Recent developments in Bogoliubov Many-Body Perturbation Theory

Pierre Arthuis
IRFU, CEA, Université Paris - Saclay

Doctoral Training Program ECT*, Trento - June 23rd 2017

Outline

(1) On ab initio methods and symmetry breaking
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

- Validation of the formalism
- First calculations
- To higher orders

Outline

(1) On ab initio methods and symmetry breaking
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

- Validation of the formalism
- First calculations
- To higher orders

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
"Exact" ab initio methods

- Since the 80 's
- GFMC, NCSM, FY

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
Ab initio approaches for closed-shell nuclei

- Since the 2000's
- DSCGF, CC, IMSRG

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
Non-perturbative ab initio approaches for open-shell nuclei

- Since the 2010's
- GSCGF, BCC, MR-IMSRG

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
Ab initio shell model

- Since 2014
- Effective interaction via CC/IMSRG

What makes a method ab initio

(1) Consider point-like nucleons as appropriate degrees of freedom
(2) Use interactions rooted in underlying theory (i.e. QCD)
(3) Expand the many-body Schrödinger equation systematically
(4) Truncate at a given order and solve using computational methods
(5) Estimate systematic error

On symmetry breaking

Symmetry breaking helps incorporating non-dynamical correlations:

- Superfluid character: $U(1)$ (particle number)
- Deformations: $\operatorname{SU}(2)$ (angular momentum)

But nuclei carry good quantum numbers (e.g. number of particles)
\Rightarrow Symmetries must eventually be restored

Quantum many-body methods

Expansion methods around unperturbed product state

Quantum many-body methods

MBPT: Recently (re)implemented with SRG-evolved $\mathrm{H}_{\text {[Tichai et al. 2016] }}$ GSCGF, BCC: Recently proposed and implemented [Somà et al. 2011, Signoracci et al. 2014] Sym.-res. BCC \& sym.-res. BMBPT: Recently proposed [Duguet 2015, Duguet \& Signoracci 2016]

Quantum many-body methods

MBPT: Recently (re)implemented with SRG-evolved H [Tichai etal. 2006] GSCGF, BCC: Recently proposed and implemented [somà et al. 2011, Signoracci etal. 2014] Sym.-res. BCC \& sym.-res. BMBPT: Recently proposed [Duguet 2015, Duguet \& Signoraci 2016]

Outline

(1) On ab initio methods and symmetry breaking
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

- Validation of the formalism
- First calculations
- To higher orders

Bogoliubov Many-Body Perturbation Theory

(1) Use a Bogoliubov vacuum $|\Phi\rangle$ with $\beta_{k}|\Phi\rangle=0$ for all k
(2) Define grand potential operator Ω from chiral interaction

$$
\Omega \equiv H-\lambda A
$$

then normal-order and split: $\Omega=\Omega_{0}+\Omega_{1}$
(3) Define evolved state in imaginary time

$$
|\Psi(\tau)\rangle \equiv \mathcal{U}(\tau)|\Phi\rangle=e^{-\tau \Omega_{0}} T e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
$$

(4) Expand and truncate the grand potential kernel $\Omega(\tau) \equiv\langle\Psi(\tau)| \Omega|\Phi\rangle$...
...and the norm kernel $N(\tau) \equiv\langle\Psi(\tau) \mid \Phi\rangle$
(5) Extract ground state energy via

$$
\mathrm{E}_{0}=\lim _{\tau \rightarrow \infty} \frac{\Omega(\tau)}{N(\tau)}=\lim _{\tau \rightarrow \infty} \omega(\tau)
$$

Expansion of the grand potential kernel

Inserting the operator Ω at time 0 and expanding

$$
\begin{aligned}
\mathrm{E}_{0}= & \lim _{\tau \rightarrow \infty} \frac{\langle\Psi(\tau)| \Omega|\Phi\rangle}{\langle\Psi(\tau) \mid \Phi\rangle} \\
= & \langle\Phi|\left\{\Omega(0)-\int_{0}^{\infty} d \tau_{1} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega(0)\right]\right. \\
& \left.+\frac{1}{2!} \int_{0}^{\infty} d \tau_{1} d \tau_{2} \top\left[\Omega_{1}\left(\tau_{1}\right) \Omega_{1}\left(\tau_{2}\right) \Omega(0)\right]+\ldots\right\}|\Phi\rangle_{c}
\end{aligned}
$$

Then expressing the grand potential in the qp basis

$$
\Omega=\Omega^{00}+\frac{1}{1!} \sum_{k_{1} k_{2}} \Omega_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{\Omega_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+\Omega_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\}+\ldots
$$

Expansion of the grand potential kernel

$$
\begin{aligned}
& \mathrm{E}_{0}=\sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!} \sum_{i_{0}+j_{0}=2,4} \int_{0}^{\infty} d \tau_{1} \ldots d \tau_{p} \\
& i_{p}+j_{\rho}=2,4
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
I_{1} \ldots I_{i_{p}} \\
I_{i_{p}+1} \ldots I_{i_{p}+j_{p}}
\end{array} \\
& \times\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \ldots \beta_{k_{k_{1}}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{k_{1}+j_{1}}}\left(\tau_{1}\right) \ldots \beta_{k_{k_{1}+1}}\left(\tau_{1}\right) \ldots\right. \\
& \ldots \beta_{l_{1}}^{\dagger}\left(\tau_{p}\right) \ldots \beta_{l_{p}}^{\dagger}\left(\tau_{p}\right) \beta_{l_{i_{p}+j_{p}}}\left(\tau_{p}\right) \ldots \beta_{l_{p}+1}\left(\tau_{p}\right) \\
& \left.\times \beta_{m_{1}}^{\dagger}(0) \ldots \beta_{m_{i 0}}^{\dagger}(0) \beta_{m_{i_{0}+j_{0}}}(0) \ldots \beta_{m_{i_{0}+1}}(0)\right]|\Phi\rangle_{c}
\end{aligned}
$$

All contributions computable algebraically and diagramatically

First- and second-order diagrams

Diagrammatic representation of the grand potential Ω

Extracting and applying diagrammatic rules

$$
\mathrm{E}_{0}^{(1+2)}=\quad \begin{gathered}
0 \\
\Omega^{00}
\end{gathered}
$$

Outline

(1) On ab initio methods and symmetry breaking
(2) On Bogoliubov Many-Body Perturbation Theory

3 Recent progress

- Validation of the formalism
- First calculations
- To higher orders

Outline

(1) On ab initio methods and symmetry breaking
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

- Validation of the formalism
- First calculations
- To higher orders

Third-order diagrams

Derivation of all diagrams up to third order

Validation of formal derivation

BMBPT must match standard MBPT in Slater determinant limit
\rightarrow Matching must be true at each order
\rightarrow Proof of consistent formalism for BMBPT

Validation of formal derivation

BMBPT must match standard MBPT in Slater determinant limit
\rightarrow Matching must be true at each order
\rightarrow Proof of consistent formalism for BMBPT

BMBPT(3) diagrams match MBPT(3) ones exactly
Canonical HF-MBPT diagrams were recovered from only one BMBPT

Outline

(1) On ab initio methods and symmetry breaking
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

- Validation of the formalism
- First calculations
- To higher orders

Proof of principle calculations

First BMBPT(2) proof of principle calculation of ${ }^{20} \mathrm{O}$:

using NN SRG-evolved chiral interaction
On MCPT:

- Multi-configurational MBPT
- Alternative method for open-shell nuclei

Isotopic chains calculations at second order

First $\mathrm{BMBPT}(2)$ calculations on $\mathrm{O}, \mathrm{Ca}, \mathrm{Ni}$ and Sn isotopic chains

using NN and 3N SRG-evolved chiral interaction
Same chains under investigation at third order at the moment

Outline

(1) On ab initio methods and symmetry breaking
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

- Validation of the formalism
- First calculations
- To higher orders

Numerical derivation of higher orders

Have your computer do the diagrammatic work for you

- Produce the diagrams automatically
- Diagrams are associated with adjacency matrices
- Diagrammatic rules constrain the form of the matrices
- Have your code generate all matrices, hence diagrams
- Extract their expression automatically as well
- Read your diagrams (vertices, propagators, etc.)
- Extract useful information from the structure
- Retrieve the exact expression

Numerical derivation of higher orders

Produce higher orders diagrams

- 59 diagrams at order 4
- 568 diagrams at order 5

Extend to three-body diagrams

- 15 diagrams at order 3
- 337 diagrams at order 4
- 10148 diagrams at order 5

Prospects

- Go up to fourth order
\rightarrow Even better than other ab initio methods?
\rightarrow Test for computational cost
- Push BMBPT to heavier nuclei
\rightarrow Can go further than other ab initio methods
\rightarrow Good test for the computational cost
- Implement particle-number restored BMBPT for the first time
\rightarrow Required for precise study of open-shell nuclei
\rightarrow Proof of concept of symmetry-restored BMBPT / BCC
- Ab initio driven EDF method [T. Duguet et al. (2015)]
\rightarrow Safe/correlated/improvable off-diagonal EDF kernels
\rightarrow Based on PNR-BMBPT
- MBPT and BMBPT are special among ab initio methods
\checkmark Computationally friendlier
\checkmark Potentially as precise as others when using SRG-evolved H
- BMBPT has been formulated and is being implemented
\checkmark First derivation up to fourth order
\checkmark First calculations up to third order
\checkmark Appropriate framework to tackle open-shell nuclei
\checkmark Systematic studies at third and fourth order to come
- Symmetry-restored BMBPT is the next step

Our collaborators

BMBPT Project

P. Arthuis
T. Duguet
J.-P. Ebran

On broader aspects

$\begin{array}{ll}\text { TECHNISCHE } & \text { A. Tichai } \\ \text { UNIVERSIAAT } \\ \text { DARMSTADT } & \text { R. Roth }\end{array}$

H. Hergert
R. Lasseri

