AFDMC calculations of homogeneous neutron matter in presence of hyperons

Diego Lonardoni

Physics Department & I.N.F.N., University of Trento, via Sommarive 14, 38123 Povo (TN), Italy

Main collaborators:

F. Pederiva (Trento, Italy)

S. Gandolfi (LANL, US-NM)

Outline

- ✓ Motivations
- ✓ The Λ -nucleon interaction
- ✓ The idea of the project
- ✓ Results
- √ Conclusions

P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1, Springer 2007

composition strongly affects the properties of the neutron star

EOS & M(R) relation

P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1, Springer 2007

$$\begin{cases} E \equiv E(n_b, \delta) \\ P = n_b^2 \frac{\partial E(n_b, \delta)}{\partial n_b} \end{cases}$$

$$n_b = n_p + n_n = A/V$$

$$\delta = \frac{n_n - n_p}{n_b}$$

P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1, Springer 2007

H. Đapo, B.-J. Schaefer, and J. Wambach, Phys. Rev. C 81, 035803 (2010)

hyperons: softening of the EOS

M(R) & Mmax (TOV)

model dependent

H. Đapo, B.-J. Schaefer, J. Wambach, Phys. Rev. C 81, 035803 (2010)

I.Vidaña, D. Logoteta, C. Providência, A. Polls, I. Bombaci, EPL 94, 11002 (2011)

H.-J. Schulze, T. Rijken, Phys. Rev. C 84, 035801 (2011)

I. Bednarek, P. Haensel, J.~L. Zdunik, M. Bejger, R. Mańka, Astron. Astrophys. 543, A I 57 (2012)

G. Colucci, A. Sedrakian, Phys. Rev. C 87, 055806 (2013)

I. Bednarek, P. Haensel, J.~L. Zdunik, M. Bejger, R. Mańka, Astron. Astrophys. 543, A I 57 (2012)

Phys. Rev. C 84, 035801 (2011)

G. Colucci, A. Sedrakian, Phys. Rev. C 87, 055806 (2013)

1.5

H. Đapo, B.-J. Schaefer, J. Wambach, Phys. Rev. C 81, 035803 (2010)

I.Vidaña, D. Logoteta, C. Providência, A. Polls, I. Bombaci, EPL 94, 11002 (2011)

H.-J. Schulze, T. Rijken, Phys. Rev. C 84, 035801 (2011)

hyperon-nucleon interaction

I. Bednarek, P. Haensel, J.~L. Zdunik, M. Bejger, R. Mańka, Astron. Astrophys. 543, A157 (2012)

G. Colucci, A. Sedrakian, Phys. Rev. C 87, 055806 (2013)

Motivations: experimental status

Updated from: O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)

Motivations: experimental status

Updated from: O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)

$$\Lambda p$$
 scattering $\begin{cases} \sim 600 \text{ low energy } (p_{lab} = 200 \div 300 \text{ Mev/c}) \\ \sim 250 \text{ high energy } (p_{lab} = 300 \div 1500 \text{ Mev/c}) \end{cases}$

Motivations: experimental status

Usmani et al. parametrization

- √ diagrammatic contributions due to pion exchange
- √ same structure of the nuclear Argonne potentials
 - > implementation in QMC code (AFDMC)
- \checkmark 2-body ΛN and 3-body ΛNN terms

A. Bodmer, Q. N. Usmani, J. Carlson, Phys. Rev. C 29, 684-687 (1984)

A. Bodmer, Q. N. Usmani, Nucl. Phys. A 477, 621-651 (1988)

A. A. Usmani, S. C. Pieper, Q. N. Usmani, Phys. Rev. C 51, 2347 (1995)

A. A. Usmani, Phys. Rev. C 52, 1773-1777 (1995)

A. A. Usmani, S. Murtaza, Phys. Rev. C 68, 024001 (2003)

A. A. Usmani, Phys. Rev. C 73, 011302 (2006)

A. A. Usmani, F. C. Khanna, J. Phys. G: Nucl. Part. Phys. 35, 025105 (2008)

2-body

 1π

 2π

 $\Lambda\pi\Sigma$ vertex

forbidden

$$CSB (A = 4)$$

 2π

 3π

to spigger,

The idea of the project

information about the hyperon-nucleon interaction

The idea of the project

The idea of the project

D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 87, 041303(R) (2013)

D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 87, 041303(R) (2013)

neutron matter

nuclear matter

 Λ -neutron matter

$$E(n_b)$$
 $\beta eq. \rightarrow E(n_b, x_p)$

$$E(n_b, x_p)$$

$$E(n_b, x_{\Lambda})$$

$$x_p = \frac{n_p}{n_n + n_p}$$

$$x_{\Lambda} = \frac{n_{\Lambda}}{n_n + n_{\Lambda}}$$

$$E(n_b, x_{\Lambda}) \begin{cases} E_n(n_b) \\ E_{n+\Lambda}(n_b) \\ x_{\Lambda} \ll 1 \end{cases} \longleftrightarrow \begin{cases} \varepsilon(n_b, x_{\Lambda}) \\ \mu_n(n_b, x_{\Lambda}) \\ \mu_{\Lambda}(n_b, x_{\Lambda}) \end{cases}$$

Conclusions

• AFDMC extension for finite and infinite hypernuclear systems (Λ)

study of the hyperon-nucleon interaction

• 3-body ΛNN repulsive interaction fundamental for the computation of the hyperon separation energy

fine tuning of the parameters

• equation of state for the Λ -neutron matter at a given Λ fraction

 $\rightarrow E(n_b, x_{\Lambda})$

M(R) & Mmax

work in progress

Thank you for your attention!!

