gaussian

$$V(k, k'; r_c) = C_0(r_c) \frac{\sin(kr_c)}{kr_c} \frac{\sin(k'r_c)}{k'r_c}$$
$$\frac{1}{C_0(r_c)} = \frac{m_N}{4\pi} \left(\frac{1}{a} - \frac{1}{r_c}\right)$$

$$V(k, k'; \Lambda) = C_0(\Lambda) \exp{-\frac{k^2}{\Lambda^2}} \exp{-\frac{k'^2}{\Lambda^2}}$$
$$\frac{1}{C_0(\Lambda)} = \frac{m_N}{4\pi} \left(\frac{1}{a} - \frac{2}{\pi}\Lambda \int_0^\infty e^{-2x^2} dx\right)$$

1 Reminders on Nuclear interactions

- Historical review of interactions
- Generalities about EFT
- Going to many-body observables

2 Interfacing ab initio many-body methods with EFT

- Self-Consistent Green's Function for nuclear matter
- Recent results about neutron matter

Assessing renormalization with ladder approximation

Comparison of the many-body approaches

Equation of state of neutron matter

Summary

- Many-body methods \rightarrow Consistent with renormalization scheme
- Consistent approaches \rightarrow Validity of power counting?

Summary

- $\bullet\,$ Many-body methods \rightarrow Consistent with renormalization scheme
- Consistent approaches \rightarrow Validity of power counting?

Perspectives

- Analytical developments
 - $\rightarrow~$ Better understand the apparent failure of Ladder approximation
 - $\rightarrow\,$ Is there a consistent (non-complete) subset of diagrams?
- Exact calculation to benchmark preliminary results

Summary

- Many-body methods \rightarrow Consistent with renormalization scheme
- Consistent approaches \rightarrow Validity of power counting?

Perspectives

- Analytical developments
 - \rightarrow Better understand the apparent failure of Ladder approximation
 - $\rightarrow\,$ Is there a consistent (non-complete) subset of diagrams?
- Exact calculation to benchmark preliminary results
- Extend study to symmetric matter/NLOs
- What about error estimations?
 - \rightarrow Still a debated issue

Thank you!

Advisor : V. Somà

Co-advisor : T. Duguet

B. Bally and P. Arthuis

Collaborators : U. Van Kolck, M. Pavon Valderrama J. Yang

