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• Infinite uniform system of nucleons interacting through strong interactions only

Bulk properties of nuclear matter

density

Chapter 1

Nuclear matter and nuclear interactions

1.1 Bulk properties of nuclear matter

Nulcear matter is uniform system of nucleons interacting through strong interactions
only. While being a theoretical construct, it provides an extremely useful model to inves-
tigate the properties of both atomic nuclei and neutron star matter. Note that in these
systems, with the exception of neutron stars in the early stages of their life, the tem-
perature can be safely set to zero, as thermal energies are negligible compared to Fermi
energies.

Two quantities that characterize nuclear matter are the density ρ and the proton
fraction xp

ρ = ρp + ρn

xp =
ρp
ρ

(1.1)

where ρp and ρn indicate the proton and neutron densities, respectively. PNM is the
limiting case in which xp = 0, while for SNM xp = 1/2. Strong interactions do not bind
PNM, which in neutron stars is packed by gravitational attraction. SNM on the other
hand is bound, and its equilibrium properties can be deduced deduced from the analysis
of nuclear data.

The nuclear charge distribution, ρch(r) is almost constant within the nuclear volume
and its central value is basically the same for all stable nuclei. It can be parametrized by

ρch(r) =
ρ0

1 + e(r−R)/D
. (1.2)

Elastic electron-nucleus scattering experiments have shown that the nuclear charge radius,
R, is proportional to A1/3

R = r0A
1
3 , (1.3)

implying that the volume increases linearly with the mass number. The parameters
r0 = 1.15 fm and D = 0.54 fm have been extracted from experimental data, see for

proton fraction

• Extremely useful model to investigate the properties of atomic nuclei and 
neutron star matter. 

• Characterized by

Thermal energies 
negligible compared 
to Fermi energies

T = 0

SNM xp = 0.5

PNM xp = 0

Cold nuclear matter
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Bulk properties of nuclear matter
The nuclear charge distribution is 
almost constant within the nuclear 
volume and its central value is 
basically the same for all stable nuclei

8 Nuclear matter and nuclear interactions

instance [49]. Equation (1.3) and the nuclear mass formula, to be discussed below, imply
that the equilibrium

ρ0 =
3

4πr30
=! 0.16± 0.02 fm−3 . (1.4)

In addition, one can observe that the central charge density of atomic nuclei, measured
by elastic electron-nucleon scattering, does not depend upon A for large A. As shown in
Fig. 1.1, the limiting value does not differ from the one resulting from r0.

Figure 1.1: Saturation of central nuclear densities of medium-heavy nuclei as measured
by electron-nucleus scattering, from [50].

The curves of Fig. 1.1, parametrized by Eq. (1.2), show that the charge density drops
from 90% to 10% of its value over a distance RT ≈ 2.5 fm, independent on A, called
surface thickness.

The (positive) binding energy per nucleon is defined as the difference between the
mass of the bound nucleus and that of its constituents

B(Z,A) =
1

A
[Zmp + (A− Z)mn + Zme −M(Z,A)] . (1.5)

In Table 1.1 the masses and the binding energies for 16O, 56Fe, 62Ni and 120Sn are
shown. The dependence of the binding energy on the atomic and mass numbers can be
parametrized according to the semiempirical mass formula [51, 52], based on the liquid
drop model and the shell model

B(Z,A) =
1

A

[

aVA− aSA
2/3 − aCZ(Z − 1)A1/3 − aA

(A− 2Z)2

4A
+ aPλA

1/2
]

. (1.6)
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SNM limit:

1.1 Bulk properties of nuclear matter 9

The first term in square brackets, proportional to A is the volume term and describes the
bulk energy of nuclear matter. It is due to the strong nuclear interaction, that does not
distinguish between neutrons and protons. Because strong interactions are short ranged,
a given nucleon may only interact strongly with its nearest neighbors and next nearest
neighbors, this explaining the scaling with A instead of the A(A − 1) characteristic of
the long-ranged interaction. The term proportional to A2/3, denoted as surface term is
also due to the strong interactions. It is actually a correction to the volume term, arising
from the the fact that nucleons close to the surface have fewer neighbors than the inner
ones. The third term accounts for the Coulomb repulsion between protons. Since the
electrostatic interaction is long ranged the scaling is given by Z(Z− 1). The fourth term,
proportional to [(A−Z)−Z]2, goes under the name of symmetry energy. Its origin can be
justified on the basis of the Pauli exclusion principle explaining the experimental evidence
that stable nuclei tend to have the same number of protons and neutrons. The last term,
pairing term, which captures the effect of the spin coupling, can be exhaustively explained
in the framework of the the shell model. It accounts for the fact that even-even nuclei
(i. e. nuclei having even Z and even A − Z) are likely to be more stable with respect
to even-odd or odd-odd nuclei. Hence, the value of the constant λ is −1, 0 and +1 for
even-even, even-odd and odd-odd nuclei, respectively.

Table 1.1: Mass and binding energies of some stable nuclei.

Z M(Z,A) (amu) B(Z,A) (MeV)
16O 8 15.9949 7.9765
56Fe 26 55.9349 8.7906
62Ni 28 61.9283 8.7948
120Sn 50 119.9022 8.5048
208Pb 82 207.9767 7.8677

SNM is described by the semiempirical mass formula by putting Z = A/2 and taking
the limit for A → ∞. Neglecting the Coulomb repulsion, the volume term is the only one
surviving in this limit. Therefore, the coefficient aV can be identified with the binding
energy per particle of SNM. Typical fits of Eq. (1.6) gives [53]

E0 ≡ E(ρ0) = aV = −15.6± 0.2MeV (1.7)

In the vicinity of the equilibrium density, the energy per particle of SNM can be
expanded according to

ESNM(ρ)

A
= E0 +

K0

2

(ρ− ρ0
3ρ0

)2
+O(ρ− ρ0)

3 . (1.8)

The coefficient

K0 =
9ρ20
A

(∂2ESNM(ρ)

∂ρ2

)

(1.9)

In the vicinity of equilibrium density K0 =
9⇢20
A

⇣@2ESNM(⇢)

@⇢2

⌘
= 220± 30MeV

Z = A/2, A ! 1
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Nuclear matter equation of state

EoS links the thermodynamical 
variables specifying the state of a 
macroscopic physical system. 

PNM

EOS determines the structure of neutron stars

E = E(⇢) P (⇢) = �
✓
@E

@V

◆

A

P = P (⇢) M = M(r)
T

O
V

Astrophysical data constraint nuclear interactions.
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Nuclear hamiltonian
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Nuclear hamiltonian
Non relativistic pointlike protons and neutrons interacting through the hamiltonian

Our aim is to perform “ab initio” many-body calculation of nuclear matter properties.

The interaction must 
not to be affected by 
uncertanties involved in 
many body techniques.

Ab initio many body calculations

• Fully predictive

• Their approximations can be estimated

• Provide a test for the interaction

The potential is determined on 
few-body observables that, for a 
given interaction model, can be 
exactly computed.

Ĥ =
X

i

�r2
i

2m
+

X

j>i

v̂ij +
X

k>j>i

V̂ijk
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Argonne NN potential
Phenomenological NN potential are generally written as

v̂ = v̂⇡(r12) + v̂I(r12) + v̂S(r12)

OPE TPE Heavier mesons, Nucleons’ overlap

Thursday, October 31, 13



Argonne NN potential
Phenomenological NN potential are generally written as

Highly realistic Argonne v18 potential is written in the form

v18(r12) =
18X

p=1

vp(r12)Ô
p
12

v̂ = v̂⇡(r12) + v̂I(r12) + v̂S(r12)

Heavier mesons, Nucleons’ overlapOPE TPE

• Static part Ôp=1�6
ij = (1,�ij , Sij)⌦ (1, ⌧ij) Deuteron and S and D wave phase shifts

• Spin-orbit Ôp=7�8
ij = Lij · Sij ⌦ (1, ⌧ij) P wave phase shifts

The remaining operators are needed to achieve the description of the Nijmegen scattering 
data with           .  They accounts for quadratic spin-orbit interaction and charge symmetry 
breaking effects.

�2 ' 1

Radial functions shaped to fit ~ 4300 np and pp scattering data below 350 MeV of 
Nijmegen database.

Thursday, October 31, 13



Three-body force
• Originates from the fact that nucleons are not elementary particles.

•  It is not an iteration of the NN force
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Three-body force
• Originates from the fact that nucleons are not elementary particles.

•  It is not an iteration of the NN force

NN force
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Three-body force
• Originates from the fact that nucleons are not elementary particles.

•  It is not an iteration of the NN force

NN force NNN force
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UIX three-body force

UIX potential consists of two contributions: 

• Fujita Myiazawa • Scalar repulsive term

The three-body potential has  to be symmetric under the exchange of particles 1, 2 and 3

V̂123 = V̂ (1 : 23) + V̂ (2 : 13) + V̂ (3 : 12)

V̂ (i : jk) = V̂ (i : kj)

All the NNN potential we will be considering satisfy the symmetry

Thursday, October 31, 13



UIX three-body force
UIX potential has two parameters

•        adjusted to reproduce the binding energy of A2⇡
3H

Lagaris and Pandharipande argued that, because of correlations, the relative weight of 
the contribution depends upon the density of the system.

•        tuned for FHNC/SOC calculation to reproduce the saturation density of SNMU0

Low density

V̂ 2⇡
V̂ R
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UIX three-body force
UIX potential has two parameters

•        adjusted to reproduce the binding energy of A2⇡
3H

Lagaris and Pandharipande argued that, because of correlations, the relative weight of 
the contribution depends upon the density of the system.

High density V̂ 2⇡

V̂ R

•        tuned for FHNC/SOC calculation to reproduce the saturation density of SNMU0
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•  Improved description of three and more nuclei bound and scattering states.

UIX three-body force

• Improved description of the neutron-deuteron scattering length

2and(fm)

v18 v18 +UIX Exp.

1.258 0.578 0.645± 0.003± 0.007

Thursday, October 31, 13



-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5

E
/A

(M
eV

)

ρ(fm−3)

v18

v18+UIX

UIX three-body force
•  Equilibrium density of symmetric nuclear matter reproduced, but SNM is underbound.

⇢0

Akmal 1998

E0

Thursday, October 31, 13



We need to find 
something better than 
the UIX potential

How ???

UIX three-body force
In addition to the discrepancies with experimental data, there are theoretical “issues” 
concerning the UIX potential

•       : no a priori reasons to stop at the first order in the perturbative expansion in 
terms of the coupling constant                      .   
V̂ 2⇡

g2/(4⇡) ' 14

•       :  adjusting      to reproduce     makes the potential affected by the approximations 
of the many-body technique. Is still “ab initio”?
V̂ R ⇢0U0
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Chiral perturbation theory
If u and d quarks were massless, QCD would
be invariant under the chiral symmetry group.

G = SU(2)R ⇥ SU(2)L

For the hadronic spectrum to be reproduced, G is spontaneously broken

H = SU(2)IG = SU(2)R ⇥ SU(2)L

Goldstone theorem

• Three massless pseudoscalar 
bosons appear

• Goldstone bosons decouple in 
small momentum limit

Pions !!!

Expansion in 
powers of

      !!!q

⇤�
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Chiral perturbation theory

LO

NLO

N2LO

N3LO

✓
q
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2N Force 3N Force 4N Force

LO

(Q/Λχ)0

NLO

(Q/Λχ)2

NNLO

(Q/Λχ)3

N3LO

(Q/Λχ)4

Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed
lines pions. Small dots, large solid dots, solid squares, and solid diamonds denote vertices of
index ∆ = 0, 1, 2, and 4, respectively. Further explanations are given in the text.

to the ci LECs) denoted by a large solid dot in Fig. 1. These vertices represent cor-
related 2PE as well as intermediate∆(1232)-isobar contributions. It is well-known
from the meson phenomenology of nuclear forces [1, 22] that these two contribu-
tions are crucial for a realistic and quantitative 2PE model. Consequently, the 2PE
now assumes a realistic size and describes the intermediate-range attraction of the
nuclear force about right. Moreover, first relativistic corrections come into play at
this order. There are no new contacts.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-
nucleon forces are created on an equal footing and emerge in increasing number as
we go to higher and higher orders. At NNLO, the first set of nonvanishing three-
nucleon forces (3NF) occur [9, 23], cf. column ‘3N Force’ of Fig. 1. In fact, at the
previous order, NLO, irreducible 3N graphs appear already, however, it has been
shown by Weinberg [7] and others [9, 24, 25] that these diagrams all cancel. Since
nonvanishing 3NF contributions happen first at order (Q/Λχ)3, they are very weak
as compared to the 2NF which starts at (Q/Λχ)0.

More 2PE is produced at ν = 4, next-to-next-to-next-to-leading order (N3LO),
of which we show only a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs

✓
q

⇤�

◆0

2b force 3b force 4b force
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Chiral NNN potential
In a theory without explicit  ∆ degrees of freedom, the first contribution to the chiral 
3NF appears at N2LO in the Weinberg counting scheme. 

Two-pion exchange (TPE) One-pion exchange (OPE) Contact term

Fourier transforming the Chiral NNLO 3-body potential, originally derived in momentum 
space, yields a local expression in coordinate space

V̂ �(3 : 12) =

Z
d3q1
(2⇡)3

d3q2
(2⇡)3

Ṽ �(3 : 12)F⇤(q
2
1)F⇤(q

2
2)e

iq1·r13eiq2·r23

F⇤(q
2
i ) = exp

⇣
� q4i

⇤

4

⌘
Cutoff function

• Depends on momentum transfer

• Generates power of         beyond NNLOq/⇤�
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Many-body methods
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Many body wave function
Non relativistic many body theory is aimed at solving the equation

Ĥ n(x1, . . . , xA) = En n(x1, . . . , xA)

•Translation invariance implies that single particle wave functions be plane waves

The independent particle model wave function is a 
Slater determinant of single particle wave functions

�0 = A[�n1(x1) . . .�na(xa)] .

•The infinite system can be conveniently described within a box of volume V with 
periodic boundary conditions

�ni(xi) =
e

iki·ri
p
V

⌘↵i

⌘↵i ⌘ ��i�⌧i

ki =
2⇡

L

ni i = x, y, z ni = 0,±1, . . .

Pauli spinors

A = 1�
X

i<j

P̂ij +
X

i<j<k

(P̂ijP̂jk + P̂ikP̂kj) + . . .

The antisymmetrization operator is conveniently written in terms of two-particles exchange
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Many body wave function

Excited states are constructed removing n occupied states from the Slater determinant 
and replacing them with n virtual states

n-particle n-hole states �n(x) ⌘ �h1,...,hn;p1,...,pn(x)

En
er

gy

✏F

En
er

gy

✏F

In the following one among the possible 2p 2h state is represented. 
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Need for correlations
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Correlated basis function theory
The correlated states are defined as

| ni ⌘
F̂ |�ni

h�n|F̂†F̂ |�ni

The correlation operator reflects the complexity of the NN interaction

F̂ =
⇣
S

AY

j>i=1

F̂ij

⌘
F̂ij =

6X

p=1

fp(rij)Ô
p
ij

The radial functions             are determined by minimizing the energy expectation value  

EV ⌘ h 0|Ĥ| 0i ⌘
h�0|F̂†ĤF̂ | 0i
h�0|F̂†F̂ | 0i

� E0

fp(rij)

\langle \hat{v} \rangle\equiv\sum_{i<j}(0|\hat{v}_{ij}|0)=
\frac{A(A-1)}{2}(0|\hat{v}_{12}|0)=\frac{\rho^2}{2}\sum_p

\int d\mathbf{r}_{1,2}\,g^p(\mathbf{r}_1,\mathbf{r}
_2)v^p(r_{12})\

\langle \hat{v} \rangle\equiv\sum_{i<j}(0|\hat{v}_{ij}|0)=
\frac{A(A-1)}{2}(0|\hat{v}_{12}|0)=\frac{\rho^2}{2}\sum_p

\int d\mathbf{r}_{1,2}\,g^p(\mathbf{r}_1,\mathbf{r}
_2)v^p(r_{12})\

The expectation value of the two-body potential per particle is given by

The expectation values of the three body potential and of the kinetic energy can 
be expressed in terms of the two-body distribution functions and their derivatives.

hv̂i
A

=
1

A

X

i<j

h 0|v̂ij | 0i =
⇢

2

X

p

Z
dr12g

p(r12)v
p(r12)
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CBF and cluster expansion
We are aimed at computing gp(r1, r2) =

A(A� 1)

⇢2
Tr12

R
dx3,...,A�⇤

0F̂†Ôp
12F̂�0R

dx1,...,A �⇤
0F̂†F̂ 0

.

\langle \hat{v} \rangle\equiv\sum_{i<j}(0|\hat{v}_{ij}|0)=
\frac{A(A-1)}{2}(0|\hat{v}_{12}|0)=\frac{\rho^2}{2}\sum_p

\int d\mathbf{r}_{1,2}\,g^p(\mathbf{r}_1,\mathbf{r}
_2)v^p(r_{12})\

\langle \hat{v} \rangle\equiv\sum_{i<j}(0|\hat{v}_{ij}|0)=
\frac{A(A-1)}{2}(0|\hat{v}_{12}|0)=\frac{\rho^2}{2}\sum_p

\int d\mathbf{r}_{1,2}\,g^p(\mathbf{r}_1,\mathbf{r}
_2)v^p(r_{12})\

Integration over the 
coordinates of a huge 
number of particles !!!

The two-body distribution function is expanded in terms of the following quantities

Cluster expansion
method!

hij = f c 2
ij � 1 2f c

ijf
p>1
ij fp>1

ij fq>1
ij
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CBF and cluster expansion
The cluster terms of the expansion can be represented by cluster diagrams

Exchange loop coming 
from the exchange 
operator       .

All exchange lines form 
closed loops that do not 
touch.

Exchange lines involving 
particles i and j denote 
the Slater functions.

P̂13

Internal point over 
which there is an 
integration

Passive correlation line

External point

`(rij) = 3

h
sin(kF rij)� kF rij cos(kF rij)

(kF rij)3

i

2f c
23f

r
23Ô

r
23

Interaction line
f l
12f

p
12f

q
12Ô

l
12Ô

p
12Ô

q
12
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CBF and cluster expansion
A diagram is linked if each couple of points is connected by a sequence of lines.

The unlinked diagram coming from the 
expansion of the numerator cancel with 
those of the denominator.

Only linked diagrams have to be summed
in the calculation of            . gp(r12)

SUMMATION SCHEMES

• Scalar diagrams are massively summed
by means of the FHNC/SOC equations.

They form a self-consistent 
scheme that allows for 
summing all the scalar diagrams

but the so-called “elementary 
diagrams”

• Operator diagrams: SOC approximation.

Only diagrams with at most 
two operators arriving at a 
given point are considered.

Possible violations of the
variational principle!
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Energy minimization: simulated annealing

Variational energy depends on a set of parameters

EV = EV (dc, dt,�p,↵p)

To minimize the energy we have employed a “simulated annealing” procedure.

Metropolis algorithm

s ⌘ {dc, dt,�p,↵p} s0 ⌘ {d0c, d0t,�0
p,↵

0
p} acceptance Pss0 = exp


�EV (s0)� EV (s)

T

�

As the temperature is lowered, the parameters stay closer to the minimum of       . EV
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Diffusion Monte Carlo 

The results of the FHNC/SOC calculations depend on the accuracy of the trial wave function 

 T (X) =
F̂�0(X)

R
dx1...A�⇤

0(X)F̂†F̂�0(X)

The trial wave function can be expanded on the complete set of eigenstates of the hamiltonian

| T i =
X

n

cn| ni not CBF states !!!

The evolution in imaginary time              projects out the true ground state⌧ = it/~

lim
⌧!1

e�(H�ET )⌧ | T i = lim
⌧!1

c0e
�(E0�ET )⌧ | 0i

DMC is a stochastic method for solving the imaginary-time many-body Schrödinger equation

� @

@⌧
| (⌧)i = (Ĥ � ET )| (⌧)i

| (⌧ = 0)i = | T i
| (⌧ +�⌧)i = e�(Ĥ�ET )�⌧ | (⌧)i
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Diffusion Monte Carlo 

v(x) • A set of walkers is sampled from the trial
wave function 

 (R, ⌧) =
X

k

�(R�Rk)
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Diffusion Monte Carlo 

v(x) • A set of walkers is sampled from the trial
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• Branching: integer number of copies of the 
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• Iterate adjusting       to keep the population
under control
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Diffusion Monte Carlo 

v(x)

 0(x)

• A set of walkers is sampled from the trial
wave function 

 (R, ⌧) =
X

k

�(R�Rk)

• Gaussian drift according to

 (R, ⌧ + d⌧) =
X

k

Gd(R,Rk, d⌧)

• Branching: integer number of copies of the 
walker
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• Iterate adjusting       to keep the population
under control
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P
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P

{R} T (R)

The ground-state expectation values of observables 
that commute with     can be estimated by Ĥ
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Spin-isospin: GFMC and AFDMC

GFMC

Imaginary time evolution algorithm applied for each many-body spin-isospin configuration

|3Hi =

0

BBBBBBBBBB@

a """(R)
a ""#(R)
a "#"(R)
a "##(R)
a #""(R)
a #"#(R)
a ##"(R)
a ###(R)

1

CCCCCCCCCCA

2A
A!

Z!(A� Z)! Limited to A=12 nucleons: 
not feasible for nuclear
matter calculation

AFDMC

Single particle
spin configuration

|3Hi =
h
c"1| "i1 + c#1| #i1

i
⌦
h
c"2| "i2 + c#2| #i2

i
⌦

h
c"3| "i3 + c#3| #i3

i

Hubbard Stratonovich transformation to reduce 
spin-isospin dependence from quadratic to linear

Can deal with v18 + UIX  

⌫A

e

� 1
2�Ô

2

=
1p
2⇡

Z
dxe

� x

2

2 +
p
��xÔ

.

Can deal with larger systems (114 nucleons)  

Spin-orbit term and UIX included in the pure neutron case only.
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Density dependent nucleon-
nucleon interaction from UIX
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Motivations
The widely used Argonne v18 + UIX interaction model fails to reproduce the empirical 
equilibrium properties of nuclear matter.  
Can this fact be ascribed to deficiencies of the variational wave function? 

Tenet
n-body potentials (n ≥ 3) can be replaced by an effective two-nucleon potential, 

obtained through an average over the degrees of freedom of n − 2 particles.

• Has to be obtained from a microscopic model of the three-nucleon force providing 
a fairly accurate description of the properties of light nuclei.

This effective potential 

• Could be easily implemented in AFDMC.

• Could be used to include the effects of three nucleon interactions in the calculation 
of the nucleon-nucleon scattering cross section in the nuclear medium.

v̂12(⇢) =
X

p

vp(⇢, r12)Ô
p
12
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Three-body potential in CBF
Expectation value of the three body potential

hV̂123i =
R
dx1...A�⇤

0F̂†
V̂123F̂�0R

dx1...A�⇤
0F̂†F̂�0

Diagrams involved in the calculation of the scalar repulsive term.

Diagrams involved in the calculation of  TPE and OPE terms.
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The three-body operatorial distribution function is defined by

Density dependent potential

As for the two-body potential we can write

hV123i
A

=
⇢2

3!

X

P

Z
dr12dr13V

P
123 g

P
123 .

gP123 =
A!

(A� 3)!

CTr123
R
dx4 . . . dxA�

†
0F†ÔP

123F�0

⇢3
R
dX �†

0F†F�0

The expectation values of the effective potential and of         should be equalV̂123

X

P

⇢

3

Z
dr3V

P
123 g

P
123 =

X

p

vp12(⇢) g
p
12

3.2 Density dependent effective potential 93

1 2

3

⇒
1 2

Figure 3.3: Diagrammatic representation of Eq. (3.15): the two-body density-dependent
potential includes the effects of both the bare three-body potential and the correlation
and exchange lines. While g2 dresses the line joining particles 1 and 2, the dressing being
depicted by a line with a big bubble in the middle, g3 dresses the lines 1− 2, 1− 3, and
2− 3.

Diagrammatically the above equation implies that neither interaction nor exchange lines
linking particle 3 with particles 1 and 2 are included. Only the two-body distribution
function is taken into account in the calculation of the expectation value of V123

〈V̂ 〉
A

=
ρ2

3!

∑

p

∫

dr12
(

∑

P

∫

dx3V
P
123

)p
gp12 . (3.18)

Note that only the scalar repulsive term and one permutation of the anticommutator
term of the three-body potential provide non vanishing contributions, once the trace in
the spin–isospin space of the third particle is performed.

As shown in Fig 3.8, the contribution of the density-dependent potential to the energy
per particle of SNM and PNM 〈v̂ (I)

12 (ρ)〉/A is more repulsive than the one obtained from
the genuine three-body potential UIX. Thus, the scalar repulsive term is dominant when
the three-body potential is integrated over particle 3.

Step II. Inclusion of statistical correlations

As a second step we have considered the exchange lines that are present both in g123
and g12. Their treatment is somewhat complex, and needs to be analyzed in detail.

Consider, for example, the diagram associated with the exchange loop involving par-
ticles 1, 2 and 3, depicted in Fig. 3.4. Its inclusion in the calculation of the density-
dependent two-body potential would lead to double counting of exchange lines connecting
particles 1 and 2, due to the presence of the exchange operator P̂12 in g12. This problem
can be circumvented by noting that the antisymmetrization operator acting on particles

v̂12(⇢)
V̂123

           needs to 
include the effect of 

correlation and 
exchange lines.

v̂12(⇢)

hV̂123i
A

=
hv̂12(⇢)i

A

V̂123 ⌘
X

P

V P
123Ô

P
123
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• We have selected the leading diagrams contributing to the density dependent potential

Selection of diagrams

96 Three-body potential in nuclear matter

discussed above, which (again neglecting correlations) leads to the expression

v̂S.A.
12 (ρ) =

ρ

3

∫

dx3V̂123(1− P̂ στ
13 "

3
13 − P̂ στ

23 "
2
23) , (3.22)

where “S. A.” stands for Slater Approximation. We have computed 〈vS.E.
12 (ρ)〉 and 〈vS.A.

12 (ρ)〉
for SNM within the FHNC/SOC scheme, for both the scalar and the anticommutator
terms of the UIX potential.

The results, plotted in Fig. 3.5, clearly show that Eq.(3.22) provides an excellent ap-
proximation to the exact result for the exchanges of Eq. (3.21). Hence it has been possible
to use Eq. (3.22) also to compute the contribution coming from the commutator of the
UIX potential, avoiding the difficulties that would have arisen from an exact calculation
of the exchanges.

The second step in the construction of the density-dependent potential is then

v̂II12(ρ) ≡ v̂S.A.
12 (ρ) (3.23)

which is a generalization of the bare potential of Eq. (3.17).
Figure 3.8 shows that taking exchanges into account slightly improves the approxi-

mation of the density-dependent potential. However the differences remain large because
correlations have not been taken into account.

Step III. Inclusion of dynamical correlations

The third step in the construction of the density-dependent potential amounts to
bringing correlations into the game. We have found that the most relevant diagrams are
those of Fig. 3.6.

1 2

3

1 2

3

2×

1 2

3

Figure 3.6: Diagrams contributing to the density-dependent potential. The dashed lines
with diamonds represent the first order approximation to gNLO

bose (rij), discussed in the text.
Only diagrams with at most one operator attached to a given point are taken into account.
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• The scalar correlation line has been dressed at first order in perturbation theory in   .⇢

3.2 Density dependent effective potential 97

Note that, in order to simplify the pictures, all interaction lines are omitted. However,
it is understood that the three-body potential is acting on particles 1, 2 and 3. Correlation
and exchange lines involving these particles are depicted as if they were passive interaction
lines. Moreover, in order to include higher order cluster terms, we have replaced the scalar
correlation line f c

ij
2 with the Next to Leading Order (NLO) approximation to the bosonic

two-body correlation function:

f c
ij
2 → gNLO

bose (rij) = f c
ij
2
(

1 + ρ

∫

dr3h13h23

)

. (3.24)

The full bosonic gbose(rij) or gdd(rij) might be used instead of the NLO approximation.
However, including higher order terms would have broken our cluster expansion. The
correction to f c

ij
2 of Eq. (3.24), whose diagrammatic representation is displayed in Fig.

3.7, can indeed be considered to be of the same order as the operatorial correlations.
Figure 3.6 shows that the vertices corresponding to particles 1 and 2 are not connected

by either correlation or exchange lines. All connections allowed by the diagrammatic
rules are taken into account multiplying the density-dependent potential by the two-body
distribution function, according to the definition of Eq.(3.15).

We have already discussed the exchange lines issue, coming to the conclusion that
only the exchanges P13 and P23 have to be taken into account. This is represented by the
second diagram, where the factor 2 is due to the symmetry of the three-body potential,
that takes into account both P13 and P23.

1 2
= 1+

1 2
+

1 2

3

+

1 2

3

Figure 3.7: NLO approximation to the bosonic two-body correlation function.

The explicit expression of v(III)12 (ρ) obtained including the diagrams of Fig. 3.6 can be
cast in the form

v̂(III)12 (ρ) =
ρ

3

∫

dx3 V̂123

[

gNLO
bose (r13)g

NLO
bose (r23)

× (1− 2P̂ στ
13 "

2
13) + 4gNLO

bose (r13)fc(r23)f̂(r23)
]

, (3.25)

where f̂(r23) denotes the sum of non central correlations

f̂(r23) =
6

∑

p !=1

f p(r23)Ô
p
ij . (3.26)

Neither exchange lines, nor 
correlation lines appear 
between particles 1 and 2.

The effective potential has to be 
multiplied by      that connects particles 
1 and 2 in all the possible allowed ways

gp12

gNLO
bose (r12)
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Statistical and dynamical correlations
I - Bare approximation

96 Three-body potential in nuclear matter

discussed above, which (again neglecting correlations) leads to the expression

v̂S.A.
12 (ρ) =

ρ

3

∫

dx3V̂123(1− P̂ στ
13 "

3
13 − P̂ στ

23 "
2
23) , (3.22)

where “S. A.” stands for Slater Approximation. We have computed 〈vS.E.
12 (ρ)〉 and 〈vS.A.

12 (ρ)〉
for SNM within the FHNC/SOC scheme, for both the scalar and the anticommutator
terms of the UIX potential.

The results, plotted in Fig. 3.5, clearly show that Eq.(3.22) provides an excellent ap-
proximation to the exact result for the exchanges of Eq. (3.21). Hence it has been possible
to use Eq. (3.22) also to compute the contribution coming from the commutator of the
UIX potential, avoiding the difficulties that would have arisen from an exact calculation
of the exchanges.

The second step in the construction of the density-dependent potential is then

v̂II12(ρ) ≡ v̂S.A.
12 (ρ) (3.23)

which is a generalization of the bare potential of Eq. (3.17).
Figure 3.8 shows that taking exchanges into account slightly improves the approxi-

mation of the density-dependent potential. However the differences remain large because
correlations have not been taken into account.

Step III. Inclusion of dynamical correlations

The third step in the construction of the density-dependent potential amounts to
bringing correlations into the game. We have found that the most relevant diagrams are
those of Fig. 3.6.

1 2

3

1 2

3

2×

1 2

3

Figure 3.6: Diagrams contributing to the density-dependent potential. The dashed lines
with diamonds represent the first order approximation to gNLO

bose (rij), discussed in the text.
Only diagrams with at most one operator attached to a given point are taken into account.
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Z
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Statistical and dynamical correlations
II - Statistical correlations

96 Three-body potential in nuclear matter

discussed above, which (again neglecting correlations) leads to the expression
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Statistical and dynamical correlations
III - Statistical and dynamical correlations

96 Three-body potential in nuclear matter

discussed above, which (again neglecting correlations) leads to the expression
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bringing correlations into the game. We have found that the most relevant diagrams are
those of Fig. 3.6.
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3

Figure 3.6: Diagrams contributing to the density-dependent potential. The dashed lines
with diamonds represent the first order approximation to gNLO

bose (rij), discussed in the text.
Only diagrams with at most one operator attached to a given point are taken into account.
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Figure 3.10: Energy per particle for PNM, obtained using the density-dependent potential
of Eq. (3.17) added to the Argonne v′8 (a) and to Argonne v′6 (b) potentials. The energies
are compared to those obtained from the genuine three-body potential and from the two-
body potentials alone.

FHNC/SOC results are listed in Table 3.2, while those coming from the AFDMC calcu-
lation with v′6 + v̂12(ρ) potential are: ρ0 = 0.17 fm−3, E0 = −10.9MeV and K= 201MeV.

The saturation densities are quite close to the empirical value ρ0 = 0.16 fm−3. For the
genuine three-body potential this is not surprising, since the parameter U0 is chosen to
fit the saturation density, as discussed in Section 1.2.2. On the other hand, the fact that
the density-dependent potential also reproduces this value is remarkable and needs to be
emphasized.

The binding energies obtained with v̂12(ρ) are very close to those coming from UIX
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The saturation densities are quite close to the empirical value ρ0 = 0.16 fm−3. For the
genuine three-body potential this is not surprising, since the parameter U0 is chosen to
fit the saturation density, as discussed in Section 1.2.2. On the other hand, the fact that
the density-dependent potential also reproduces this value is remarkable and needs to be
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Figure 3.11: Same as in Fig. 3.10, but for SNM.

potential, but they are larger than the empirical value E0 = −16MeV.
As for the compressibility, the experimental value K ≈ 240MeV suffers of sizable

uncertainties. However, also in this case the result obtained with the density-dependent
potential differs from that obtained with the UIX potential by less than 5%.

3.3 Chiral inspired three-nucleon potentials in nuclear
matter

The work described in this Section, based on Ref. [46], is aimed at testing in nu-
clear matter the different parametrization of the chiral inspired potentials of Ref. [45],
introduced in Section 1.2.2.
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Saturation densities, binding energy, and compressibility

FHNC/SOC AFDMC

AFDMC calculations do not show an increase of the binding energy of SNM with respect 
to variational results.
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Saturation densities, binding energy, and compressibility

FHNC/SOC AFDMC

Discrepancy with experimental data 

Exp.

AFDMC calculations do not show an increase of the binding energy of SNM with respect 
to variational results.

• deficiencies of the UIX model. 

• interactions involving more than three nucleons.
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Motivations

We performed a comparative test for such potentials in PNM and SNM

• Would they improve in the descriptions of the binding energy of SNM?

• Would they provide PNM EoS able to account for the             neutron star?⇠ 2M�

Kievsky et al. in 2010 have found the best-fit values for the TM' and NNLOL 3-body potentials
plus Argonne v18 NN potential to simultaneously reproduce

B(3H) = �8.482MeV

B(4He) = �28.30MeV
2and = 0.645± 0.003± 0.007 fm
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Figure 3.13: (Color online) Equation of state of PNM obtained using the AFDMC (trian-
gles) and FHNC/SOC (solid lines) approaches with the TM′

1 (a) and TM′
2 (b), TM′

3 (c)
plus v′8 hamiltonian.
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Good agreement between 
AFDMC and FHNC/SOC results
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Figure 3.14: (Color online) Equation of state of SNM resulting from FHNC/SOC varia-
tional calculations with the TM′ plus v′8 hamiltonian.

3.4.2 NNLOL chiral potentials

The results displayed in Fig. 3.15 show that, as in the case of the TM′ potentials, the
EoS of PNM computed within the AFDMC and FHNC/SOC schemes are very close to
each other over the entire density range.

The EoS of Fig. 3.15 are softer than those obtained from both the TM′ (compare to
Fig. 3.13), and UIX (see Fig. 3.10) potentials. This is due to the ambiguity in the term
V̂E, discussed in Section 3.3.1.

In the NNLOL2, NNLOL3, and NNLOL4 models the constant cE is negative. There-
fore, the contribution of V̂E is attractive, making the EoS very soft. When V̂E is repulsive
(i.e. cE is positive), as in the NNLOL1 potential, its contribution is very small and the re-
sulting EoS, while being stiffer than those corresponding to the other NNLOL potentials,
remains very soft.

The recent astrophysical data of Ref. [16] suggest that the EoS of PNM be at least
as stiff as the one obtained with a readjusted version of the effective density-dependent
potential of Lagaris and Pandharipande in combination with the Argonne v′6 two-body
interaction [31]. Therefore, the EoS resulting from chiral NNLOL potentials are not likely
to describe a neutron star of mass around 2M".

The SNM EoS corresponding to the NNLOL potentials are displayed in Fig. 3.16.
The fact that the NNLOL4 potential provides the stiffest EoS, while in PNM provided
the softest, is not surprising. As discussed in Section 3.3.1, when the contact term is
attractive in PNM, it is repulsive in SNM, and viceversa. A large cancellation between the
repulsive core of the Argonne v′8 and the strong attractive contact term contribution of the
NNLOL4 potential is observed. This could influence the variational results, which for this
particular three-body force could be less accurate than for the other interactions. As the

• SNM is underbound

• Reasonable values for 
the compressibility and 
saturation density

112 Three-body potential in nuclear matter

difference to the Fermi gas energy, amounting to 72.63 MeV and at 74.15 MeV for 66 and
114 neutrons, respectively. However, the difference of the energy per particle obtained
with 66 and 114 neutrons is always within 4 MeV. It is worth noting that once finite-size
effects on the Fermi gas energy are accounted for, the residual finite-size effects do not
exceed 4% of the energy per particle.

3.4 Nuclear Matter EoS

3.4.1 TM′ potential

The results of Fig. 3.13, showing the density dependence of the energy per nucleon
in PNM, indicate that, once the new constraint on the difference between PB and JF
kinetic energies is imposed, the agreement between FHNC/SOC (solid line) and AFDMC
(triangles) results is very good.

The most striking feature of the results displayed in Fig. 3.14 is that, despite the
parameters of the three body potentials being different, all SNM EoS obtained from the
TM′ potential turn out to be very close to each other. This is probably due to the fact
that these potentials are designed to reproduce not only the binding energies of 3H and
4He, but also the n-d doublet scattering length 2and.

It is remarkable that although the parameters of TM′ potentials were not adjusted to
reproduce nuclear matter properties, the EoS saturates at densities only slightly lower than
ρ0 = 0.16fm−3, and the compressibilities are in agreement with the experimental value
K ≈ 240MeV. On the other hand, the binding energies are larger than the empirical value
E0 = −16MeV and rather close to the one obtained from the UIX potential, ∼ 10MeV
and shown in Section 3.2. The numerical values of all these quantities are listed in Table
3.5.

Table 3.5: Saturation density, binding energy per particle and compressibility of SNM
corresponding to the TM′ EoS displayed in Fig. 3.14.

TM′
1 TM′

2 TM′
3

ρ0 (fm−3) 0.12 0.13 0.14
E0 (MeV) -9.0 -8.8 -9.4
K (MeV) 266 243 249

Exp.

FHNC/SOC
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corresponding AFDMC results do not show a similar behavior, giving a simple physical
interpretation to the inflection point at ρ ! 0.24 fm−3 resulting from the FHNC/SOC
calculations turns out to be difficult.

The results listed in Table 3.6 show that none of the chiral NNLOL potentials fulfills
the empirical constraints on the SNM EoS. All potentials overestimate the saturation den-
sity, while the compressibility is compatible with the empirical value only for the NNLOL2

and NNLOL3 models. As for the binding energies, they are closer to the experimental
value than those obtained using both the UIX and TM′ potentials.

As a final remark, it has to be noticed that using the scalar repulsive term V I
E instead

of V τ
E provides more repulsion, resulting a stiffer EoS. As stressed in Section 3.3.1, this

issue needs to be addressed, taking into account all terms that become equivalent in the
limit of infinite cutoff only. Moreover, since the discrepancies among these terms are of
the same order as the NNNLO term of the chiral expansion, other contact terms have to
be included [155].
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Figure 3.15: (Color online) Same as Fig. 3.13, but for NNLOL1 (a), for NNLOL2 (b), for
NNLOL3 (c) and for NNLOL4 (d) plus v′8 hamiltonian.
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be included [155].
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Figure 3.15: (Color online) Same as Fig. 3.13, but for NNLOL1 (a), for NNLOL2 (b), for
NNLOL3 (c) and for NNLOL4 (d) plus v′8 hamiltonian.
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NNLOL results for SNM

116 Three-body potential in nuclear matter

Table 3.6: Saturation density, the binding energy per particle, and the compressibility
related to the NNLOL Eos displayed in Fig. 3.16.

NNLOL1 NNLOL2 NNLOL3 NNLOL4

ρ0 (fm−3) 0.21 0.20 0.19 0.17
E0 (MeV) -15.2 -14.6 -14.6 -12.9
K (MeV) 198 252 220 310
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Exp.

None of the potentials 
simultaneously explains 
the binding energy and the 
saturation density of SNM.
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at three-body cluster level
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Astrophysics
The understanding of the interactions of low-energy neutrinos with nuclear matter is 
required for the description of a number of properties of compact stars.

Neutron stars

• The mechanisms for neutrino production, (URCA, Bremsstrahlung ...) depend on the 
nuclear EoS, which is dictated by strong interactions. 

Supernovae

Neutrino emission is the main process driving the early stages of neutron stars’ cooling.

Neutrino propagation in nuclear matter, described in terms of the neutrino mean free path, 
plays a crucial role in the mechanism leading to supernovae explosion.

• Neutrino-nucleus scattering is sizably affected by the strong interaction.

A consistent treatment of both 
processes is advisable
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In the non relativistic limit, nuclear response to weak probes delivering energy      
and momentum    
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In the non relativistic limit, nuclear response to weak probes delivering energy      
and momentum    

!
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Weak response in non relativistic limit

Eigenstates of the Hamiltonian Ĥ| ni = En| ni

Energy-conserving delta function
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Weak response in CBF
• Within CBF formalism

• We only consider transitions between the correlated ground-state and 
correlated 1particle-1hole excited states

En
er

gy

✏F

En
er

gy

✏F

h�pm;hi |F†ÔqF|�0ip
h�0|F†F|�0ih�pm;hi |F†F|�pm;hii

h n|Ôq| 0i !
h�n|F†ÔqF|�0ip

h�0|F†F|�0ih�n|F†F|�ni
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Effective interaction and weak operators

• The effective interaction, defined through the matrix elements of the hamiltonian in the 
correlated ground state

Instead of working in the full CBF basis, we use the FG basis, defining:

Table 1 reports the sets of variational parameters for SNM at equilibrium density
that have been used in this work. Those associated with AV6′, AV6′ + UIX and AV8′

have been obtained in Ref. [25], while the values for AV18 + UIX are taken from Ref.
[24].

Table 1: Variational parameters for SNM at equilibrium density for different potential models.

Interaction α dc (fm) dt(fm)

AV6′ 0.80 2.22 5.09

AV6′+UIX 1.03 1.44 4.40

AV8′ 0.77 2.36 4.86

AV18 0.80 1.80 4.80

Following Refs. [5, 6], we only consider transitions between the correlated ground-
state and correlated 1particle-1hole (1p − 1h) excited states. The np − nh states with
n ≥ 2 give a smaller contribution to the weak response, mainly at large excitation energy.

The CBF matrix element between the ground-state and 1p− 1h excitation reads

〈Ψpm;hi
|Ôq|0〉 =

〈Φpm;hi
|F̂†ÔqF̂ |Φ0〉

√

〈Φ0|F̂†F̂ |Φ0〉〈Φpm;hi
|F̂†F̂ |Φpm;hi

〉
, (19)

where pm and hi denote the whole set of quantum numbers of the single nucleon state,
namely momentum, spin and isospin projections along the z−axis.

This above quantity, entering all our calculations of the response function, will allow
us to define the effective weak operators, as discussed in Section 4.

3. Effective interaction

Using the formalism of CBF and the cluster expansion technique, the authors of
Ref. [26, 5], were able to develop an effective interaction, obtained from the bare Argonne
v′8 potential, which incorporates the effects of the short-range correlations. In Ref. [27],
the two-body effective interaction of Refs. [5, 26] was improved with the inclusion of
the purely phenomenological density dependent potential of Ref. [28], accounting for the
effects of interactions involving more than two nucleons. The CBF effective interaction,
veffij , is defined through the matrix elements of the hamiltonian in the correlated ground-
state

〈Ψ0|Ĥ |Ψ0〉 ≡ TF + 〈Φ0|
∑

j>i

v̂effij |Φ0〉 . (20)

As suggested by the above equation, the effective interaction allows one to calculate
any nuclear matter observables using perturbation theory in the FG basis. However,
extracting the effective interaction is in general a very challenging task, involving diffi-
culties even more severe than those associated with the calculation of the expectation
value of the hamiltonian in the correlated ground state.

6

• The effective weak operators

h�pm;hi |Ôeff
q |�0i ⌘

h�pm;hi |F†ÔqF|�0ip
h�0|F†F|�0ih�pm;hi |F†F|�pm;hii

Both effective interaction and effective weak operators incorporates the effects of the short-
range correlations.

Cluster expansion of the 
CBF matrix elements

Cluster expansion of the effective 
interaction and weak operators 
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Effective interaction at three-body cluster level
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Effective interaction at three-body cluster level
Including the three body cluster in the effective potential makes the equation of state of SNM 
much closer to the one obtained with the full FHNC/SOC cluster summation.

Bare interaction:  AV6’+UIX
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Figure 6: EoS of cold SNM in the low density regime. The results shown in panel (a) have been obtained
using the bare hamiltonian including the Argonne v′

6
potential only, while those displayed in panel

(b) take into account the effects of three-body interactions, described by the UIX model. The dotted
and solid lines represent the results corresponding to the three- and two-body cluster level effective
potentials, respectively. The results of FHNC/SOC calculations, shown by the shaded region, illustrate
the difference between the PB and JF kinetic energies.

is close to that corresponding to the full calculation, and it does exhibit saturation, which
is a remarkable feature.

The convergence of the FHNC/SOC calculation of the energy per particle of SNM at
equilibrium density has been thoroughly investigated by the authors of Ref. [29]. Their
results indicate that the sum of the kinetic term and the potential energy associated with
the first six components of the AV18 potential exhibits a reasonable rate of convergence.
The absolute value of the difference between the energy obtained including ≤ 2b cluster
contributions and the result of the full calculation turns out to be 6.2 MeV, while the in-
clusion brings the discrepancy down to 2.9 MeV. This pattern is similar to that emerging
from the results of Fig. 6 (a).

13

Saturation

Last step: the parameters of the correlations entering       are adjusted for the effective 
interaction to reproduce FHNC/SOC result.

v̂eff12
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Perturbation theory in Fermi gas basis
Using the effective operators, the response is given by

S(q,!) =
1

A

X

pmhi

|h�pm;hi |Ôeff
q |�0i|2�(! + ✏pm � ✏hi) .

q

pmhi

N3b1a

q

pmhi

N3b1b

Figure 7: Non vanishing three body diagrams at first order in f̂ −1 emerging from the cluster expansion
of the numerator of Eq. (44).

q

pmhi

N2b1a

Figure 8: Two-body diagram of first order in f̂ − 1, arising from the cluster expansion of the numerator
of Eq. (44).

5. Response functions in different approximations

5.1. Correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF)

In both the correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF) approx-
imations, the weak response of cold SNM, defined in Eq. (1), is given by [5]

SFG(q,ω) =
1

A

∑

pmhi

|〈Φpm;hi
|Ôeff

q |Φ0〉|2δ(ω + εpm
− εhi

) . (48)

Within the CFG approximation, the single particle energies are those of the non-interacting
Fermi gas

εni
=

k2
i

2m
. (49)

In the CHF scheme the single particle approximation is retained, but the above spec-
trum is modified through the addition of a potential energy contribution. It is long known
[33] that the Hartree-Fock approximation is not suitable for nuclear potentials having a
strong repulsive core, like the Argonne models. We use instead the effective potential
described in Section 3, which incorporates the effects correlations between nucleons and
is suitable for use for mean field calculations and can be used to carry out calculations
in perturbation theory in the Fermi gas basis. The CHF single particle energy is then
given by

εni
=

k2
i

2m
+

A
∑

nj=1

∫

dxjφ
∗
ni
(xi)φ

∗
nj
(xj)v

eff
ij A[φni

(xi)φnj
(xj)] , (50)
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Effective operator at three-body cluster level
For the sake of consistency, the 3b cluster contribution to the effect weak operators have 
been included in the calculations. 6

the correlation functions in order for the effective hamil-
tonian exactly reproduces the energy per particle ob-
tained with the full FHNC/SOC calculations at satura-
tion density. In particular the “healing distance”, of both
the central, dc, and the tensorial, dt, correlations and the
quenching parameters αp [8], which can be given the in-
terpretation of the low-energy parameters of the effective
interaction, have been reduced.

IV. EFFECTIVE WEAK OPERATORS

In the case of 1p−1h excitation, the effective weak op-
erators Ôeff

q , introduced in Ref. [1], are defined through
the relation

〈Ψpm;hi
|Ôeff

q |Ψ0〉 ≡

〈Ψpm;hi
|F†ÔqF|Ψ0〉

√

〈Ψ0|F†F|Ψ0〉〈Ψpm;hi
|F†F|Ψf〉

(32)

As for the calculation of the hamiltonian expectation
value, a cluster expansion of the weak operator corre-
lated matrix element can be performed [9]. The small-
ness parameters in this case are f c

ij−1 and fp
ij . Following

Ref.[14], we denote by ci the quantum numbers of occu-
pied states in both Ψ0〉 and Ψpm;hi

. It can be shown
[13, 14] that the CBF matrix element of the effective
weak transition operator takes the form

〈Ψpm;hi
|Ôeff

q |Ψ0〉 =
1 +

∑

C(q; pm, hi)
√

1 +
∑

C(hi)
√

1 +
∑

C(pm)
. (33)

The term
∑

C(hi) contains all the connected diagrams
with one hi vertex or one hi-exchange line. An analo-
gous definition applies for

∑

C(hi). On the other hand,
∑

C(q; pm, hi) amounts of connected diagrams having one
single ph-exchange line connecting points i and j or one
single ph vertex. Moreover, the weak operator Ôq(1),
which carries a momentum q and a spin-isospin opera-
tor, is attached to the point 1 of the diagrams belonging
to

∑

C(q; pm, hi). Note that only ci states are present
in both the bare vertex and the bare exchange lines. In
other words, unlike in the cluster expansion for the en-
ergy per particle, the hole state hj is lacking.
The two-body cluster diagrams coming from both the

numerator and denominator of Eq. (33) have been com-
puted by the authors of Ref. [9], while in Ref. [2, 15]
a different truncation scheme has been adopted and the
numerator has been approximated to the unity.
In this work, in addition to the numerator and denom-

inator two-body cluster diagrams, for the sake of consis-
tency with the effective interaction, we have calculated
the three-body cluster diagrams at first order in f̂ − 1.
They are associated with the numerator of Eq. (33), as
they originate from

{f̂23 − 1, Ôq(1)} = 2Ôq(1)(f̂23 − 1) . (34)

q

pmhi

N3b1a

q

pmhi

N3b1b

Figure 7. Non vanishing three body diagrams at first order
in f̂ − 1 emerging from the numerator of Eq. (33).

The only non vanishing three-body cluster diagrams
are depicted in Fig. 7. In the thermodynamic limit,
diagram N3b1a reads

N3b1a =

−
2ρ2

ν2
δq,pm−hi

∫

dr12e
iq·r12%212

∫

dr23e
iq·r23×

∑

αi

〈α1α2αpm
|Ôστ (1)(f̂23 − 1)P̂ στ

12 |α1α2αhi
〉 , (35)

where |αi〉 denotes the spin-isospin state of particle i.
The discretized momentum conservation is expressed by
the Kronecker delta function. By computing the spin-
isospin matrix elements, whose values are reported in
Appendix E of Ref. [13], one can show that in the limit
of zero momentum transfer, q → 0, N3b1a cancels the
contribution of diagram N2b1a, represented in Fig. 8
(denoted as F1d j and GT1d j in Ref. [9]). This is an in-
dication that three-body diagrams need to be taken into
account and they play a relevant role in the sum rules
of the weak response, which will be estimated at a later
stage.
It can be readily shown that the analytic expression of

diagram N3b1b is given by

N3b1b =

2ρ2

ν2
δq,pm−hi

∫

dr12dr23e
ipm·r13e−ihi·r12%12%13×

∑

αi

〈α1α2αpm
|Ôστ (1)(f̂23 − 1)P̂ στ

12 P̂ στ
13 |α1α2αhi

〉 . (36)

q

pmhi

N2b1a

Figure 8. Two-body diagram of the first order term in f̂ − 1
coming from the numerator of Eq. (33).
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Effective operator at three-body cluster level
For the sake of consistency, the 3b cluster contribution to the effect weak operators have 
been included in the calculations. 6
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isospin matrix elements, whose values are reported in
Appendix E of Ref. [13], one can show that in the limit
of zero momentum transfer, q → 0, N3b1a cancels the
contribution of diagram N2b1a, represented in Fig. 8
(denoted as F1d j and GT1d j in Ref. [9]). This is an in-
dication that three-body diagrams need to be taken into
account and they play a relevant role in the sum rules
of the weak response, which will be estimated at a later
stage.
It can be readily shown that the analytic expression of

diagram N3b1b is given by

N3b1b =

2ρ2

ν2
δq,pm−hi

∫

dr12dr23e
ipm·r13e−ihi·r12%12%13×

∑

αi

〈α1α2αpm
|Ôστ (1)(f̂23 − 1)P̂ στ

12 P̂ στ
13 |α1α2αhi

〉 . (36)
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Figure 8. Two-body diagram of the first order term in f̂ − 1
coming from the numerator of Eq. (33).
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Figure 7: Non vanishing three body diagrams at first order in f̂ −1 emerging from the cluster expansion
of the numerator of Eq. (44).
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Figure 8: Two-body diagram of first order in f̂ − 1, arising from the cluster expansion of the numerator
of Eq. (44).

5. Response functions in different approximations

5.1. Correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF)

In both the correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF) approx-
imations, the weak response of cold SNM, defined in Eq. (1), is given by [5]

SFG(q,ω) =
1

A

∑

pmhi

|〈Φpm;hi
|Ôeff

q |Φ0〉|2δ(ω + εpm
− εhi

) . (48)

Within the CFG approximation, the single particle energies are those of the non-interacting
Fermi gas

εni
=

k2
i

2m
. (49)

In the CHF scheme the single particle approximation is retained, but the above spec-
trum is modified through the addition of a potential energy contribution. It is long known
[33] that the Hartree-Fock approximation is not suitable for nuclear potentials having a
strong repulsive core, like the Argonne models. We use instead the effective potential
described in Section 3, which incorporates the effects correlations between nucleons and
is suitable for use for mean field calculations and can be used to carry out calculations
in perturbation theory in the Fermi gas basis. The CHF single particle energy is then
given by

εni
=

k2
i

2m
+

A
∑

nj=1

∫

dxjφ
∗
ni
(xi)φ

∗
nj
(xj)v

eff
ij A[φni

(xi)φnj
(xj)] , (50)
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6

the correlation functions in order for the effective hamil-
tonian exactly reproduces the energy per particle ob-
tained with the full FHNC/SOC calculations at satura-
tion density. In particular the “healing distance”, of both
the central, dc, and the tensorial, dt, correlations and the
quenching parameters αp [8], which can be given the in-
terpretation of the low-energy parameters of the effective
interaction, have been reduced.

IV. EFFECTIVE WEAK OPERATORS

In the case of 1p−1h excitation, the effective weak op-
erators Ôeff

q , introduced in Ref. [1], are defined through
the relation

〈Ψpm;hi
|Ôeff

q |Ψ0〉 ≡

〈Ψpm;hi
|F†ÔqF|Ψ0〉

√

〈Ψ0|F†F|Ψ0〉〈Ψpm;hi
|F†F|Ψf〉

(32)

As for the calculation of the hamiltonian expectation
value, a cluster expansion of the weak operator corre-
lated matrix element can be performed [9]. The small-
ness parameters in this case are f c

ij−1 and fp
ij . Following

Ref.[14], we denote by ci the quantum numbers of occu-
pied states in both Ψ0〉 and Ψpm;hi

. It can be shown
[13, 14] that the CBF matrix element of the effective
weak transition operator takes the form

〈Ψpm;hi
|Ôeff

q |Ψ0〉 =
1 +

∑

C(q; pm, hi)
√

1 +
∑

C(hi)
√

1 +
∑

C(pm)
. (33)

The term
∑

C(hi) contains all the connected diagrams
with one hi vertex or one hi-exchange line. An analo-
gous definition applies for

∑

C(hi). On the other hand,
∑

C(q; pm, hi) amounts of connected diagrams having one
single ph-exchange line connecting points i and j or one
single ph vertex. Moreover, the weak operator Ôq(1),
which carries a momentum q and a spin-isospin opera-
tor, is attached to the point 1 of the diagrams belonging
to

∑

C(q; pm, hi). Note that only ci states are present
in both the bare vertex and the bare exchange lines. In
other words, unlike in the cluster expansion for the en-
ergy per particle, the hole state hj is lacking.
The two-body cluster diagrams coming from both the

numerator and denominator of Eq. (33) have been com-
puted by the authors of Ref. [9], while in Ref. [2, 15]
a different truncation scheme has been adopted and the
numerator has been approximated to the unity.
In this work, in addition to the numerator and denom-

inator two-body cluster diagrams, for the sake of consis-
tency with the effective interaction, we have calculated
the three-body cluster diagrams at first order in f̂ − 1.
They are associated with the numerator of Eq. (33), as
they originate from

{f̂23 − 1, Ôq(1)} = 2Ôq(1)(f̂23 − 1) . (34)
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Figure 7. Non vanishing three body diagrams at first order
in f̂ − 1 emerging from the numerator of Eq. (33).

The only non vanishing three-body cluster diagrams
are depicted in Fig. 7. In the thermodynamic limit,
diagram N3b1a reads

N3b1a =

−
2ρ2

ν2
δq,pm−hi

∫

dr12e
iq·r12%212

∫

dr23e
iq·r23×

∑

αi

〈α1α2αpm
|Ôστ (1)(f̂23 − 1)P̂ στ

12 |α1α2αhi
〉 , (35)

where |αi〉 denotes the spin-isospin state of particle i.
The discretized momentum conservation is expressed by
the Kronecker delta function. By computing the spin-
isospin matrix elements, whose values are reported in
Appendix E of Ref. [13], one can show that in the limit
of zero momentum transfer, q → 0, N3b1a cancels the
contribution of diagram N2b1a, represented in Fig. 8
(denoted as F1d j and GT1d j in Ref. [9]). This is an in-
dication that three-body diagrams need to be taken into
account and they play a relevant role in the sum rules
of the weak response, which will be estimated at a later
stage.
It can be readily shown that the analytic expression of

diagram N3b1b is given by

N3b1b =

2ρ2

ν2
δq,pm−hi

∫

dr12dr23e
ipm·r13e−ihi·r12%12%13×

∑

αi

〈α1α2αpm
|Ôστ (1)(f̂23 − 1)P̂ στ

12 P̂ στ
13 |α1α2αhi

〉 . (36)
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coming from the numerator of Eq. (33).

Effective operator at three-body cluster level
For the sake of consistency, the 3b cluster contribution to the effect weak operators have 
been included in the calculations.
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Figure 9: Fermi response functions of SNM, evaluated in CFG approximation at ρ = 0.16 fm−3 and
q = 0.30 fm−1. Panel (a) shows the results obtained using O

eff
q computed at two-body cluster level

and different correlation functions. The corresponding results obtained including three body cluster
contributions to Oeff

q are diaplayed in panel (b). For comparison, the plus marks show the response of
the non interacting FG.

illustrated in Figs. 9 (a) and 10 (a), corresponding to momentum transferq = |q|(4x̂ +
4ŷ+4ẑ)/

√
48, with |q| = 0.30 fm−1. The width of the gaussian folding function has been

set to σ = 0.25 MeV.
This unphysical effect is removed once the effective weak transition operator is com-

puted at three-body cluster level. As a matter of fact, the CFG curves in panels (b) of the
aforementioned figures are very close, when not superimposed, to each other. Therefore,
our results appear to be more robust than those of Refs. [5, 6], as physical quanti-
ties should not be sensitive to the details of the short range behavior of the correlation
functions.

6.2. CHF and CTD

The nuclear matter responses calculated in CTD and CHF approximations at three-
body cluster level for |q| = 0.30 fm−1 are displayed in Figs. 11 and 12 for Fermi and
Gamow-Teller transitions, respectively. Comparison with the findings of Refs. [5, 6],
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q = 0.30 fm−1. Panel (a) shows the results obtained using O

eff
q computed at two-body cluster level

and different correlation functions. The corresponding results obtained including three body cluster
contributions to Oeff

q are diaplayed in panel (b). For comparison, the plus marks show the response of
the non interacting FG.

illustrated in Figs. 9 (a) and 10 (a), corresponding to momentum transferq = |q|(4x̂ +
4ŷ+4ẑ)/

√
48, with |q| = 0.30 fm−1. The width of the gaussian folding function has been

set to σ = 0.25 MeV.
This unphysical effect is removed once the effective weak transition operator is com-

puted at three-body cluster level. As a matter of fact, the CFG curves in panels (b) of the
aforementioned figures are very close, when not superimposed, to each other. Therefore,
our results appear to be more robust than those of Refs. [5, 6], as physical quanti-
ties should not be sensitive to the details of the short range behavior of the correlation
functions.

6.2. CHF and CTD

The nuclear matter responses calculated in CTD and CHF approximations at three-
body cluster level for |q| = 0.30 fm−1 are displayed in Figs. 11 and 12 for Fermi and
Gamow-Teller transitions, respectively. Comparison with the findings of Refs. [5, 6],

21

The unphysical strong dependence on the correlation function at small      is removed.|q|
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Figure 7: Non vanishing three body diagrams at first order in f̂ −1 emerging from the cluster expansion
of the numerator of Eq. (44).
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Figure 8: Two-body diagram of first order in f̂ − 1, arising from the cluster expansion of the numerator
of Eq. (44).

5. Response functions in different approximations

5.1. Correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF)

In both the correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF) approx-
imations, the weak response of cold SNM, defined in Eq. (1), is given by [5]

SFG(q,ω) =
1

A

∑

pmhi

|〈Φpm;hi
|Ôeff

q |Φ0〉|2δ(ω + εpm
− εhi

) . (48)

Within the CFG approximation, the single particle energies are those of the non-interacting
Fermi gas

εni
=

k2
i

2m
. (49)

In the CHF scheme the single particle approximation is retained, but the above spec-
trum is modified through the addition of a potential energy contribution. It is long known
[33] that the Hartree-Fock approximation is not suitable for nuclear potentials having a
strong repulsive core, like the Argonne models. We use instead the effective potential
described in Section 3, which incorporates the effects correlations between nucleons and
is suitable for use for mean field calculations and can be used to carry out calculations
in perturbation theory in the Fermi gas basis. The CHF single particle energy is then
given by

εni
=

k2
i

2m
+

A
∑

nj=1

∫

dxjφ
∗
ni
(xi)φ

∗
nj
(xj)v

eff
ij A[φni

(xi)φnj
(xj)] , (50)
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6

the correlation functions in order for the effective hamil-
tonian exactly reproduces the energy per particle ob-
tained with the full FHNC/SOC calculations at satura-
tion density. In particular the “healing distance”, of both
the central, dc, and the tensorial, dt, correlations and the
quenching parameters αp [8], which can be given the in-
terpretation of the low-energy parameters of the effective
interaction, have been reduced.

IV. EFFECTIVE WEAK OPERATORS

In the case of 1p−1h excitation, the effective weak op-
erators Ôeff

q , introduced in Ref. [1], are defined through
the relation

〈Ψpm;hi
|Ôeff

q |Ψ0〉 ≡

〈Ψpm;hi
|F†ÔqF|Ψ0〉

√

〈Ψ0|F†F|Ψ0〉〈Ψpm;hi
|F†F|Ψf〉

(32)

As for the calculation of the hamiltonian expectation
value, a cluster expansion of the weak operator corre-
lated matrix element can be performed [9]. The small-
ness parameters in this case are f c

ij−1 and fp
ij . Following

Ref.[14], we denote by ci the quantum numbers of occu-
pied states in both Ψ0〉 and Ψpm;hi

. It can be shown
[13, 14] that the CBF matrix element of the effective
weak transition operator takes the form

〈Ψpm;hi
|Ôeff

q |Ψ0〉 =
1 +

∑

C(q; pm, hi)
√

1 +
∑

C(hi)
√

1 +
∑

C(pm)
. (33)

The term
∑

C(hi) contains all the connected diagrams
with one hi vertex or one hi-exchange line. An analo-
gous definition applies for

∑

C(hi). On the other hand,
∑

C(q; pm, hi) amounts of connected diagrams having one
single ph-exchange line connecting points i and j or one
single ph vertex. Moreover, the weak operator Ôq(1),
which carries a momentum q and a spin-isospin opera-
tor, is attached to the point 1 of the diagrams belonging
to

∑

C(q; pm, hi). Note that only ci states are present
in both the bare vertex and the bare exchange lines. In
other words, unlike in the cluster expansion for the en-
ergy per particle, the hole state hj is lacking.
The two-body cluster diagrams coming from both the

numerator and denominator of Eq. (33) have been com-
puted by the authors of Ref. [9], while in Ref. [2, 15]
a different truncation scheme has been adopted and the
numerator has been approximated to the unity.
In this work, in addition to the numerator and denom-

inator two-body cluster diagrams, for the sake of consis-
tency with the effective interaction, we have calculated
the three-body cluster diagrams at first order in f̂ − 1.
They are associated with the numerator of Eq. (33), as
they originate from

{f̂23 − 1, Ôq(1)} = 2Ôq(1)(f̂23 − 1) . (34)
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Figure 7. Non vanishing three body diagrams at first order
in f̂ − 1 emerging from the numerator of Eq. (33).

The only non vanishing three-body cluster diagrams
are depicted in Fig. 7. In the thermodynamic limit,
diagram N3b1a reads

N3b1a =

−
2ρ2

ν2
δq,pm−hi

∫

dr12e
iq·r12%212

∫

dr23e
iq·r23×

∑

αi

〈α1α2αpm
|Ôστ (1)(f̂23 − 1)P̂ στ

12 |α1α2αhi
〉 , (35)

where |αi〉 denotes the spin-isospin state of particle i.
The discretized momentum conservation is expressed by
the Kronecker delta function. By computing the spin-
isospin matrix elements, whose values are reported in
Appendix E of Ref. [13], one can show that in the limit
of zero momentum transfer, q → 0, N3b1a cancels the
contribution of diagram N2b1a, represented in Fig. 8
(denoted as F1d j and GT1d j in Ref. [9]). This is an in-
dication that three-body diagrams need to be taken into
account and they play a relevant role in the sum rules
of the weak response, which will be estimated at a later
stage.
It can be readily shown that the analytic expression of

diagram N3b1b is given by

N3b1b =

2ρ2

ν2
δq,pm−hi

∫

dr12dr23e
ipm·r13e−ihi·r12%12%13×

∑

αi

〈α1α2αpm
|Ôστ (1)(f̂23 − 1)P̂ στ

12 P̂ στ
13 |α1α2αhi

〉 . (36)
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Figure 8. Two-body diagram of the first order term in f̂ − 1
coming from the numerator of Eq. (33).

Effective operator at three-body cluster level
For the sake of consistency, the 3b cluster contribution to the effect weak operators have 
been included in the calculations.
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of the numerator of Eq. (44).

q

pmhi

N2b1a

Figure 8: Two-body diagram of first order in f̂ − 1, arising from the cluster expansion of the numerator
of Eq. (44).

5. Response functions in different approximations

5.1. Correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF)

In both the correlated Fermi gas (CFG) and correlated Hartree-Fock (CHF) approx-
imations, the weak response of cold SNM, defined in Eq. (1), is given by [5]

SFG(q,ω) =
1

A

∑

pmhi

|〈Φpm;hi
|Ôeff

q |Φ0〉|2δ(ω + εpm
− εhi

) . (48)

Within the CFG approximation, the single particle energies are those of the non-interacting
Fermi gas

εni
=

k2
i

2m
. (49)

In the CHF scheme the single particle approximation is retained, but the above spec-
trum is modified through the addition of a potential energy contribution. It is long known
[33] that the Hartree-Fock approximation is not suitable for nuclear potentials having a
strong repulsive core, like the Argonne models. We use instead the effective potential
described in Section 3, which incorporates the effects correlations between nucleons and
is suitable for use for mean field calculations and can be used to carry out calculations
in perturbation theory in the Fermi gas basis. The CHF single particle energy is then
given by

εni
=

k2
i

2m
+

A
∑

nj=1

∫

dxjφ
∗
ni
(xi)φ

∗
nj
(xj)v

eff
ij A[φni

(xi)φnj
(xj)] , (50)
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Figure 10: Same as in Fig. 9, but for the Gamow-Teller response functions.

shows that when the tree-body cluster is included the peak corresponding to the collective
mode is shifted to lower energies. This effect, arising from the change of the single
particle spectrum, is only slightly mitigated when the UIX potential is included in the
hamiltonian.

In addition, the inclusion three-body cluster contributions produces a small depletion
of the Fermi resonance at |q| = 0.30 fm−1, that turns out to be more apparent when the
nuclear hamiltonian is lacking the three-body potential.

It is worth remarking that the results of Ref. [5] have been obtained using the first six
components of the Argonne v′8 potential rather than the Argonne v′6 used in the present
work. However, we have performed the same calculations at two-body cluster level with
the Argonne v′6 potential, and verified that the results are very close to those obtained
from the truncated version of v′8.

In Fig. 13, the Fermi and Gamow-Teller responses at different values of |q|, ranging
from 0.10 fm−1 to 0.50 fm−1, are shown as a function of the energy transfer, ω. It
can be seen that the position of the highest peak of the Fermi responses shifts from
|q| ! 0.40 fm−1, corresponding to the two-body cluster approximation, to |q| ! 0.30
fm−1 of the present calculation. In the case of the Gamow-Teller case, however, the
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shows that when the tree-body cluster is included the peak corresponding to the collective
mode is shifted to lower energies. This effect, arising from the change of the single
particle spectrum, is only slightly mitigated when the UIX potential is included in the
hamiltonian.

In addition, the inclusion three-body cluster contributions produces a small depletion
of the Fermi resonance at |q| = 0.30 fm−1, that turns out to be more apparent when the
nuclear hamiltonian is lacking the three-body potential.

It is worth remarking that the results of Ref. [5] have been obtained using the first six
components of the Argonne v′8 potential rather than the Argonne v′6 used in the present
work. However, we have performed the same calculations at two-body cluster level with
the Argonne v′6 potential, and verified that the results are very close to those obtained
from the truncated version of v′8.

In Fig. 13, the Fermi and Gamow-Teller responses at different values of |q|, ranging
from 0.10 fm−1 to 0.50 fm−1, are shown as a function of the energy transfer, ω. It
can be seen that the position of the highest peak of the Fermi responses shifts from
|q| ! 0.40 fm−1, corresponding to the two-body cluster approximation, to |q| ! 0.30
fm−1 of the present calculation. In the case of the Gamow-Teller case, however, the
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Long range correlations: Tamm-Dancoff

The effective operators at 3b cluster level can only take into account short-range correlations.

Long-range correlations are included by expanding the final state in the basis of 
one 1p1h states:  Tamm-Dancoff approximation

The coefficient are found by diagonalizing the effective hamiltonian 

The response is given by 

where A is the antisymmetrization operator and the single particle wave functions are

φni
(xi) =

eiki·ri
√
V

ηαi
. (51)

In the above equation ηαi
≡ χσi

χτi denotes the product of Pauli spinors describing the
spin and isospin of the i-th particle, while V is the normalization volume.

Note that while in CFG calculations correlation effects enter only through the effective
weak operators, within the CHF approximations they also determine the results through
the effective interaction.

In the case of SNM (corresponding to degeneracy ν = 4) , carrying out the summation
over the occupied states with |kj | ≤ kF leads to

εni
=

k2
i

2m
+ ρ

∫

drij
[

vcij −
1

4
'(kF rij)e

−iki·rij (vcij + 3vτij + 3vσij + 9vστij )
]

. (52)

Note that, in order to simplify the notation, in the above equation the superscript “eff”
has been omitted.

5.2. Correlated Tamm-Dancoff (CTD)
Since the correlated 1p−1h states are not eigenstates of the full nuclear hamiltonian,

transitions between them are in principle allowed. They can be accounted for within the
Tamm-Dancoff approximation, that amounts to writing the final state of Eq. (1) as a
superposition of 1p− 1h excitations.

Because the hamiltonian is translationally invariant, the total momentum q of the
state is conserved, and the momenta of the particle, pm, and the hole, hi, satisfy the
relation pm − hi = q.

The nuclear hamiltonian commutes with the total isospin, T with the total isospin
projection along the z−axis, Tz, and with the total spin, S. However, because of the
tensor term of the potential, the hamiltonian does not commute with Sz, the total spin
projection along the z− axis.

The combinations of particle hole pairs giving rise to eigenstates of S and Sz, which
define the particle-hole Clebsch-Gordan coefficients, are shown in Table 3. The differences
between the total spin states of the particle particle pairs, also given in Table 3, are due
to the phase factor appearing in the canonical transformations to particles and holes [34].
The treatment of the total isospin can be done in complete analogy, replacing the up
and the down single particle spin states with the proton and the neutron isospin states,
respectively.

The computational effort needed to solve the Tamm-Dancoff equations can be con-
siderablt reduced using combinations of |Φpm;hi

〉 with definite T , Tz, S and Sz

|Φn〉CTD
TTzS =

∑

pmhiSz

CnTTzSSz

pmhi
|Φpm;hi

〉TTzSSz
. (53)

A further simplification can be achieved by noting that the final states of both the Fermi
and Gamow-Teller transitions matrix elements have T = 1 and Tz = 1. To simplify the
notation, the isospin indexes may then be omitted

|Φn〉CTD
S =

∑

pmhiSz

CnSSz

pmhi
|Φpm;hi

〉SSz
, (54)
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Final state
T = 1, Tz = 1

Table 3: Spin configurations of particle particle and particle hole pairs for spin-1/2 particles.

Total spin state particle particle particle hole

S = 1 , Sz = 1 ↑↑ − ↑↓

S = 1 , Sz = 0 1√
2
(↑↓ + ↓↑) 1√

2
(↑↑ − ↓↓)

S = 1 , Sz = −1 ↓↓ ↓↑

S = 0 , Sz = 0 1√
2
(↑↓ − ↓↑) 1√

2
(↑↑ + ↓↓)

and it is understood that T = 1 and Tz = 1.
The eigenvalue equation for the effective hamiltonian defines the spectrum of excita-

tion energies ωS
n

Ĥeff |Φn〉CTD
S =

(

∑

i

−
∇2

i

2m
+
∑

i<j

v̂effij

)

|Φn〉CTD
S = (E0 + ωS

n )|Φn〉CTD
S . (55)

Multiplying the above equation by SSz
〈Φpn;hj

| from the left and using orthonormality
of the 1p− 1h states one finds

∑

pmhiS′

z

SSz
〈Φpn;hj

|Ĥeff |Φpm;hi
〉SS′

z
C

nSS′

z

pmhi
= CnSSz

pnhj
(E0 + ωS

n) . (56)

Thus, determinig the coefficient CnSSz

pmhi
amounts to diagonalizing the block diagonal

hamiltonian for the two subsets of the 1p − 1h basis having T = 1, Tz = 1 and cor-
responding to S = 0 and to S = 1 . This is a much less demanding computational
task, compared to the diagonalization of the hamiltonian in the full 1p− 1h basis. As a
consequence, this approach allows one to use a larger number of momentum states.

It has been shown [30] that, singling out particles 1 and 2 from both the ground state
and the 1p− 1h excited state, the matrix element of the hamiltonian can be rewritten in
the form

SSz
〈Φpn;hj

|Ĥeff |Φpm;hi
〉SS′

z
=
[

(E0 + εpm
− εhi

)δpmpn
δhihj

δSzS′

z

+ 〈pn hi|v̂eff12 |hj pm〉SS′

zSz

]

(57)

where 〈pn hj |O12|hi pm〉 denotes the two-body matrix element of the operator Ô12

〈pn hi|Ô12|hj pm〉 ≡
∫

dx1,2φ
∗
pn
(x1)φ

∗
hi
(x2)Ô12A[φhj

(x1)φpm
(x2)] . (58)

In the two-body matrix element of the effective potential 〈pn hi|v̂eff12 |hj pm〉SS′

zSz
the

spin and isospin projections along the z axis of the particle hole pairs pm−hi and pn−hj

are combined as in Table 3 to have definite S, and total spin projections along the z-axis
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Figure 11: Fermi response functions of SNM at ρ = 0.16 fm−3 calculated at q = 0.30 fm−1 using the
v6′ and v6′ + UIX hamiltonians. Panel (a) shows the full response over the whole range of ω, while
panel (b) is a blow up of the small ω region. The responses have been folded with a Gaussian of width
σ = 0.25 MeV.

three-body cluster contribution does not produce an appreciable shift, and the highest
resonance remains peaked around |q| ! 0.25 fm−1.

6.3. Sum rules

The set of final states in Eq. (1) is not exhausted by 1p− 1h excitations, since, in the
presence of NN interactions, transitions to more complex, multi p− h states, may occur.
In the calculations described in the previous Sections the contributions of these final
states have been neglected. However, an estimate of their importance can be inferred
from the sum rules, obtained by ω-integration of the responses.
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q = 0.3 fm�1

• Collective peak shifted to 
lower energies

• Small depletion of the peak

that the use of the effective operator suppresses the response
by !20–25 %.
Also shown in Figs. 3 and 4 are the response functions

calculated using Oef f with various common assumptions
made regarding vef f. The CHF approximation, which is
equivalent to including only the diagonal matrix elements of
vCBS, is indicated by the dashed line. Results including only
direct terms of vCBS in the off-diagonal matrix elements of
the CTDA are shown by the dotted line. The thin solid line
shows the response using vCBS and the full CTDA equation.
All three calculations indicate that interactions shift the
strength to higher ! when compared to the noninteracting
FG. However, the CHF response is almost twice as strong at
low !. In addition, for RF, only the full CTDA calculation
using vCBS gives a coherent state outside of the p-h con-
tinuum, indicating that the exchange terms are not negligible.
This is not the case for RGT, where the exchange terms have
little effect. The width of the coherent state in Figs. 3 and 4
indicates the width of the folding function used in these fig-
ures.
The three GT responses corresponding to "=x ,y ,z [Eq.

(20)] are classified as spin longitudinal ""=z# and two spin
transverse ""=x ,y#, where the direction of q defines the z
axis [10,20,21]. The peak of RGT in Fig. 4 has contributions
from three states that lie just beyond the p-h continuum. The
one at relatively lower energy is from the longitudinal re-
sponse while the other two are from the transverse and are
degenerate. The ground state of uniform FG has Jz=0, and
conservation of Jz implies that only states with Jz=0 contrib-
ute to the longitudinal response. However, resonant states
obtained using a finite box are not eigenstates of Jz. For the
box lengths used in the present calculation at least 99% of
the strength of each resonance can be attributed to either the
spin longitudinal or spin transverse directions. As q is in-
creased, the peaks are shifted into the p-h continuum and
distinguishable resonances disappear.
Calculations that assume a bare weak operator and

Skyrme-like effective interactions without tensor forces use a
slightly different definition of RAV. The three directions, "

=x ,y ,z in Eq. (20) are equivalent in the absence of tensor
forces. In this case it is most convenient to calculate the
response in one direction, "=z for example. However, ex-
perimental and theoretical investigations of the isovector
"p! ,n!# reactions indicate an enhancement in the longitudinal
response [10,20,21] due to the one-pion exchange, tensor
interaction. The spin longitudinal and spin transverse com-
ponents of the axial-vector response functions can differ sig-
nificantly at larger values of q and must be calculated sepa-
rately. We have chosen here to sum the components of the
axial vectors and discuss the total response. The differences
in the sums of spin longitudinal and transverse responses will
be discussed in Sec. IX. A third of the present RAV should be
used to compare results with those of simpler models that
ignore tensor forces.

V. NEUTRAL CURRENT RESPONSE FUNCTIONS

For the neutrino scattering processes, N+#e→N!+#e! (N
=n or p), two transitions are possible: isospin change $T

FIG. 2. Gamow-Teller response functions calculated for cold
SNM at %=%0 using CTDA, vCBS and Oef f at q=0.05, 0.10, 0.15,
0.20, 0.30, 0.40, and 0.50 fm−1. The width of the Gaussian folding
function is 0.7 MeV.

FIG. 3. Fermi response functions calculated at q=0.3 fm−1 for
cold SNM at %=%0. The upper graph shows the full response across
all values of !, the lower is a magnification of the small ! region.
The thick solid line is the analytic result for an infinite non-
interacting FG [19] while the cross marks show the response ob-
tained using the finite periodic box. The zeroth-order response ob-
tained by replacing Obare by Oef f in the noninteracting FG is
indicated by the plus marks. The remaining lines are calculations
using Oef f and various approximations: dashed, CHF; dotted, in-
cludes only direct vCBS off-diagonal matrix elements, and solid, full
CTDA using vCBS. The curves show responses folded with a Gauss-
ian of width 0.28 MeV.

NEUTRINO MEAN FREE PATHS IN COLD SYMMETRIC… PHYSICAL REVIEW C 70, 035801 (2004)
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Cowell et al. (2004)
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Figure 11: Fermi response functions of SNM at ρ = 0.16 fm−3 calculated at q = 0.30 fm−1 using the
v6′ and v6′ + UIX hamiltonians. Panel (a) shows the full response over the whole range of ω, while
panel (b) is a blow up of the small ω region. The responses have been folded with a Gaussian of width
σ = 0.25 MeV.

three-body cluster contribution does not produce an appreciable shift, and the highest
resonance remains peaked around |q| ! 0.25 fm−1.

6.3. Sum rules

The set of final states in Eq. (1) is not exhausted by 1p− 1h excitations, since, in the
presence of NN interactions, transitions to more complex, multi p− h states, may occur.
In the calculations described in the previous Sections the contributions of these final
states have been neglected. However, an estimate of their importance can be inferred
from the sum rules, obtained by ω-integration of the responses.
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Figure 11: Fermi response functions of SNM at ρ = 0.16 fm−3 calculated at q = 0.30 fm−1 using the
v6′ and v6′ + UIX hamiltonians. Panel (a) shows the full response over the whole range of ω, while
panel (b) is a blow up of the small ω region. The responses have been folded with a Gaussian of width
σ = 0.25 MeV.

three-body cluster contribution does not produce an appreciable shift, and the highest
resonance remains peaked around |q| ! 0.25 fm−1.

6.3. Sum rules

The set of final states in Eq. (1) is not exhausted by 1p− 1h excitations, since, in the
presence of NN interactions, transitions to more complex, multi p− h states, may occur.
In the calculations described in the previous Sections the contributions of these final
states have been neglected. However, an estimate of their importance can be inferred
from the sum rules, obtained by ω-integration of the responses.
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Gamow-Teller transition results

q = 0.3 fm�1

• (Almost) No shift of the 
collective excitation peak

• No depletion of the peak
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Figure 12: Same as in Fig. 11 but for the Gamow-Teller response functions.

The static structure function is defined as

S(q) =

∫

dωS(q,ω)

=
1

A

∫

dω
∑

f

|〈Ψf |Ôq|Ψ0〉|2δ(ω + E0 − En)

=
1

A
〈Ψ0|Ô†

qÔq|Ψ0〉 . (66)

The above equations show that S(q) can be evaluated both through integration of the
CTD response function and by computing the ground state expectation value of the
operator Ô†

qÔq. Within the CBF approach, the variational ground-state (VGS) expecta-
tion value can be expressed in terms of the operatorial two-body distribution functions,
computed in the FHNC/SOC scheme outlined in the previous Sections [35].

While the VGS calculations include all multi p−h excitations in the CBF basis, only
the correlated 1p−1h states are taken into account in the CTD approximation. Therefore,
the contribution of multi p − h states can be estimated from the difference SV GS(q) −

24

=0 and 1. For !T=1, only the "z terms of the neutral current
operators can contribute. For SNM, these can be trivially
related to the charge current operators discussed in Sec. IV:
the !T=1 contribution to RNV=1/2!1−2 sin2 #W"2RF and all
of RNA=1/2RGT. We do not include separate results for these
response functions.
For !T=0 transitions, the neutral current response func-

tion is given by the isospin and spin independent operator of
ONV, #i sin2 #W eiq·ri where #ieiq·ri is the density operator.
The total energy, E!$", calculated in I using vCBS, minimizes
at $%$0 and matter is unstable to density fluctuations at the
densities considered in this work. However, it is believed that
matter is stable down to densities $0.1 fm−3 [18]. We there-
fore add a correction to vCBS meant to take into account the
neglected three-body forces and many-body cluster contribu-
tions. This correction is chosen to reproduce the semiempir-
ical E!$" in Ref. [18].
We use a density dependent zero-range central interaction,

which is to be used only for direct matrix elements,

vij
& !$" = %C1& $

$0
''

+ C2(&!ri − r j" , !30"

to represent this correction. For finite range effective inter-
actions such as vCBS, the exchange contribution to the matrix
element of the Hamiltonian depends on the momentum dif-
ference between the hole states, kij=ki−k j. When )kij) is
large, the contribution of the exchange term to the effective
interaction is negligible. However, for &-function interactions

the exchange contribution is a constant, independent of the
relative momenta. Including exchange contributions from
v&!$" causes unphysically large corrections in the exchange
channel and we therefore assume that v&!$" contributes only
to the direct matrix elements.
The contribution of v&!$" to the energy of matter per

nucleon is

E&!$"
A

=
1
2#i,j *ij)vij

& !$")ij+ !31"

=
1
2%C1& $

$0
''

+ C2($ . !32"

The parameters C1 ,C2, and ' are chosen so that vCBS
+v&!$" reproduces the semiempirical E!$" of Ref. [18] in the
!1/2–3/2"$0 range. The fitted parameters are given in Table
I at the two densities considered. Recall that vCBS is density
dependent because the correlation functions that define vCBS
are density dependent. The parameters of vij

& !$" therefore de-
pend on the density at which vCBS is determined. However,
both sets fit the same E!$", and predict similar responses.
The contribution of v&!$" to the energy of single-particle

states, (&, is obtained by differentiating E&!$" /V with respect
to $, and the second derivative with respect to $ is the effec-
tive interaction:

(& =
1
2%C1!' + 2"$0& $

$0
''+1

+ 2C2$( !33"

*mj)vef f
& )in+ =

1
V
1
2%C1!' + 2"!' + 1"& $

$0
''

+ 2C2( .
!34"

The *mj)vef f
& )in+ is of the same order as *mj)vc

CBS)in+ in !T
=0, NV transitions.
The neutral current !T=0 response functions at q

=0.30 fm−1 for $=$0 and !3/2"$0 are given in Fig. 5. The
calculations have been scaled by 1,000 for convenience. The
matter is unstable at $= !1/2"$0 and we have not included
response functions for this density. The dotted lines show
!T=0 RNV for a non-interacting FG, the CTDA response
functions obtained using vCBS+v&!$" are shown as the
dashed line when Obare is used and solid when Oef f is used.
The density response is pushed to larger ) though not as
much as the RF and RGT. And the suppression due to Oef f

depends sensitively on the system density. At $=$0, there is
little suppression while at $= !3/2"$0, the response is
quenched by $25%.
The present treatment of the density response is less sat-

isfactory than that of the other responses. However, the !T

FIG. 4. Gamow-Teller response functions calculated at q
=0.3 fm−1 for cold SNM at $=$0. See caption of Fig. 3 for
notation.

TABLE I. Parameters of vij
& at $=0.16 and 0.24 fm−3.

$ C1 C2 '

0.16 310.3 *302.4 0.54
0.24 342.7 *356.0 0.50
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q = 0.3 fm�1

• No depletion of the peak
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Figure 12: Same as in Fig. 11 but for the Gamow-Teller response functions.

The static structure function is defined as

S(q) =

∫

dωS(q,ω)

=
1

A

∫

dω
∑

f

|〈Ψf |Ôq|Ψ0〉|2δ(ω + E0 − En)

=
1

A
〈Ψ0|Ô†

qÔq|Ψ0〉 . (66)

The above equations show that S(q) can be evaluated both through integration of the
CTD response function and by computing the ground state expectation value of the
operator Ô†

qÔq. Within the CBF approach, the variational ground-state (VGS) expecta-
tion value can be expressed in terms of the operatorial two-body distribution functions,
computed in the FHNC/SOC scheme outlined in the previous Sections [35].

While the VGS calculations include all multi p−h excitations in the CBF basis, only
the correlated 1p−1h states are taken into account in the CTD approximation. Therefore,
the contribution of multi p − h states can be estimated from the difference SV GS(q) −
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Figure 12: Same as in Fig. 11 but for the Gamow-Teller response functions.

The static structure function is defined as

S(q) =

∫

dωS(q,ω)

=
1

A

∫

dω
∑

f

|〈Ψf |Ôq|Ψ0〉|2δ(ω + E0 − En)

=
1

A
〈Ψ0|Ô†

qÔq|Ψ0〉 . (66)

The above equations show that S(q) can be evaluated both through integration of the
CTD response function and by computing the ground state expectation value of the
operator Ô†

qÔq. Within the CBF approach, the variational ground-state (VGS) expecta-
tion value can be expressed in terms of the operatorial two-body distribution functions,
computed in the FHNC/SOC scheme outlined in the previous Sections [35].

While the VGS calculations include all multi p−h excitations in the CBF basis, only
the correlated 1p−1h states are taken into account in the CTD approximation. Therefore,
the contribution of multi p − h states can be estimated from the difference SV GS(q) −
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Sum-rules
The importance of the multiple particle hole excitations can be estimated from the sum 
rules, obtained by integrating the response
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Figure 12: Same as in Fig. 11 but for the Gamow-Teller response functions.

The static structure function is defined as

S(q) =

∫

dωS(q,ω)

=
1

A

∫

dω
∑

n

|〈Ψn|Ôq|Ψ0〉|2δ(ω + E0 − En)

=
1

A
〈Ψ0|Ô†

qÔq|Ψ0〉 . (66)

The above equations show that S(q) can be evaluated both through integration of the
CTD response function and by computing the ground state expectation value of the
operator Ô†

qÔq. Within the CBF approach, the variational ground-state (VGS) expecta-
tion value can be expressed in terms of the operatorial two-body distribution functions,
computed in the FHNC/SOC scheme outlined in the previous Sections [35].

While the VGS calculations include all multi p−h excitations in the CBF basis, only
the correlated 1p−1h states are taken into account in the CTD approximation. Therefore,
the contribution of multi p − h states can be estimated from the difference SV GS(q) −
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Sum-rules
The importance of the multiple particle hole excitations can be estimated from the sum 
rules, obtained by integrating the response

Direct integration of the response
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Figure 12: Same as in Fig. 11 but for the Gamow-Teller response functions.

The static structure function is defined as

S(q) =

∫

dωS(q,ω)

=
1

A

∫

dω
∑

n

|〈Ψn|Ôq|Ψ0〉|2δ(ω + E0 − En)

=
1

A
〈Ψ0|Ô†

qÔq|Ψ0〉 . (66)

The above equations show that S(q) can be evaluated both through integration of the
CTD response function and by computing the ground state expectation value of the
operator Ô†

qÔq. Within the CBF approach, the variational ground-state (VGS) expecta-
tion value can be expressed in terms of the operatorial two-body distribution functions,
computed in the FHNC/SOC scheme outlined in the previous Sections [35].

While the VGS calculations include all multi p−h excitations in the CBF basis, only
the correlated 1p−1h states are taken into account in the CTD approximation. Therefore,
the contribution of multi p − h states can be estimated from the difference SV GS(q) −
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Ground-state expectation value 
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Sum-rules

The curves corresponding to the Fermi transition are normalized in order for the sum
rule of the non interacting FG to approach unity in the |q| → ∞ limit. On the other
hand, the Gamow-Teller results are normalized in such a way that both the transverse
and longitudinal sum rules, to be defined below, tend to the same limit.

As noted in Ref. [5], because of the approximations involved in the calculation based
on the FHNC/SOC scheme, the VGS results do not fulfill the constraint S(0) = 0,
required by baryon number conservation. The VGS3b results suffer of the same problem,
while the static structure functions obtained within the CTD approximation do exhibit
the correct low-momentum behavior.

The properties of the static structure function obtained from the calculation of a
ground state expectation value within the FHNC summation scheme has been extensively
analyzed in Refs. [36, 37]. It has been shown that the failure to obtain the correct
|q| → 0 limit is to be ascribed to the fact that the correlation functions resulting from the
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Figure 14: Static response function for Fermi (a) and Gamow-Teller (b) transitions in SNM at ρ = 0.16
fm−3. The results shown in the figure correspond to the FG model (solid lines), the CTD approximation
(crosses), full FHNC/SOC VGS calculation (dashed lines) and the three-body cluster approximation to
VGS (dot-dash lines).

26

The curves corresponding to the Fermi transition are normalized in order for the sum
rule of the non interacting FG to approach unity in the |q| → ∞ limit. On the other
hand, the Gamow-Teller results are normalized in such a way that both the transverse
and longitudinal sum rules, to be defined below, tend to the same limit.

As noted in Ref. [5], because of the approximations involved in the calculation based
on the FHNC/SOC scheme, the VGS results do not fulfill the constraint S(0) = 0,
required by baryon number conservation. The VGS3b results suffer of the same problem,
while the static structure functions obtained within the CTD approximation do exhibit
the correct low-momentum behavior.

The properties of the static structure function obtained from the calculation of a
ground state expectation value within the FHNC summation scheme has been extensively
analyzed in Refs. [36, 37]. It has been shown that the failure to obtain the correct
|q| → 0 limit is to be ascribed to the fact that the correlation functions resulting from the
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Figure 14: Static response function for Fermi (a) and Gamow-Teller (b) transitions in SNM at ρ = 0.16
fm−3. The results shown in the figure correspond to the FG model (solid lines), the CTD approximation
(crosses), full FHNC/SOC VGS calculation (dashed lines) and the three-body cluster approximation to
VGS (dot-dash lines).
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Fermi Gamow-Teller

• Because of the the tensor operator in the potential,  VGS results for the Gamow Teller 
transition do not fulfill                       . S(q ! 0) = 0

• When the three-body cluster is accounted for, the VGS and CTD curves of the Fermi case 
come closer to one another.  As for Gamow-Teller , the effect is smaller.

• Difference between VGS and CTD curves only due to many particle-hole excitations.
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Figure 15: Spin longitudinal (a) and spin transverse (b) static response functions of SNM at ρ = 0.16
fm−3, obtained using VGS (dashed lines), three-body VGS (dot-dash lines), CTD (crosses), and FG
(solid lines).

7. Conclusions

We have extended the studies of the charged current weak response of SNM carried
out in Refs. [5, 6], by explicitly including the three-body cluster contributions and a more
realistic description of the three-nucleon forces in the calculations of both the effective
interaction and the effective transition operators.

Our results show that the weak response of isospin symmetric nuclear matter, ob-
tained from the effective operators computed in the two-body cluster approximation,
exhibits a sizable dependence on the choice of the correlation function, which is in fact
unphysical. When three-body clusters diagrams are considered, the transition matrix
elements, in which correlations enter only through the effective weak operators, become
nearly independent of the correlation functions.

The three-body cluster contributions, described in Section 3, have been consistently
included in the construction of the effective interaction. As a first step we have computed

28

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

S
L
(q
)

|q| (fm−1)

(a)
FG

VGS
VGS3b
CTD

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

S
T
(q
)

|q| (fm−1)

(b)
FG

VGS
VGS3b
CTD

Figure 15: Spin longitudinal (a) and spin transverse (b) static response functions of SNM at ρ = 0.16
fm−3, obtained using VGS (dashed lines), three-body VGS (dot-dash lines), CTD (crosses), and FG
(solid lines).

7. Conclusions

We have extended the studies of the charged current weak response of SNM carried
out in Refs. [5, 6], by explicitly including the three-body cluster contributions and a more
realistic description of the three-nucleon forces in the calculations of both the effective
interaction and the effective transition operators.

Our results show that the weak response of isospin symmetric nuclear matter, ob-
tained from the effective operators computed in the two-body cluster approximation,
exhibits a sizable dependence on the choice of the correlation function, which is in fact
unphysical. When three-body clusters diagrams are considered, the transition matrix
elements, in which correlations enter only through the effective weak operators, become
nearly independent of the correlation functions.

The three-body cluster contributions, described in Section 3, have been consistently
included in the construction of the effective interaction. As a first step we have computed
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• The inclusion of the three-body cluster brings the CTD results closer to the VGS at all the 
values of     .|q|

• The positions of the maxima of the CTD and variational results are nearly coincident in the 
Longitudinal sum rule.

• At small momentum transfer the CTD calculations lie below the the VGS and VGS3b curves.
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Conclusions

• We have derived a two-body effective potential from the UIX three body force, 
within a microscopic approach based on CBF and cluster expansion formalism.

The underbinding of SNM appears to be arising from deficiencies of UIX. 

• A set of chiral inspired potentials has been implemented in nuclear matter 
calculations.  

• An effective potential, suitable to be used in FG basis, has been derived at three-
body cluster level. The weak response of cold SNM has been computed for both the 
Fermi and Gamow Teller transitions, including the effect of UIX force.

 Although two of them provide reasonable values for the saturation density of 
SNM, none of them simultaneously explains the binding energy. 
Need for NNNLO three-body force.

This formalism is ideally suited to carry out consistent calculations of the weak response 
in the kinematical region relevant to neutron stars’ applications.
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