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Weak charge form factor and radius of 208Pb through parity violation in electron scattering
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We use distorted wave electron scattering calculations to extract the weak charge form factor FW (q̄), the
weak charge radius RW , and the point neutron radius Rn of 208Pb from the Lead Radius Experiment (PREX)
parity-violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at
the average momentum transfer q̄ = 0.475 fm−1. We find FW (q̄) = 0.204 ± 0.028 (exp) ± 0.001 (model). We use
the Helm model to infer the weak radius from FW (q̄). We find RW = 5.826 ± 0.181 (exp) ± 0.027 (model) fm.
Here the experimental error includes PREX statistical and systematic errors, while the model error describes
the uncertainty in RW from uncertainties in the surface thickness σ of the weak charge density. The weak
radius is larger than the charge radius, implying a “weak charge skin” where the surface region is relatively
enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn =
5.751 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm from RW . Here there is only a very small error
(strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the
nucleon’s size. Finally, we find a neutron skin thickness of Rn − Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ±
0.005 (strange) fm, where Rp is the point proton radius.
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Parity-violating elastic electron scattering provides a
model-independent probe of neutron densities, because the
weak charge of a neutron is much larger than the weak charge
of a proton [1]. In the Born approximation, the parity-violating
asymmetry Apv, the fractional difference in cross sections
for positive and negative helicity electrons, is proportional
to the weak form factor FW . This is very close to the
Fourier transform of the neutron density. Therefore the neutron
density can be extracted from an electroweak measurement [1].
However, one must include the effects of Coulomb distortions,
which have been accurately calculated [2], if the charge density
ρch [3] is well known. Many details of a practical parity-
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violating experiment to measure neutron densities, along with
a number of theoretical corrections, were discussed in a long
paper [4].

Recently, the Lead Radius Experiment (PREX) measured
Apv for 1.06-GeV electrons, scattered by about 5 deg from
208Pb, and the neutron radius Rn was extracted [5]. To do this,
the experimental Apv was compared to a least squares fit of Rn

as a function of Apv, predicted by seven mean-field models [6]
(see also [7]). In the present paper, we provide a more detailed
analysis of the measured Apv. This analysis provides additional
information, such as the weak form factor, and clarifies the
(modest) model assumptions necessary to extract Rn.

We start with distorted wave calculations of Apv for an
electron moving in Coulomb and weak potentials [2]. We
use these to extract the weak form factor from the PREX
measurement. In the Born approximation, one can determine
the weak form factor directly from the measured Apv. However,
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30 ppm=GeV2, which would correspond to an additional
systematic uncertainty on APV of 3 ppb (0.5% of APV).

The beam polarization was continuously monitored by a
Compton polarimeter. Helicity-dependent asymmetries in
the integrated signal from backscattered Compton photons
yielded Pb ¼ ð88:2# 0:1# 1:0Þ% averaged over the du-
ration of the run. The beam polarization was stable within
systematic errors. An independent Møller polarimeter
making nine measurements at different times during the
run gave Pb ¼ ð90:3# 0:1# 1:1Þ%. We used an average
of these two measurements, Pb ¼ ð89:2# 1:0Þ% which
conservatively accounts for the correlated systematic er-
rors between the two measurements.

After all corrections,

APb
PV ¼ 656# 60ðstatÞ # 14ðsystÞ ppb;

at hQ2i ¼ 0:008 80# 0:000 11 GeV2. This result is dis-
played in Fig. 1, in which models predicting the point-
neutron radius illustrate the correlation of APb

PV and Rn [39].
Seven nonrelativistic and relativistic mean-field models

[12–15] were chosen that have charge densities and bind-
ing energies in good agreement with experiment, and that
span a large range in Rn. The weak charge density !w was
calculated from model point-proton !p and neutron !n

densities, !wðrÞ ¼ qp!chðrÞ þ qn
R
d3r0½Gp

E!n þGn
E!p',

using proton qp ¼ 0:0721 and neutron qn ¼ (0:9878
weak charges that include radiative corrections. Here Gp

E
(Gn

E) is the Fourier transform of the proton (neutron)
electric form factor. The Dirac equation was solved [9]
for an electron scattering from !w and the experimental !ch

[1], and the resulting APVð"Þ integrated over the accep-
tance, Eq. (3), to yield the open circles in Fig. 1. The
importance of Coulomb distortions is emphasized by in-

dicating results from plane-wave calculations, which are
not all contained within the vertical axis range of the figure.
A least squares fit of the model results yields Rn )
6:156þ 1:675hAi( 3:420hAi2 fm (with hAi in ppm), as
illustrated. Comparing this to the measured APb

PV implies a
value for Rn ¼ 5:78þ0:16

(0:18 fm. More details of this analysis,
along with additional information such as the weak charge
form factor and weak radius, will be presented in a future
publication [40].
Assuming a point-proton radius of 5.45 fm [41], corre-

sponding to the measured charge radius of 5.50 fm [1],
implies that the neutron distribution is 1:8# larger than that
of the protons: Rn ( Rp ¼ 0:33þ0:16

(0:18 fm [39] (see also
[42]). A future run is planned which will reduce the quoted
uncertainty by a factor of 3 [43], to discriminate between
models and allow predictions relevant for the description
of neutron stars and parity violation in atomic systems.
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FIG. 1 (color). Result of this experiment (red square) vs neu-
tron point radius Rn in 208Pb. Distorted-wave calculations for
seven mean-field neutron densities are circles while the diamond
marks the expectation for Rn ¼ Rp[39]. References: NL3m05,
NL3, and NL3p06 from [11], FSU from [12], SIII from [13],
SLY4 from [14], SI from [15]. The blue squares show plane wave
impulse approximation results.
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of the form factor q0 in addition to Eq. (6), then this would
uniquely fix both R0 and σ and so determine RW .

In Table I we collect values of σ determined by least squares
fits of the Helm density, Eq. (8), to seven model mean-field
densities. The average of σ for the seven mean-field densities is
1.02 fm, and individual results deviate by no more than 0.09 fm
from this average. If one assumes σ = 1.02 ± 0.09 fm, Eqs.
(6), (7), and (9) imply

RW = 5.826 ± 0.181 (exp) ± 0.027 (mod) fm. (10)

Again the larger experimental (exp) error is from adding the
statistical and systematic errors in Eq. (5) in quadrature, while
the model (mod) error comes from the coherent sum of the
assumed ±0.09 fm uncertainty in σ and the ±0.001 model
error in FW . The model error in Eq. (10) provides an estimate
of the uncertainty in RW that arises because of uncertainties
in the surface thickness. Of course, it is not guaranteed that
all theoretical models will have a surface thickness within the
range 1.02 ± 0.09 fm. Nevertheless, this result suggests that
uncertainties in surface thickness are much less important for
RW than either the present PREX experimental error or even
that of an improved measurement where the experimental error
is reduced by about a factor of three [17]. This is consistent with
earlier results of Furnstahl [18], suggesting a nearly unique
relation between FW (q̄) and the point neutron radius Rn. We
emphasize that if uncertainties in the surface thickness are a
concern, one should compare theoretical predictions for the
form factor FW (q̄) to Eq. (6), instead of comparing theoretical
predictions for RW to Eq. (10).

Comparing Eq. (10) to the experimental charge radius
Rch = 5.503 fm [3,19] implies a “weak charge skin” of
thickness

RW − Rch = 0.323 ± 0.181 (exp) ± 0.027 (mod) fm. (11)

Thus the surface region of 208Pb is relatively enhanced in
weak charges compared to electromagnetic charges. This weak
charge skin is closely related to the expected neutron skin;
see below. Equation (11) itself represents an experimental
milestone. We now have direct evidence that the weak charge
density, of a heavy nucleus, is more extended than the
electromagnetic charge density.

In Fig. 1 we show a Helm model weak charge density
that is consistent with the PREX measurement. This figure
shows an uncertainty range from the experimental error and a
model uncertainty from the assumed ±0.09 fm uncertainty in
σ . Parameters for these densities are presented in Table II. We
also show in Fig. 1 the (electromagnetic) charge density [3]
and a typical mean-field weak charge density based on the
FSUGold interaction; see Eq. (17). This theoretical density is
within the error bars of the Helm model density.

Finally we wish to extract Rn for 208Pb from RW in Eq. (10).
We start by reviewing the relationship between the point proton
radius Rp and the measured charge radius Rch. Ong et al.
have [20]

R2
ch = R2

p +
〈
r2
p

〉
+ N

Z

〈
r2
n

〉
+ 3

4M2
+ 〈r2〉so. (12)

Here the charge radius of a single proton is 〈r2
p〉 = 0.769 fm2

and that of a neutron is 〈r2
n〉 = −0.116 fm2. We calculate

0 5 10
r (fm)

0

0.02

0.04

0.06

0.08

-ρ
w

 (
fm

-3
) ρch

FIG. 1. (Color online) Helm model weak charge density −ρW (r)
of 208Pb that is consistent with the PREX result (solid black line).
The brown (gray) error band shows the incoherent sum of experi-
mental and model errors. The red dashed curve is the experimental
(electromagnetic) charge density ρch and the blue dotted curve shows
a sample mean-field result based on the FSUGold interaction [11].

that the contribution of spin-orbit currents to Rch is small
because of cancelations between protons and neutrons 〈r2〉so =
−0.028 fm2. Finally the Darwin contribution 3/4M2 is also
small, with M being the nucleon mass. For 208Pb we have
R2

ch = R2
p + 0.5956 fm2, or, for Rch = 5.503 fm [3,19],

Rp = 5.449 fm. (13)

For the weak charge density of a spin-zero nucleus, we
neglect meson exchange and spin-orbit currents and write [4]

ρW (r) = 4
∫

d3r ′[GZ
n (|r − r′|)ρn(r ′) + GZ

p (|r − r′|)ρp(r ′)
]
.

(14)

Here the density of weak charge in a single proton GZ
p (r) or

neutron GZ
n (r) is the Fourier transform of the nucleon (electric)

Sachs form factors GZ
p (Q2) and GZ

n (Q2). These describe the
coupling of a Z0 boson to a proton or neutron [4],

4GZ
p = qpG

p
E + qnG

n
E − Gs

E, (15)

4GZ
n = qnG

p
E + qpGn

E − Gs
E. (16)

At tree level, the weak nucleon charges are q0
n =

−1 and q0
p = 1 − 4 sin2 #W . We include radiative cor-

rections by using the values qn = −0.9878 and qp =

TABLE II. Helm model weak charge density parameters R0 and
σ that reproduce the following values for the weak form factor FW (q̄);
see Eqs. (6) and (7).

Density R0 (fm) σ (fm) FW (q̄)

Central value 7.167 1.02 0.204
Exp error bar 7.417 1.02 0.176
Exp error bar 6.926 1.02 0.232
Model error bar 7.137 1.11 0.203
Model error bar 7.194 0.93 0.205

032501-3

Apv =
dσ/dΩ+ − dσ/dΩ

−

dσ/dΩ+ + dσ/dΩ
−

Apv =
GF Q2

2πα
√

2

FW (Q2)

Fch(Q2)

FW (Q2) =

∫
d3r

sin(Qr)

Qr
ρW (r)In collaboration with Pavia (see Vorabbi)
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Larger errors show up sometimes for light nuclei in the
isotopic chains, see Fig. 5. The case 40Ca is notoriously dif-
ficult for PC-F1 and light Ni isotopes are a problem for all
RMF models. The underbinding of 40Ca may be excused by
a missing Wigner energy !41". But 56Ni is already overbound
and a Wigner energy would worsen the situation. The rea-
sons for the deviation have to be searched somewhere else,
probably it is again an isovector mismatch.
The heavier systems perform much better. They are de-

scribed within an error of about 0.4%, with few exceptions.

We also see that NL-Z2 performs best in most cases. Some
slopes and kinks are also apparent in these plots for all
forces. They indicate yet unresolved isotopic and isotonic
trends. Another interesting observation can be made: the
structure of the curves is, with differences in detail, similar
for NL-Z2 and PC-F1 in almost all cases #this is most strik-
ing for the Sn isotopes$. It shows that the fitting strategy #i.e.,
the choice of nuclei and observables$ has direct conse-
quences for the trends of the errors.
A well-visible feature manifests itself in the form of kinks

of the errors that appear at magic shell closures. These kinks
indicate that the jump in separation energies at the shell clo-
sure is too large #typically by about 1–2 MeV$. This, in turn,
means that the magic shell gap is generally a bit too large.
Some SHF forces solve this problem by using effective mass
m*/m!1. This option does not exist in RMF as we have
seen above. But there are other mechanisms active around
shell closures. The strength and form of the pairing can have
an influence on the kink #i.e., shell gap$. Moreover, ground-
state correlations will also act to reduce the shell gap of the
mere mean-field description. This is an open point for future
studies.
Figure 6 shows the relative errors of binding along iso-

tonic chains, assuming again all spherical nuclei. Again,
there are larger fluctuations for the small nuclei, N!20 and
N!28, while the heavier nuclei, N!50 and N!82, stay
nicely within the error bounds. But the heaviest N!126
chain grows again out of bounds at its upper end. Isotonic
chains are a sensitive test of the balance between the Cou-
lomb field and the isovector channel of the effective La-
grangian. All effective forces discussed here produce larger
errors compared to the experimental isotonic chains, which
shows the need for further investigations of this property of
the RMF models.

FIG. 4. Energy per particle versus neutron density for four RMF
forces and the Skyrme force SLy6. The crosses mark data from Ref.
!40".

FIG. 5. Deviation #in %) of
the calculated energies from the
experimental values in spherical
calculations of isotopic chains.
Note that the scales are different
for each figure. The dotted lines
indicate the accuracy that can be
demanded from the models. The
experimental errors are smaller
than the size of the symbols used
in the figure.
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Fig. 5. Gamow–Teller strength distributions for 48Ca, 90Zr and 208Pb. PN-RQPA results are shown in comparison with
experimental data (arrows) for the GTR excitation energies in 48Ca [26], 90Zr [27,28], and 208Pb [15–17].

3.2. Gamow–Teller excitations

The calculated Gamow–Teller (J π = 1+) strength distributions for 48Ca, 90Zr and 208Pb are
shown in Fig. 5. The one-body Gamow–Teller operator reads:

T GT
β∓ =

A∑

i=1

!(i)τ∓(i). (13)

The corresponding integrated strengths satisfy the Ikeda sum rule:

SGT
β− − SGT

β+ =
∑

f

∣∣〈ψf |T GT
β− |ψi〉

∣∣2 −
∑

f

∣∣〈ψf |T GT
β+

∣∣ψi〉|2 = 3(N − Z). (14)

In addition to the high-energy GT resonance—a collective superposition of direct spin-flip (j =
l + 1

2 → j = l − 1
2 ) transitions—the response functions display a concentration of strength in

the low-energy tail. The transitions in the low-energy region correspond to core-polarization
(j = l ± 1

2 → j = l ± 1
2 ), and back spin-flip (j = l − 1

2 → j = l + 1
2 ) neutron-hole–proton-

particle excitations. The calculated GTR are compared with the experimental excitation energies:
10.5 MeV for 48Ca [26], 15.6 MeV for 90Zr [27,28], and 19.2 MeV for 208Pb [15–17]. Although
one of the parameters of the Landau–Migdal interaction has been adjusted to reproduce the GTR
excitation energy in 208Pb, we find a very good agreement with experiment also for 48Ca and
90Zr. The integrated strengths satisfy the Ikeda sum rule with high accuracy. This is an important
test of the internal consistency of our relativistic PN-RPA. We note that the Ikeda sum rule is
exhausted by the calculated GT strength only when the relativistic RPA/QRPA space includes
both the ph excitations formed from ground-state configurations of the fully or partially occupied
states of positive energy, and the empty negative-energy states from the Dirac sea [10]. The
contribution of these configurations to the Ikeda sum rule is of the order of 8–10%.

Finally, for the sequence of even–even Sn target nuclei, we compare in Fig. 6 the PN-QRPA
predictions for the GTR excitation energies with experimental data from Sn(3He, t)Sb charge-
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Particle-vibration coupling is still an open issue:
so far no theoretical approach is self-consistent
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Fig. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid dots, solid squares, and solid
diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are given in the text.

forces (4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF, 4NF are
weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known fact that 2NF� 3NF� 4NF
. . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT development of
the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking about the various pion-exchange
contributions.

4.1. Pion-exchange contributions in ChPT

Based upon the effective pion Lagrangians of Section 2.2, we will now derive the pion-exchange contributions to the NN
interaction order by order.

As noted before, there are infinitely many pion-exchange contributions to the NN interaction and, thus, we need to get
organized. First, we arrange the various pion-exchange contributions according to the number of pions being exchanged
between the two nucleons:

V⇡ = V1⇡ + V2⇡ + V3⇡ + · · · , (4.1)
where the meaning of the subscripts is obvious and the ellipsis represents 4⇡ and higher pion exchanges. Second, for each
of the above terms, we assume a low-momentum expansion:

V1⇡ = V (0)
1⇡ + V (2)

1⇡ + V (3)
1⇡ + V (4)

1⇡ + · · · (4.2)

V2⇡ = V (2)
2⇡ + V (3)

2⇡ + V (4)
2⇡ + · · · (4.3)

V3⇡ = V (4)
3⇡ + · · · , (4.4)

where the superscript denotes the order ⌫ and the ellipses stand for contributions of fifth and higher orders. Due to parity
and time reversal, there are no first order contributions. Moreover, since n pions create L = n � 1 loops, the leading order
for n-pion exchange occurs at ⌫ = 2n � 2 [cf. Eq. (3.5)].

In the following subsections, we will discuss V1⇡ , V2⇡ , and V3⇡ , one by one and order by order.
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NN interaction as well as to the density distribution used.
Thus the polarization data impose an additional constraint
on the determination of nucleon (especially neutron) density
distributions in nuclei. The experimental analyzing power data
presently available have substantial errors and therefore more
accurate and additional polarization data are needed to extract
reliable nucleon (neutron) density distributions in these loosely
bound neutron-rich nuclei.

Section II presents briefly the method of calculating the
optical potential. The results are presented and discussed in
Sec. III. The main conclusions are contained in Sec. IV.

II. METHOD OF CALCULATION

A. Optical potential

In order to calculate the microscopic nucleon optical
potential for finite nuclei in Brueckner theory, one essentially
requires two inputs: the realistic NN interaction to calculate the
reaction matrices and point-nucleon density distributions to be
used for folding the reaction matrices using the local density
approximation (LDA) [14,15]. We solve the Bethe-Goldstone
integral equation to obtain reaction matrices using three
modern local soft-core Urbana v-14 [11], Argonne v-18 [12],
and Reid93 [13] internucleon potentials. We use relativistic
kinematics for calculating the momentum of both the incident
and target nucleons in calculating the effective interaction.

Self-consistency is achieved in about five cycles for each
of the 17 nuclear matter densities spread evenly over the
range of Fermi momentum kF = 0.6–2.0 fm−1, in the incident
momentum region 0.1–8.0 fm−1. The self-consistent BHF
calculations have been performed for nuclear matter at a
large number of densities. We fold the appropriate numerically
computed complex reaction matrices (as defined in Ref. [10])
over the proton- and neutron- density distributions (Sec. II B)
using the LDA to obtain both central and spin-orbit parts
of the potential. In view of the importance of spin effects,
we avoid the normally used [16] short-range approximation
and calculate the folding integral for the direct part of the
spin-orbit potential without any approximation [8]. Such a
reaction matrix approach has been successfully applied in the
past (see, for example, Refs. [4,7,10,17]).

The numerically calculated energy- and density-dependent
complex reaction matrices are folded [18,19] over the nucleon
density distributions in the nucleus to obtain the microscopic
nucleon-nucleus real (imaginary) parts of the central V (E, r)
(W (E, r)) and the spin-orbit VSO (E, r) (WSO(E, r)) compo-
nents of the optical potential.

In order to obtain agreement with the experimental data,
following normal practice, we multiply each component of
the calculated potential by scaling parameters λ. The potential
(U (E, r)) used to calculate observables in a spherical optical
model code is

U (E, r) = λRV (E, r) + iλIW (E, r) + λR
SOVSO (E, r)

+ iλI
SOWSO(E, r). (1)

Thus, in principle, there are four adjustable (scaling) pa-
rameters (λR , λI , λR

SO , and λI
SO) to obtain a best fit to the

experimental data by minimizing χ2/DF (where DF stands
for degrees of freedom).

In practical calculations, only a few (or no) scaling param-
eters are used. In particular, for 4He, the agreement with the
experiment for the differential cross section and polarization
remains almost unchanged, with or without scaling parameters
(i.e. all λ’s are unity). For the case of 6,8He and 7,9,11Li, the
agreement with the experiment is improved with the optimal
value of λI = 0.7 and keeping all the remaining λ’s fixed to
unity. However, for 6Li, it is found that λI = 1.2 and λR = 0.7
are required to obtain the improved fit to the experiment.

In the present work, three-body terms of the nucleon-
nucleon forces have been neglected. In fact, it has recently
been shown [20] that the effect of the three-body force
on the microscopically calculated potential is to reduce the
strengths of the central part of the optical potential in the
nuclear interior only. The effect on the spin-orbit potential is
nearly insignificant. This results in a slight improvement in the
agreement with the experiment for the polarization for p-12C,
p-40Ca, p-90Zr, and p-208Pb scattering, while the agreement
for the differential cross sections is almost unaffected. Hence
we do not expect substantial change in the proton scattering
observables at the low energies considered in the present work.
Our preliminary results concerning the effect of three-body
forces confirm this conjecture. A detailed investigation dealing
with the effects of the three-body force on the calculated optical
potential is in progress.

B. Semiphenomenological densities

It is well known that the shell model or other mean-
field calculations do not make allowance directly for very
low binding energies of the valance nucleons (neutrons).
Therefore, these calculations do not necessarily yield the
correct description of loosely bound nuclei. It is therefore
a common practice to use in the reaction calculations the
semi-empirical or model nucleon density distributions that
take the effects like “halo” and “skin” into account. The density
that has also been employed in the present work has been used
successfully in the past to describe the reaction cross sections
of loosely bound nuclei (see Refs. [5,21]).

A semiphenomenological model for nucleon density distri-
butions within a nucleus with Z protons and N neutrons has
been proposed in the literature [22]. The model satisfies two
important physical requirements, namely, the correct behavior
near the center (r → 0) and the right asymptotic behavior
(r → ∞). The former implies that the power series expansion
of the density near the origin will have only even powers of
r , whereas the latter means that, asymptotically, the density
should behave as

ρi(r) → r
−2αi

i e−r/ai , (2)

with

ai = h̄√
8mεi

(3)

and

αi = qαf

√
mc2

2εi

+ 1. (4)
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Fig. 3. Binding energies of the Λ in different (s,p, . . .) orbitals of six hypernuclei (cf. Tables 2 and 3), calculated with
the FKVW density functional using the three parameter sets for the ΛN couplings (cf. Table 1). Results are plotted
as functions of the mass number and compared with experimental energies [1]. Also shown is a Woods–Saxon fit [15]
(dashed curves) to guide the eye.

Table 4
P -shell spin–orbit splittings ∆ ≡ #εΛ(p) for six hypernuclei ( 13

ΛC, 16
ΛO, 40

ΛCa, 89
ΛY, 139

ΛLa, 208
ΛPb). Experimental

values [44], or empirical estimates [1,47,48], are shown in comparison with our theoretical predictions (FKVW), using a
broad range of ζ parameters (see Eq. (12)), and other relativistic calculations with (RMFI [11]) or without (RMFII [14])
tensor coupling. All energies are given in keV. The asterisk means that a local fit has been necessary.

Nucleus Exp. ∆

[keV]
FKVW
(0.4 ! ζ ! 0.66)

RMFI [11] RMFII [14]

13
ΛC 152 ± 54 ± 36 [44] −160 ! ∆ ! 510 310 ∼ 1100∗

16
ΛO 300 ! ∆ ! 600 [47] −210 ! ∆ ! 490 270 ∼ 1400

−800 ! ∆ ! 200 [1]

40
ΛCa – −140 ! ∆ ! 420 210 ∼ 1400

89
ΛY 90 [48] −40 ! ∆ ! 180 110 ∼ 700

139
ΛLa – −20 ! ∆ ! 80 50 ∼ 300

208
ΛPb – −20 ! ∆ ! 70 50 ∼ 300

spin–orbit correction and the Pauli-blocking effect at the quark level. Without these corrections
the resulting energy levels show a strong overbinding (cf. Table 4 in Ref. [12]). A very recent
improvement [13] solved the overbinding problem, introducing the scalar polarizability of the
nucleon in a self-consistent way instead of the Pauli blocking correction. In Tables 2 and 3 we
have included the latest update of these calculations.

Fig. 3 provides a further test of the sensitivity of calculated single-Λ energies with respect
to a variation of the ratio ζ = G

Λ(0)
S,V /G

(0)
S,V between contact terms representing the in-medium

condensate background fields for the hyperon and the nucleons. For the six hypernuclei listed in
Tables 2 and 3, the Λ binding energies calculated with the FKVW parameters plus the three best-
fit parameter sets from Table 1 that determine the ΛN couplings, are plotted as functions of the
mass number and compared with empirical energies. Calculations with all three parameter sets

s

p1/2

p3/2

EΛ

➪ wrong sign contribution

is able to reproduce the empirical spin-orbit splittings
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C5 = 1
16π

[
2C

( 3P0
)
+ 3C

( 3P1
)
− 5C

( 3P2
)]

. (18)

It has been shown in Ref. [61] that the strength of the spin–orbit term derived from the free NN

interaction agrees quantitatively with the one required in nuclear shell-model calculations. It has
furthermore been demonstrated in Ref. [62] that the spin–orbit contact term (18), in a relativistic
Dirac–Brückner (DBHF) calculation, generates the strong scalar and vector mean fields in the
combination ΣS − ΣV . Thus the inclusion of contact terms representing condensate background
fields does not at all spoil the consistency of in-medium chiral calculations based on the LO
πN Lagrangian. These background fields are just equivalent reflections of short distance NN

dynamics.
The scalar-vector approach can be transcribed analogously for hypernuclei. Empirical spin–

orbit splittings are reproduced by simply assuming much weaker couplings between the Λ and
the exchanged bosons. In particular, in one of the early studies of this type [7], a reduction of 1/3
was suggested for the Λ potentials with respect to the corresponding nucleon self-energies

ΣΛ
S = 1

3
ΣS and ΣΛ

V = 1
3
ΣV . (19)

In contrast, the naive quark model assumes that the non-strange quarks couple to the σ and
ω mean-fields (the s-quark spectator hypothesis) and suggests a reduction factor of 2/3. With
this value, however, it is not possible to reproduce the empirical spin–orbit splittings in Λ-
hypernuclei. A possible solution proposed in Ref. [8] involved an additional strong tensor cou-
pling term in the ωΛ interaction Lagrangian

LωΛ = gΛ
ω ψ̄Λγ µψΛωµ + f Λ

ω

2MΛ
ψ̄ΛσµνψΛ∂νωµ. (20)

This additional term modifies the effective Λ spin–orbit potential as follows:

Vso,Λ " 1

2M∗2
Λ

[
1
r

∂

∂r

((
2
f Λ

ω

gΛ
ω

+ 1
)

ΣΛ
V − ΣΛ

S

)]
l · s. (21)

For f Λ
ω /gΛ

ω = −1 the potential Vls(Λ) = (2f Λ
ω /gΛ

ω + 1)ΣΛ
V − ΣΛ

S is now very small compared
to that for the nucleon (see Ref. [10] for more details, and Figs. 2 and 3 of Ref. [11]).

While phenomenological studies, based on the assumption of a strong ωΛ tensor cou-
pling [11], worked in reproducing the empirical single-Λ levels for a number of hypernuclei,
they did not offer a consistent microscopic explanation for the spin–orbit suppression in Λ-
hypernuclei. Realistic YN potentials (NSC97) that reproduce phase shift data suggest signifi-
cantly weaker ωΛ tensor couplings [50]. The older Nijmegen D and F potentials, for example,
give −0.12 and −0.54 for the ratio f Λ

ω /gΛ
ω [9], respectively, considerably smaller in magnitude

than the value ≈ −1 required in Eq. (21) to reproduce the empirical spin–orbit splittings.
Alternative microscopic models of hypernuclear spectroscopy have also been developed more

recently. A synthesis of quark-model and relativistic one-boson exchange picture has been estab-
lished by the Quark–Meson Coupling (QMC) model [12,13]. In this model Vso,Λ arises entirely
from Thomas precession. To obtain the correct spin–orbit splittings, a piece − 2

M∗2
Λ r

gΛ
ω

d
dr ω(r)l · s

must be included in addition to the self-consistent calculation of single-Λ energy levels. Lenske
et al. [14] have developed a density-dependent relativistic framework in which the Λ-meson cou-
plings are partly determined from a ΛN T-matrix, and partly fitted to a selected set of data. In
that approach the spin–orbit energy splittings *εΛ display a uniform dependence on the nuclear
mass number A (cf. Fig. 7 of Ref. [14]). This is in contrast to the QMC results, where *εΛ " 0

Because of tensor forces, a 
Λ hyperon in a p state 
could induce different 
deformations


