NUCLEAR EFFECTS IN NEUTRINO STUDIES

Joanna Sobczyk

Never underestimate the joy people derive from hearing something they already know.

Enrico Fermi -

AZQUOTES

OUTLINE

- Motivation: neutrino physics
- Neutrino oscillation experiments: why nuclear physics is important
- Lepton-nucleus scattering: quasielastic mechanism
 - Fermi Gas model

- Comparison
- Additional nuclear effects
- Conclusions

NEUTRINO OSCILLATIONS

 Neutrinos change their "identity" because mass eigenstates are not flavour eigenstates

$$|\nu_i\rangle = \sum_{\alpha} U_{i,\alpha} |\nu_{\alpha}\rangle$$

$$|\nu_i(t)\rangle = e^{-i(Et - \vec{p}\vec{x})} |\nu_i(0)\rangle$$

mass eigenstates propagate

NEUTRINO OSCILLATIONS

$$P_{\alpha \to \beta} = |\langle \nu_{\alpha}(t) | \nu_{\beta} \rangle|^{2} = \left| \sum U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2}L/2E} \right|^{2}$$

PMNS matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

There are 6 parameters in the SM which influence oscillations.
Various oscillation experiments are sensitive to different parameters (we can play with L and E)

EXPERIMENTS

$$P_{\alpha \to \beta} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E} \frac{[eV^2][km]}{[GeV]}\right)$$

given by the experimental setup

At the experiment one has to:

- distinguish events that are triggered by different neutrino types
- be able to make energy reconstruction to get E (neutrino beams are not monoenergetic!)

NEUTRINO PHYSICS - OPEN QUESTIONS

STANDARD MODEL

- $\sin^2(2\theta_{13}) = 0.093 \pm 0.008$
- $\sin^2(2\theta_{12}) = 0.846 \pm 0.021$ $\sin^2(2\theta_{23}) > 0.92$
- CP violation phase still big uncertainty

BEYOND STANDARD MODEL

sterile neutrinos?

more flavours?

Which model is correct?

Further question: are neutrino Majorana particles? But this cannot be answered by neutrino oscillation experiments.

EXPERIMENT - THEORY

NEUTRINO-NUCLEUS CROSS SECTION

We need a precise model to calculate cross-section for neutrino scattering of various nuclei (carbon, oxygen, argon...)

We can check the models for electron scattering instead of neutrino scattering (much more data!)

INCLUSIVE CROSS SECTION

We have precise data for the electron scattering

$$e + {}^{12}C \to e + X$$

E=560 MeV, θ =60°

CROSS SECTION

QUASIELASTIC MECHANISM

QUASIELASTIC MECHANISM

QE PEAK'S POSITION

$$\nu = \frac{4E^2 \sin^2 \frac{\theta}{2}}{2M + 4E \sin^2 \frac{\theta}{2}} \Rightarrow \nu = 129 \text{MeV}$$

QE PEAK'S POSITION

QE PEAK'S WIDTH

- Peak's width arises due to Fermi motion
- Peak's width tells us about the Fermi momentum

FERMI GAS

• The most basic approach:

statistical correlations + constant binding energy

$$\mathcal{H} = \sum_{i \in \text{nucleons}} \frac{p_i^2}{2M}$$

- We know with a very good precision how describe the interaction $e^- + N \to e^- + N$
- For neutrinos there is a room for improvement (axial form-factor)

FERMI GAS

Clearly, it is not possible to find a good parametrisation (binding energy and Fermi momentum) in terms of (L)FG

TURN-ON INTERACTION

 We need to employ a more sophisticated model for nucleons in the nuclei.

SPECTRAL FUNCTION

This is described by means of a spectral function:

$$E < \mu \qquad S_h(E, p) = \frac{1}{\pi} \operatorname{Im} G(E, p)$$
$$E > \mu \qquad S_p(E, p) = -\frac{1}{\pi} \operatorname{Im} G(E, p)$$

$$S_{h/p}(E,p) = \pm \frac{1}{\pi} \frac{\operatorname{Im}\Sigma(E,p)}{[E-p^2/2M - \operatorname{Re}\Sigma(E,p)]^2 + [\operatorname{Im}\Sigma(E,p)]^2}$$

It can be shown that hole spectral function is the probability density for removing a particle with momentum k, with the removal energy E from the ground state.

E. OSET AND F. DE CORDOBA SEMIPHENOMENOLOGICAL MODEL

- A simple, semi-phenomenological approach to calculate nucleon self-energy in nuclear matter
- We calculate the SF for the infinite nuclear matter at constant density. Then we use LDA (local density approximation), meaning we integrate SF with a density profile function to model the nucleus.
- The calculation is non-relativistic which is OK for the hole SF but might be poor for the particle SF.

E. OSET AND F. DE CORDOBA SEMIPHENOMENOLOGICAL MODEL

(F. de Cordoba, E. Oset, PRC 46, 5)

- calculate the nucleon self-energy by summing Lippmann-Schwinger series
- approximate t matrix with the free NN scattering matrix (average over angles -> use NN cross section)
- the density modifications will come from medium polarization

SPECTRAL FUNCTION

Particle spectral function at a density such that Fermi momentum $k_F=1.4 \text{ fm}^{-1}=280 \text{ MeV}$

For a particle of momentum k=1.61 fm⁻¹=320 MeV the largest probability is for kinetic energy ~17 MeV higher then the Fermi level

(F. de Cordoba, E. Oset, PRC 46, 5)

SPECTRAL FUNCTIONS IN THE CROSS-SECTION

SPECTRAL FUNCTIONS IN THE CROSS-SECTION

$$\frac{d\sigma}{d\omega d\Omega} = \int \frac{d^3 p}{(2\pi)^3} \int dE S_h(E,\vec{p}) S_p(w-E,\vec{p}+\vec{q}) L_{\mu\nu} W^{\mu\nu}$$

This is difficult to calculate numerically so some approximations can be done, e.g.

$$S_{h/p}(E,p) = \pm \frac{1}{\pi} \frac{\operatorname{Im}\Sigma(E,p)}{[E-p^2/2M - \operatorname{Re}\Sigma(E,p)]^2 + [\operatorname{Im}\Sigma(E,p)]^2}$$

neglect the width: $\operatorname{Im}\Sigma(E,p) \to 0$

$$S_h \propto \delta(E - \bar{E}(p))\theta(\mu - E)$$

 $\bar{E}(p) = \frac{p^2}{2M} - \operatorname{Re}\Sigma(\bar{E}(p), p)$

RESULTS

RESULTS

RESULTS

giant resonances not visible (large momentum transfer)

relativistic effects are huge

other mechanism overlap with the QE peak: 2p2h + delta prod.

IDEAS TO TAKE HOME

- We need a precise knowledge of neutrino-nucleus interaction.
 Nuclear effects are crucial for the analysis of neutrino experimental data
- First we should see how the models work for electron scattering.
- One has to account for different mechanisms: quasielastic, 2p2h, delta excitation...
- The fact that we are dealing with high energy transfer is a challenge

THANK YOU!