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Chapter 1

Introduction

General Relativity is the physical theory of gravity formulated by Einstein
in 1916.1t is based on the Equivalence Principle of Gravitation and Inertia,
which establishes a foundamental connection between the gravitational field
and the geometry of the spacetime, and on The Principle of General Covari-
ance. General Relativity has changed quite dramatically our understanding
of space and time, and the consequences of this theory, that we shall in-
vestigate in this course disclose interesting and fascinating new phenomena.
The gravitational collapse and the formation of black holes, the existence
of gravitational waves, the Big Bang of cosmological theories are, at least
conceptually, in the common background of modern physicists.

The language of General Relativity is that of tensor analysis, or, in a more

modern formulation, the language of differential geometry. There is no way



of understanding the theory of gravity without knowing what is a manifold,
or a tensor. Therefore we shall dedicate a few lectures to the development
of the mathematical tools and techniques that are essential to describe the
theory and the physical consequences. The first lecture will be dedicated to
answer the following questions:

1) why does the newtonian theory become unappropriate to describe the
gravitational field.

2) why do we need a tensor to describe the gravitational field, and we
need to introduce the concept of manifold, metric, affine connections and
other geometrical objects.

3) What is the role played by the equivalence principle in all that.

In the next lectures we shall rigorously define manifolds, vectors, ten-
sors, and then, after introducing the principle of general covariance, we will
formulate the Einstein equations.

But first of all, since as we have already anticipated there is a connection
between the gravitational field and the geometry of the spacetime, let us
introduce non-euclidean geometries, which are in some sense the precursors

of general relativity.



1.1 Non euclidean geometries

In the prerelativistic years the arena of physical theories was the flat space of
euclidean geometry which is based on the five Euclide’s postulates. Among
them the fifth has been the object of a millennary dispute: for over 2000
years geometers tried to show, without succeeeding, that the fifth postulate
is a consequence of the other four. The postulate states

Consider two straight lines and a third straight line crossing the two. If the
sum of the two internal angles (see figures) is smaller than 180° , the two

lines will meet at some point on the side of the internal angles.

oa+B = 180 °

The solution to the problem is due to Gauss (1824, Germany), Bolyai
(1832, Austria), and Lobachevski (1826, Russia), who independently discov-
ered a geometry that satisfies all Euclide’s postulates except the fifth. This
geometry is what we may call, in modern terms, a two dimensional space
of constant negative curvature. The analytic representation of this geometry

was discovered by Felix Klein in 1870. He found that a point in this geometry



is represented as a pair of real numbers (x,z2) with
i+ s <1, (1.1)

and the distance between two points z and X, d(z,X) , is defined as

1 —.Tle —$2X2
V-2t —ad/1-X2-Xx3]

where a is a lenghtscale. This space is infinite, because d(z, X) — oo when

d(z,X) = acosh™* (1.2)

X2+ X2 - 1 . The logical independence of Euclide’s fifth postulate was
thus established.

In 1827 Gauss published the Disquisitiones generales circa superficies cur-
vas, where for the first time he distinguished the inner, or intrinsic proper-
ties of a surface from the outer, or extrinsic properties. The first are those
properties that can be measured by somebody living on the surface. The
second are those properties deriving from embedding the surface in a higher-
dimensional space. Gauss realized that the fundamental inner property is
the distance between two points, defined as the shortest path between them
on the surface.

For example a cone or a cylinder have the same inner properties of a
plane. The reason is that they can be obtained by a flat piece of paper
suitably rolled, without distorting metric relations, i.e. without stretching or
tearing. This means that the distance between any two points on the surface

is the same as it was in the original piece of paper, and parallel lines remain



parallel. Thus the intrinsic geometry of a cylinder or a cone is flat. This
is not true in the case of a sphere, since a sphere cannot be mapped onto a
plane without distortions: the inner properties of a sphere are different from
those of a plane. It should be stressed that the intrinsic geometry of a surface
considers only the realtionships between points on the surface.

However, since a cilinder or a cone are round in one direction, we think
they are curved surfaces. This is due to the fact that we consider them as
2-dimensional surfaces in a 3-dimensional space, and we intuitively compare
the curvature of the lines that stay on them with straight lines in the flat
3-dimensional space. Thus the extrinsic curvature relies on the notion of
higher dimensional space. In the following, we shall be concerned only with
the intrinsic properties of surfaces.

The distance between two points can be defined in a variety of ways, and
consequently we can construct different metric spaces. Following Gauss, we
shall select those metric spaces for which, given any sufficiently small region
of space, it is possible to choose a system of coordinates (&;,&;) such that the
distance between a point P = (&,&), and the point P'(&; +d&;, &+ d&y)

satisfies Pythagoras’ law

ds® = d&} + dE;. (1.3)

From now on, when we say the distance between two points, we mean the

distance between two points that are infinitely close.



This property, i.e. the possibility of setting up a locally euclidean coordi-
nate system, is a local property: it deals only with the inner metric relations
for infinitesimal neighborhoods. Thus, unless the space is globally euclidean,
the coordinates (£1,&) have only a local meaning. Let us now consider
some other coordinate system (z1,x2) that does cover the space. How do we

express the distance between two points? If we explicitely evaluate d&; and

d&; in terms of the new coordinates we find

0& 01

51 - gl (1‘1’ 1'2) - d€1 = a—xld.’l?l + 8—1‘2dl’2 (14)
o )
&2 = &2(21,22) — d& = 6—:§jdx1 + a—idmz

(1.5)
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In the last line of eq. (1.6) we have defined the following quantities:
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namely, we have defined the metric tensor g, ! i.e. the metric tensor is
an object that allows us to compute the distance in any coordinate system.
As it is clear from the preceeding equations, g, is a symmetric tensor,
(9ap = 9pa)- In this way the notion of metric associated to a space, emerges
i a natural way.
EINSTEIN CONVENCTION

In writing the last line of eq. (1.6) we have adopted the convenction
that if there is a product of two quantities having the same index appearing
once in the lower and once in the upper case (“dummy indices”), then a

summation is implied. For example, if the index « takes the values 1 and 2

2
2o X% =) 2, X' =5 X' + 2, X7 (1.7)

i=1
We shall adopt this convenction in the following.

Skokosk skoskook sk skokosk sk skosk sk sk skeok sk skosk skoskskesk sk skokeskoskoskokoskoskok skokok skokskesk sk skokoskokokoskokokoskokoskokoskokoskskokosk

EXAMPLE: HOW TO COMPUTE g¢,,
Given the locally euclidean coordinate system (&1,&) let us introduce

polar coordinates (r,60) = (x1,x2) . Then

& =rcost — d&; = cos Odr — rsin 6df (1.8)
& =rsinf — d&y = sin Odr + r cos 6df

(1.9)

ds? = (d€')? + (d€?)? = dr? + r2db?, (1.10)
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and therefore
=1 gn=1", gn=0. (1.11)

koo sk okoskook sk skookosk skokook sk skoskosk sk kok sk skoskok sk skoskok skok skeskoskoskokoskoskok skokok skoskoskesk sk kok skokokoskoskokokoskokokskokok

1.2 How does the metric tensor transform if
we change the coordinate system

We shall now see how the metric tensor transforms under an arbitrary co-
ordinate transformation. Let us suppose that we know g.s expressed in
terms of the coordinate (z;,z3) , and we want to change the reference to
a new system (z},z5) . We have seen in section 1 that, for example, the

component ¢q; is defined as

g = (—1)2 + (520, (1.12)

where (&;,&) are the coordinates of the locally euclidean reference frame,
and (z1,x9) two arbitrary new coordinates. If we now put z; = z (2, 25)

and z, = x9(x],x}) , the metric tensor in the new coordinate frame (', z)

will be

! _ 851 2 862 2
G = (G + (5o (113)
_ 861 8331 4 861 8.’172)2 [( 862 8331 4 862 8372 )2
O0x1 0x Oz O] O0x1 0z Oxq O}

G+ G NG + (5 + (G2
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851 861 n 852 862 8371 (93:2

2
+ (8551 0xy  Oxy 0z’ Ox) 8$I1)
0T1 o 0Ty o Ox1 Oy
= 2o (L 272y,
gll(ax,l) + 922(81"2) + g12(8x’1 833'1)
In general we can write
Oz, Oz,

g(,xﬂ = Guv 9z OB (114)

This is the manner in which tensors transfor under an arbitrary coordinate
transformation (This point will be illustrated in more detail in following
lectures).
skosk sk ok sk ok sk st sk sk sk sk st sk sk sk sk ok sk ok sk sk sk sk sk sk skt sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk
Thus, given a space in which the distance can be expressed in terms
of Pythagoras’ law, if we make an arbitrary coordinate transformation the
knowledge of g, allows us to express the distance in the new reference

system. The converse is also true: given a space in which
ds? = gagdr®da®, (1.15)

if this space belongs to the class defined by Gauss, at any given point it is
always possible to choose a locally euclidean coordinate system (&,) such
that

ds® = d&7 + d&;. (1.16)

This concept can be generalized to a space of arbitrary dimensions.

The metric determines the intrinsic properties of a metric space.

10



We now want to define a function of ¢,3 and of its first and second derivatives
that depends on the inner properties of the surface, but does not depend on
the particular coordinate system we may choose. Gauss showed that in the
case of two-dimensional surfaces this function can be determined, and it is

called, after him, the gaussian curvature, defined as

1 82912 0? g11 0? 922
=—12 — 1.1
k21, 22) [ 01101 022 axl (1.17)
922 | (99u 28912 _ 8922 _ 3911
442 8331 8.’L'2 8.’L'1 3:62
+g£ % % —9 8911 3922
4g2 83}'1 83:2 5362 6371
4 (90912 _ 991 (,0012 _ Ogen
81‘1 81‘2 8372 8371
911 0922 25912 _ 5911 _ 5922
8$2 8$1 8$2 8951
where g is the determinant of the 2-metric gnp
9= 91192 — G- (1.18)

For example, given a spherical surface, no matter how do we choose the

coordinates, we shall always find that
k=— (1.19)

(try for example a sphere in polar coordinates ds?> = a?df? + a?sin® Odp?,

11



where a is the radius), or, for the Gauss-Bolyai-Lobachewski geometry where

o = a’(1 — x3) Gy = a’(1 — z?) o = a’riTy
T —al-ad)r P (1-a-ad) TP (1-af-ad)?
(1.20)
we shall always find
1
k=——, (1.21)

or, if the space is flat, £k = 0 . If we choose a different coordinate system,

9ap(z1,22) will change but £ will remain the same.

1.3 Summary

We have seen that it is possible to select a class of 2-dimensional spaces
where it is possible to set up, in the neighborhoods of any point, a coordinate
system (&1,&;) such that the distance between two close points is given by
Pythagoras’ law. Then we have defined the metric tensor g¢,s which allows
to compute the distance in an arbitrary coordinate system, and we have
derived the law according to which g,g transforms when we change reference.
Finally, we have shown that there exists a scalar quantity expressing the
inner properties of a surface that is a function of g¢,s and its first and
second derivatives, i.e. the gaussian curvature, that it is invariant under a
coordinate transformation.

These results can be extended to an arbitrary D-dimensional space. In

12



particular, as we shall understand better in the following, we are interested in
the case D=4, and we shall select those spaces, or better, those spacetimes,

for which the distance is that prescribed by Special Relativity.

ds® = —(d¢”)” + (d&')” + (d€”)” + (d&”)”. (1.22)

For the time being, let us only clarify the following point. In a D-dimensional
space we need more than one function to describe the inner properties of a
surface. Indeed, since g;; is symmetic, there are only D(D + 1)/2 inde-
pendent components. In addition, we can choose D arbitrary coordinates,
and impose D functional relations among them. Therefore the number of

independent functions that describe the inner properties of the space will be

D(D+1) _,_D(D-1)

C=— 2

(1.23)

If D=2, as we have seen C=1. If D=4, C=6, therefore there will be 6 in-
variants to be constructed in our 4-dimensional spacetime. The problem of
finding these invariant quantities was solved by Riemann (1826-1866) and
subsequently developed by Christoffel, LeviCivita, Ricci, Beltrami. We shall
see in the following that Riemaniann geometries play a crucial role in the

description of the gravitational field.
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1.4 The newtonian theory

In this section we shall understand why the newtonian theory of gravity be-
came unappropriate to correctly deescribe the gravitational field. The new-
tonian theory of gravity was published in 1685 in the “Philosophiae Naturalis
Principia Mathematica”. They contain an incredible variety of fundamental
results, and among them, the corner stones of classical physics:

1) Newton’s law

F =m,a, (1.24)

FG = mGg', (125)
where
L GY, Mgi(F—1)
= ¢ 1.26
AR 20

depends on the position of the massive particle with respect to the other
masses that generate the field, and it decreases as the inverse square of the
distance g ~ r% The two laws combined together clearly show that a body

falls with an acceleration given by

i = (@) 7 (1.27)

my

If Tn—f is a constant independent on the body, the acceleration of falling

bodies is the same for every body and independent on their mass. Galileo

14



had already experimentally discovered that this is true indeed. Newton itself
tested the equivalence principle studying the motion of pendulum of different
composition and equal lenght, and he found no difference in their periods.
The validity of the equivalence principle was the core of Newton’s arguments
for the universality of his law of gravitation. After describing his experiments
with different pendulum in the Principia he says:

But, without all doubt, the nature of gravity towards the planets is the
same as towards the earth.

I do not know if you have ever appreciated the big conceptual step that
is implied in this sentence.

Since then a variety of experiments confirmed this crucial result. Among
them Eotvos experiment in 1889 (accuracy of 1 part in 10°%), and Dicke ex-
periment in 1964 (1 part in 10'!), and Braginsky in 1972 (1 part in 10'?). All
the experiments up to our days confirm The Principle of Equivalence of the
gravitational and the inertial mass. Now before describing why at a certain
point the newtonian theory fails to be a satisfactory description of gravity,
let me describe briefly the reasons of his success, that remained untouched
for more than 200 years.

The monumental construction of the Principia is based on the newtonian
law of gravitation. The theory of lunar motion and tides, the description of
the planetary motion around the sun are the most elegant and accomplished

description of these phenomena. It is interesting to note that in the Principia,
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Newton does not write equations: he simply describes in words what we are
now able to compute using his equations and the mathematical instrument
of infinitesimal calculus he invented and developed.

After Newton, the law of gravitation was used to investigate in more
detail the solar system, and its application in the study of the perturbations
of the orbit of Uranus led, in 1846, Adams (England) and Le Verrier (France)
to the prediction of the existence of Neptune. A few years later the discovery
of Neptun was a triumph of Newton’s theory.

However, already in 1845 Le Verrier had observed anomalies in the motion
of Mercury. He found that the precession in the perihelium of 35”/100years
exceeded the value due to the perturbation introduced by the other planets
according to Newton’s theory. In 1882 Newcomb confirmed this discrepancy,
giving a higher value, of 43”/100year. In order to explain this effect, sci-
entists developed models that predicted the existence of some interplanetary
matter, and in 1896 Seelinger showed that an ellipsoidal distribution of mat-
ter surrounding the sun could explain the observed precession.

We know today that these models were wrong, and that the reason of the
exceedingly high precession of the perihelium of Mercury has a relativistic
origin.

In any event, we can say that the newtonian theory worked remarkably
fine to explain planetary motion, but already in 1845 the suspect that some-

thing did not work perfectly had some experimental evidence.

16



Let us turn now to a more phylosophical aspect of the theory. The equa-

tions of newtonian mechanics are invariant under Galileo’s transformation

# = Ri+vt+d (1.28)

t = t+71

where R is the orthogonal matrix expressing three-dimensional rotations
(its element depend on the three Euler angles), ¥ is the relative velocity of
the two references, and d the distance between the two origins. The ten
parameters (3 Euler angles, 3 components for ¥ and a_l: + the time shift
7 ) identify the Galileo group.

The invariance of the equations with respect to Galileo’s transformations
implies the existence of inertial frames in which the laws of mechanics
hold. What then determines which reference frames are inertial frames? For
Newton the answer is that there exists an absolute space, and the result
of the famous experiment of the rotating vessel is a proof of its existence.
Thus inertial frames are those in uniform relative motion with respect to
the absolute space. However this idea was rejected by Leibniz who claimed
that there is no philosophical need for such a notion, and the debate on this
issue continued during the next centuries. One of the major opponents was
Mach, who argued that the motion of the water in the rotating vessel is due

to the particular distribution of masses in the universe rather than to the

17



relative motion of the vessel with respect to absolute space. An interesting
discussion on the subject can be found in Weinberg pg. 15-16-17, and we
shall not discuss it further here. For our present purposes it is enough to
realise that another element of ‘dissatisfaction’ of the newtonian theory is
due to the need of introducing an absolute space.

The problems that I have described (the discrepancy in the advance of
perihelium and the postulate absolute space) are however only small clouds:
the newtonian theory remains The theory of gravity until the end of the
ninentheenth century. The big storm approaches with the formulation of
the theory of electrodynamics presented by Maxwell in 1864. Maxwell’s
equations state that the velocity of light must be a universal constant. It
was soon understood that these equations are not invariant under Galileo’s
transformations, because according to them if the velocity of light is ¢ in
a given coordinate system, it cannot be ¢ in a second reference moving
with respect to the first according to eqs. (1.28). To justify this discrepancy,
Maxwell formulated the hypothesis that light does not really propagate in
vacuum: electromagnetic waves are carried by a medium, the luminiferous
ether, and the equations are invariant only with respect to a set of galilean
inertial frames that are at rest with respect to the ether. However in 1887
Michelson and Morley showed that the velocity of light is the same, within
bkm/s (today the accuracy is less than 1km/s), along the direction of the

earth’s orbital motion, and transverse to it. What could it be the explanation

18



of this fact? Either the earth could be in quiet with respect to the ether,
but this hypothesis was totally unsatisfactory: it would have been a coming
back to an antropocentric picture of the world. Or simply the ether did not
exist and one has to accept the fact that the speed of light is the same in
any direction. This was of course the only reasonable explanation. But now
the problem was to find the coordinate transformation with respect to which
Maxwell’s equations are invariant. The problem was solved by Einstein in
1905, who showed that Galileo’s transformations had to be replaced by the
Lorentz transformations

x* = L%27, (1.29)
where v = (1—%)"2 , and

v—1
v2

L9 =+, Loj:Lg:%vj, Li; =65+ viv;. 4,j=1,3 (1.30)

and v' are the components of the velocity of the boost.

As it was immediately realised, however, while Maxwell’s equations were
invariant with respect to Lorentz transformations, Newton’s equations were
not, and it started to become clear that one should face the problem of how
to modify the equations of mechanics and gravity in such a way that they
become invariant with respect to Lorentz transformations. It is at this point

that Einstein made his fundamental observation.
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1.5 The role of the Equivalence Principle in

the formulation of the new theory of grav-
ity
Let us consider the motion of a set of non relativistic particles subjected

to arbitrary forces F and moving in a gravitational field that is constant .

According to newtonian mechanics, the equation of motion will be

d*z,

o g

= (me)nd + Xk: F(Z, — ). (1.31)

Let us now jump on an elevator that is freely falling in the same gravitational

field, i.e. let us make the following coordinate transformation
gt?, t'=t. (1.32)

In this new reference eq. (1.31) becomes

(m1)n [d;; +g] + Y F(&, - ). (1.33)

k

Since by the Equivalence Principle m; = mg, and since this is true for any

particle, this equation becomes

d2 —'I
(m)a=—s" ZF ' (1.34)

Compare eq. (1.31) and eq. (1.34). We understand that an observer O’ who

is in the elevator, i.e. in free fall in the gravitational field, sees the same laws

20



of physics as the initial observer O, but he does not see the gravitational field.
This result follows from the equivalence, experimentally tested, of
the inertial and the gravitational mass. If m; would be different from
me , (or better, if their ratio would not be constant and the same for all
bodies), this would not be true, because we could not simplify the term in
g in eq. (1.33)! It is also apparent that we if § would not be constant
eq. (1.34) would contain additional terms containing the derivatives of §
. However we can always consider an interval of time so short that ¢ can
be considered as constant and eq. (1.34) holds. Consider a particle at rest
in this frame and not subjected to any other force. Under this assumption,
according to eq. (1.34) it will remain at rest forever. Therefore we can
define this reference as a locally inertial frame. If the gravitational field is
constant and unifom everywhere the coordinate transformation (1.32) defines
a locally inertial frame that will cover the whole spacetime. If this is not the
case we can set up a locally inertial frame only in the neighbourhood of any
given point.

The points discussed above are crucial to the theory of gravity, and de-
serve a further explanation. Gravity is distinguished from all other forces
because all bodies, given the same initial velocity, follow the same trajectory
in a gravitational field, regardless of their internal constitution. This is not
the case, for example, for electromagnetic forces, which act on charged but

not on neutral bodies, and in any event the trajectories of charged particles
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depend on the ratio between charge and mass which is not the same for all
particles. Similarly, other forces, like the strong and weak interactions, affect
different particles differently.

It is this distinctive feature of gravity that makes it possible, as we shall
see soon, to describe the effects of gravity in terms of curved geometry. Equa-
tion (1.34) has been derived in the framework of newtonian theory, but we
know how to generalize it in Special Relativity: time will be replaced by
proper time, 3-vectors by fourvectors, 3-forces by four-forces, but what we
said about the possibility of eliminating the gravitational field by a suit-
able choice of the reference still holds. So let us now state the Principle of
Equivalence. There are two formulations:

The strong Principle of Equivalence

In an arbitrary gravitational field, at any given spacetime point, we can
choose a locally inertial reference frame such that, in a sufficiently small
region surrounding that point, all physical laws take the same form they would
take in absence of gravity, namely the form prescribed by Special Relativity.

There is also a weaker version of this principle

The weak Principle of Equivalence

Same as before, but it refers to the laws of motion of freely falling bodies,
instead of all physical laws.

Now it is clear that the preceeding formulation of the equivalence principle

resembles very much to the axiom that Gauss chose as a basis for non-
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euclidean geometries: at any given point in space , there exist a locally
euclidean reference frame such that, in a sufficiently small region surrounding
that point, the distance between two points is given by the law of Pythagoras.

The Equivalence Principle states that in a locally inertial frame all laws
of physics must coincide, locally, with those of Special Relativity, and con-
sequently in this frame the distance between two points must coincide with

the Minkowsky expression
ds® = —c2dt* +da’® + dy® + dz* = —(d€°)* + (d€M)? + (d€?)? + (d€?)?. (1.35)

We therefore expect that the equations of gravity will look very similar to
those of Riemaniann geometry. In particular, as Gauss defined the inner
properties of curved surfaces in terms of the derivatives ngz (which in turn
defined the metric, see eq. (1.6) and (1.7)), where &% are the “locally eu-
clidean coordinates” and z* are arbitrary coordinates, in a similar way we
expect that the effects of a gravitational field will be described in terms of
the derivatives %% where now &% are the “locally inertial” coordinates,
and x* are arbitrary coordinates. All this will follow from the equivalence
principle. Up to now we have only established that, by virtue of the Equiv-

alence Principle there exist a connection between the gravitational field and

the metric tensor. But which connection?
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1.6 The geodesic equations as a consequence
of the Principle of Equivalence

Let us start exploring what are the consequences of the Principle of Equiv-
alence. We want to find the equation of motion for a particle that moves
under the exclusive action of a gravitational field (i.e. it is in free fall), when
this motion is observed in an arbitrary reference frame.

We shall now work in a four-dimensional spacetime with coordinates
(2% = ct, 2!, 2%, 23).

First we start analysing the motion in a locally inertial frame, for example
the one in free fall with the particle. For the principle of Equivalence, in this

frame the distance will be
ds? = —(dz°)? + (dz')* + (d2?)? + (da®)? = n,,dErde”, (1.36)

where 7, = diag(—1,1,1,1) is the metric tensor of the flat Minkowskian
spacetime. If 7 is the time coordinate in this frame, i.e. 7 is the proper

time of the particle, the equation of motion, for what we said before, are

d2a
620

= (1.37)

We now change to a frame where the coordinates are labelled z® = z*(£%)
. Thus we assign a law of transformation that allows us to express the new

coordinates as functions of the old ones. In a following lecture we shall clarify
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and make rigorous all concepts that we are now using, such us metric tensor,
coordinate transformations etc.

In the new fram the distance is

a B
ds® = Tlap %daz“%daz” = gudzda”, (1.38)

where we have defined the metric tensor g, as

oee 9es

=5 & 1.39
Iu Oxt ax,,n B ( )

This formula is the 4-dimensional generalization of the 2-dimensional gaus-
sian formula (see eq. (1.7)). In the new frame the equation of motion of the

particle (1.37) becomes:

d?z® [8350‘ o*er ] ldm“ dx”] _ 0 (1.40)

dr? 0 Oz+Oxv | | dr dr

(see the detailed calculations in appendix A). If we now define the following

quantities
oxr® 825)‘
& = 1.41
w9 Qg oxy’ (1.41)
eq. (1.40) become
d*z® dx* dz¥
— 4TI | — = 0. 1.42
dr? R [ dr dr ] (1.42)

The quantities (1.41) are called the affine connections, or the Christoffel
symbols, whose properties we shall investigate in a following lecture. Equa-

tion (1.42) is the geodesic equation, the equation of motion of a freely
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falling particle when observed in an arbitrary coordinate frame. Let us anal-
yse this equation. We have seen that if we are in a locally inertial frame,
where, by virtue of Equivalence Principle, we are able to eliminate the grav-
itational force, the equations of motion would be that of a free particle (eq.
1.37). If we change to another frame we shall see the gravitational field
(and in addition all apparent forces like centrifugal, Coriolis, and dragging
forces). In this new frame the geodesic equation becomes eq. (1.42) and the

additional term

o | dx* dz”
[ o

expresses the gravitational force per unit mass that acts on the particle. If
we were in newtonian mechanics, this term would be g (plus the additional
apparent accelerations, but let us assume for the time being that we choose
a reference where they vanish), i.e. the derivative of the gravitational po-
tential. What does that mean? The affine connection I, contains the
second derivatives of (£%*) . Since the metric tensor (1.39) contains the first
derivatives of (£%*) (see eq. (1.39)), it is clear that I'*,, will contain first
derivatives of g,, . This can be shown explicitely, and we shall show that

this is indeed the case in a next lecture . The result will be

1 6gw/ ag)\u ag)\u
7 = _qg"° — . 1.44
A 29 {83;’\ + ozt or” ( )

Thus, in analogy with the newtonian law, we can say that the affine

connections are the generalization of the newtonian gravitational
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field, and that the metric tensor is the generalization of the new-
tonian gravitational potential.

I would like to stress that this is a physical analogy, based on the study of
the motion of freely falling particles compared with the newtonian equations

of motion.

1.7 Summary

We have seen that once we introduce the Principle of Equivalence, the notion
of metric and affine connections emerge in a natural way to describe the
effects of a gravitational field on the motion of falling bodies. It should be
stressed that the metric tensor g,, represents the gravitational potential,
as it follows from the geodesic equations. But in addition it is a geometrical
entity, since, through the notion of distance , it characterizes the spacetime
geometry. This double role, physical and geometrical of the metric tensor,
is a direct consequence of the Principle of Equivalence, as I hope it is now
clear.

4

Now we can answer the question “ why do we need a tensor to describe

a gravitational field”: the answer is in the Equivalence Principle.
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1.8 Locally inertial frames

We shall now show that if we know g,, and T, (i.e. g, and its first
derivatives) at a point X, we can determine a locally inertial frame &£*(x)

in the neighborhood of X in the following way. Multiply Fﬁu by ¢

Oz

088 L _ 06 o e

h — = 1.4
oxr * Jxr 9> QxrOxY (1.45)
5 825(1 _ 825’3
®Qxrdzv  Oxrdrv’
ie.
0P o¢P
==>T. 1.4
oxrdxr  Oxzr M (1.46)
This equation can be solved by a series expansion near X
oEP
& (z) =& (X) +| gx(f) DY loex (@ = X") (2" = X*) + .= (1.47)
a® + BT, (2" — X*) (2" — X*) + ...
On the other hand we know by eq. (1.39) that
0% (x),  0€(x)
G (X) = o 5 P o o D o = e, (148)

and from this equation we compute bﬁ. Thus, given g,, and I, ata
given point X we can determine the local inertial frame to order (z — X)?
by using eq. (1.47). This equation defines the coordinate system except for

the ambiguity in the constants a*. In addition we have still the freedom to
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make an inhomogeneous Lorentz transformation, and the new frame will still

be locally inertial, as it is shown in appendix B.

1.9 Appendix 1A

Given the equation of motion of a free particle

d2§a
= Al
— =0, (A1)

let us make a coordinate transformation to an arbitrary system x®

de _ 9" don

@ _ ol — N

eq. (A1) becomes
d [0&%dx” d?x7 OE* 0%¢x  daP da
R fr = . A
dr (8:67 dT) dr? Oz + 0xPoxY dr dr 0. (43)

Multiply eq. (A3) by g% remembering that

0&® 0x°  0x°

—_ S a
_ =47,

917 9€> D

where 47 is the Kronecker symbol (=1 if o=+ 0 otherwise), we find

d*z7 5+ 0z° 0% daPfda) 0
dr2 7 0€x 0xPOxY dr dr

(44)

which finally becomes

d?z®  0x° 0%¢* _daf dx7
= A
dr? + [8&“ 83638367] dr dr 0. (45)

which is eq. (1.40).
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1.10 Appendix 1B

Given a locally inertial frame &¢
ds® = 1, dE"dg”. (B1)
let us consider the Lorentz transformation
&= L,¢, (B2)
where

) o -1 '
L; = 5;.4_@@@]-71}2 ; L? = wa Ly =1, Y= (1_0_)_%'

The distance will now be

y oH 0¥ it i
ds? = 1,,de"de” = o g pen e " (B4)
Since
oEr
82' = L“,B(sﬂz’/ = Luila (B5)
it follows that
ds® = mu, LMy LY ;,dE"dEr. (B6)

Lj are constant, consequently we can always rescale the new coordinates in

such a way that
ds? = 1y, dEMdg"”". (B7)
and the new reference fram is again locally inertial.
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Chapter 2

In chapter I we have shown that the Principle of Equivalence allows to es-
tablish a relation between the metric tensor and the gravitational field. We
used vectors and tensor, we made coordinate transformations, but we did not
define the geometrical objects we were introducing, and we did not discuss
whether we are entitled to use these notions. We shall now define in a more
rigorous way what is the type of space we are working in, what is a coordi-
nate transformation, a vector, a tensor. Then we shall introduce the metric
tensor and the affine connections as geometrical objects and, after defining
the covariant derivative, we shall finally be able to introduce the Riemann

tensor. This work is preliminary to the derivation of Einstein’s equations.
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2.1 Topological spaces

In general relativity we shall deal with topological spaces. The word topology
has two distinct meanings: local topology (to which we are mainly inter-
ested), and global topology, which involves the study of the large scale fea-
tures of a space, such those that distinguish a sphere from a cone. In order
to define a topological space we need some preliminary definitions.

First of all, be R™ the n-dimensional space of vector algebra: a point in
R" is a sequence of real numbers (z!, 22, ...2"), also called an n-tuple of
real numbers. Intuitively we have an idea that this is a continuum space,
namely that there are points of R™ arbitrarily close to any given point, that
the line joining two points can be subdivided into arbitrarily many pieces

which also join points of R™. In other words, there are no holes in our space

(a non continuous space is, for example, a lattice).

Open Sets. Given a point y = (y!, %2, ...y"), an open set is the collection of

[z =yl = | 2« —y')? <, (2.1)
i=1

where 7 is a real number. (This is sometimes called an ‘open ball’).

points x such that
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An open set includes all points in the interior of the “ball”, but not on the
boundary.

A set of points S is open if every point z €S has a neighborhood entirely
contained in S. Thus if in the definition of open sets we had included the
boundary

lz —y| <, (2.2)

there would exist points in S (those on the boundary) that do not satisfy
the previous property. The idea that a line connecting two points can be
indefinitely subdivided, is related to the so-called Hausdorff property of R,

i.e.: any two points of R™ have neighborhoods which do not intersect
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We can now define open sets of R™ which satisfy the following properties

1) if O; and O, are open sets, so it is their intersection.

2) the union of any collection (possibly infinite in number) of open sets is
open.

A topological space is a collection of points that satisfies (1) and (2).

2.2 Mapping

A map f from a space M to a space N is a rule which associates with an

element x of M, a unique element y = f(z) of N

M and N need not to be different. For example, the simplest maps are

ordinary real-valued functions on R
EXAMPLE  y =23, r € R, and y€R. (2.3)

In this case M and N coincide.
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A map gives a unique f(x) for every x, but not necessarily a unique x

for every f(z).

EXAMPLE
(%) T o0 A
D v
map many to one map one to one

If f maps M to N then for any set S in M we have an image in N, i.e.

the set T of all points mapped by f from S in N

Conversely the set S is the inverse image of T

S = f4(T). (2.4)
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Inverse mapping is possible only in the case of one-to-one mapping. The

statement “f maps M to N” is indicated as

f:M—N. (2.5)
f maps a particular element z € M to y € N is indicated as

f:xz |—>y (2.6)

the image of a point x is f(z).

2.3 Composition of maps

Given two maps f: M — N and ¢g: N — P | there exists amap go f
that maps M to N

gof:M—P. (2.7)
This means: take a point = € M and find the image f(z) € N, then use

g to map this point to a point g (f(z)) € P
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EXAMPLE f: z |—y y = 1° (2.8)

Map into: If a map is defined for all ponts of a manifold M, it is a mapping
from M into N.
Map onto: If, in addition, every point of N has an inverse image (but not
necessarily a unique one), it is a map from M onto N.

EXAMPLE: be N the unit open disc in R?, i.e. the set of all points in
R? such that the distance from the center is less than one, d(0,7) < 1. Be

M the surface of an emisphere 6 < 7 belonging to the unit sphere.

A A

A

\

x|

There exists a one-to one mapping f from M onto N.
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f(ad f(P)

2.4 Continuous mapping

Amap f:M — N iscontinuous at x € M if any open set of N containing
f(z) contains the image of an open set of M. M and N must be topological
spaces, otherwise the notion of continuity has no meaning.

This definition is related to the familiar notion of continuous functions.
Suppose that f is a real-valued function of one real variable. That is f

is a map of R to R
f:R—=>R. (2.9)

In the elementary calculus we say that f is continuous at a point 20 if

for every € > 0 there exists a & > 0 such that

|f(z) — f(20)] <, Vz such that |z — 20| <. (2.10)

38



Let us translate this definition in terms of open sets. From the figure it is
apparent that any open set containing f(z0), ie. |f(z) — f(z0)| < r
with r arbitrary, contains an image of an open set of M . This is true at
least in the domain of definition of f. This definition is more general than
that of continuous functions, because we can choose ¢ and ¢ as big as we

like, provided we remain in the domain of definition of f.

2.5 Differentiable mapping

Since we are dealing with maps of R into R (see previous figure) the notion
of functions C* familiar from elementary calculus applies: if f(z!, 22, ...2")
is a function defined on some open region S of R", it is said to be differentiable
of class CF if all its partial derivatives of order less than or equal to k exist

and are continuous functions on S. For example a function C° is only
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continuous, and C is a function such that all derivatives exist.

2.6 Manifolds

The notion of manifold is crucial to define a coordinate system.
A manifold is a collection of points M such that each point of M has an
open neighborhood which has a continuous 1-1 map onto an open set of R™.

n is the dimension of the manifold.

In this definition we have used the concepts defined in the preceeding
pages: the space must be topological, with no holes, i.e. continuous, and we
want to associate an n-tuple of real numbers, i.e. a set of coordinates to each

point. For example, when we consider the diagram

we are just using the notion of manifold: we take a point P, and map it
to the point (z',y') € R®> . And this operation can be done for any

open neighborhood of P. It should be stressed that the definition of manifold
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involves open sets and not the whole of M and R", because we do not want
to restrict the global topology of M . Moreover, at this stage we only require
the map to be 1-1. We have not yet introduced any geometrical notion as
lenght, angles etc. At this level we only require that the local topology of M
is the same as that of R". A manifold is a space with this topology.

DEFINITION OF COORDINATE SYSTEMS

A coordinate system, or a chart, is a pair consisting of an open set of M
and its map to an open set of R™. The open set does not necessarily include
all M , thus there will be other open sets with the associated maps, and each
point of M must lie in at least one of such open sets.

AND NOW WE WANT TO MAKE A COORDINATE TRANSFORMA-
TION.

Let us consider, for example, the following situation: U and V are two

overlapping open sets of M with two distinct maps onto R"

Rn
f
5 f(L)
\/
M
T >
g a(Vv)

41



The overlapping region is open (since it is the intesection of two open sets),
and is given two different coordinate systems by the two maps, thus there

must exist some equation relating the two. We want to find it.

Pick a point in the image of the overlapping region belonging to f(U), say

the point (z!,...z"). The map f has an inverse f~! which brings to

Y

the point P. Now from P, by using the map ¢, we go to the image of P

belonging to ¢(V), i.e. to the point (y!,..y™) in R"
gof':R'—= R\ (2.11)

The result of this operation is a functional relation between the two sets of
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coordinates:

(2.12)

| Y= y"(z!,...x"),
If the partial derivatives of order < k of all the functions {3’} with
respect to all {z'} exist and are continuous, then the charts (U, f) and
(V,g) are said to be C* related. If it is possible to construct a system
of charts such that each point of M belongs at least to one of the open sets,
and every chart is C* related to every other one it overlaps with, then the
manifold is said to be a C* manifold. If k=1, it is called a differentiable
manifold.

The notion of differentiable manifold is crucial, because it allows to add
“structure” to the manifold, i.e. one can define vectors, tensors, differential
forms, Lie derivatives etc.

In order to complete our definition of a coordinate transformation we still

need another element. Eqs. (2.12) can be written as

y' = fi(zt,...a"™), i=1,..n, (2.13)
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where f* are CF differentiable. Be J the jacobian of the transformation

ox!

of

o

oz

oft

oz

[

o™

o

o™

(2.14)

If J is non zero at some point P, then the inverse function theorem ensures

that the map f is 1-1 and onto in some neighborhood of P. If J is zero at

some point P the transformation is singular.

AN EXAMPLE OF MANIFOLD.

Consider the 2-sphere (also called S?). It is defined as the set of all points

in R? such that (z!)?+ (22)? 4 (2*)? = const. Suppose that we want to

map the whole sphere to RE by using a single chart. For example let us

use spherical coordinates 6 = z', and ¢ = 2% The sphere appears to be

mapped onto the rectangle 0 < z! <,

44

0<2?2<27m



(note that this manifold has no boundary). But now consider the north pole

f# = 0 : this point is mapped to the entire line
ot =0, 0<2?<2nm (2.15)

Thus there is no map at all.

In addition all points of the emicircle ¢ = 0 are mapped in two places
2 __ 2 _
z* =0, and  z°=27. (2.16)

Again there is no map at all. In order to avoid these problems, we must

restrict the map to open regions

0<zl<m 0<2®<2m, (2.17)
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The two poles and the semicircle ¢ = 0 are left out. Then we may consider
a second map, again in spherical coordinates but “rotated” in such a way
that the line ¢ = 0 would coincide with the equator of the old system.
Then every point of the sphere would be covered by one of the two charts,
and in principle one should be able to find the coordinate transformation for
the overlapping region. It is interesting to note that

1) this mapping does not preserve angles and lenghts.

2) there exist manifolds that cannot be covered by a single chart, i.e. by

a single coordinate system.
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Chapter 3

Vectors and One-forms

In what follows we shall consider a 2-dimensional space, but the concepts we
shall introduce can immediately be generalized to higher dimensional spaces,
and, in particular, to a 4-dimensional spacetime. Consider for example a 2-
dimensional euclidean plane. We can choose any coordinate system we like,

for example cartesian coordinates (z,y), polar coordinates

r=+12+y? T =17rcosf

(3.1)
¢ = arctan ¥, y =rsind,
or arbitrary coordinates
£=¢(z,y d¢ = %Edz + Ly
(=,9) ? % (3.2)
n=n(z,y) dn = §ldx + §ldy.

In making a coordinate transformation it is important to impose that to any

two distinct points (x1,y1), (72, y2) be assigned different pairs (&1, m), (&2, 72)-
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This implies that if A& = An =0, where A& and An are the distances
between the two points along the coordinate axes, then the two points must
coincide, i.e. it must also be Az = Ay = 0. This is true if the determinant

of eq. (3.2), i.e. the Jacobian associated to the coordinate transformation,

ot o
J= (8“ 8‘") £0. (3.3)

1S non-zero

on  9n
or Oy

If J vanishes at a point, the transformation is said to be singular there.

3.1 The traditional definition of a vector

A wector is a collection of D numbers (D = dimensions of the space) which
transform like the coordinates do under a coordinate transformation.

For example, a typical vector is the displacement
ds —o (dz, dy), (3.4)
or, in a more compact form
ds —o {d2*}, n=1,2, (3.5)

where the arrow indicates that ds has components with respect to a given
frame (. If we now make a coordinate transformation, for example the

transformation (3.2), the components of ds transform accordingly

SEYO T -
dn oo dy

48



If we put (z¥,2%) = (&,n), and (z!,2%) = (z,y), eq. (3.6) can be

rewritten in the more compact form

dz" = Z

a=1,2

ozt N ozt o

(o is a dummy index). Then contravariant vectors A —q {A*} are defined
as objects that transform in the same way as ds

'
,_ax 8

qv =
oxf 7

(3.8)

where A* are the components of the vector in the new frame. If we now

o % g_g
(A%p) = , (3.9)

define the matrix

9 on
or Oy

the transformation law can be written in the general form
A =AY 5 AP (3.10)

In addition one can define covariant vectors as objects that transform ac-
cording to the following rule

B
Ay =0T 4y = AP A, (3.11)

W
where AP, is the inverse matrix of AP u- However, a vector is a geometrical
object. In fact it is an arrow that joins two points of a given space. We can
associate components to it, and when we rotate the reference frame they
change, but the vector itself does not change. We shall now give a more

adequate definition.
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3.2 A geometrical definition

In order to define a vector as a geometrical object we need to introduce the
notions of paths and curves.

PATH

A path is a connected series of points in the plane (or in any arbitrary

n-dimensional space)

T~ —

CURVE
A curve is a path with a real number associated with each point of the
path, i.e. it is a mapping of an interval of the real line into a path in the

plane. The number is called the parameter. For example

curve :{&= f(s),n=g(s),a < s < b}, (3.12)

means that each point of the path has coordinates that can be expressed as
functions of s. The path is called the image of the curve in the plane. What

happens if we change the parameter? If s = s'(s) we shall get a new curve

{E=1'(s)n=4(s),d <5 <V}, (3.13)
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where f',¢'.a’,b are new functions of s'. This is a new curve, but with
the same image. Thus there are an infinite number of curves corresponding
to the same path.

Let us now consider a curve and a differentiable function ®(&,7). The

derivative of @ along the curve is

a0 _ovds  owdy _ 00 do
ds 0¢ds Onds Oxtds’

' =€ 2% =n. (3.14)

The set of numbers {‘%} = (%, 91) are the components of a vector tangent
to the curve. (In fact if {dz‘} are infinitesimal displacements along the
curve, dividing them by ds only changes the scale but not the direction of

the displacement). Every curve has a unique tangent vector

- dz’ - d¢ d
V—{ da; } (or V= (d_j d_Z) in the two-dimensional space)

(3.15)
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One must be careful and not to confuse the curve with the path. In fact
a path has, at any given point, an infinite number of tangent vectors, all
parallel, but with different lenght. The lenght depends on the parameter s
that we choose to label the points of the path, and consequently it is different
for different curves having the same image. A curve has a unique tangent
vector, since the path and the parameter are given.

A vector is a geometrical object defined as the tangent vector
to a given curve at a point P. It should be remembered that a vector is
tangent to an infinite number of different curves , for two different reasons.
The first is that there are curves that are tangent to one another in P, and

therefore have the same tangent vector:

—

The second is that a path can be reparametrized in such a way that its
tangent vector remains the same.

We shall now derive how does a vector transform if we change the coordi-
nate system, and put for example ¢ = ¢(z,y),n = n(x,y). The parameter

s is unaffected, thus
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dg _ df dw | df dy ag dag  dg dz
ds dx ds dy ds ds dx dy ds
dy _ dndo y dndy dn |\ dn dn dy
ds ~ dx ds dy ds ds dr dy ds

As expected, this is the same transformation as (3.10) that was used to

define a contravariant vector

VE = AW VP, (3.16)

3.3 The directional derivative along a curve
form a vector space at P

In order to understand the meaning of the statement contained in the heading
of this section let us start from eq. (3.14) written for a more general n-

dimensional space

a2 _ 00 da’
d\ 0zt d\’

i=1,..n. (3.17)

This is the directional derivative along a curve parametrized with the param-
eter A, and it has been used to define vectors. Since the function & is

totally arbitrary, we can rewrite this expression as

d di' 9

-~ = o 3.18

d\  dX OxV (3-18)
where & is now the operator of directional derivative, while ‘fi—m;} are the

components of the tangent vector. Now consider two curves z! = z*(\) and
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x' = z'(u) passing through the same point P, and write the two directional

derivatives along the two curves

d_daio 4 _dro
d\  d) Oz’ dp  dp 0zt

(3.19)

{‘fi—fj} are the components of the vector tangent to the second curve. Take
the linear combination

ot b h = (0 O
d\  dp dA du’ Ozt

(3.20)

The numbers (a‘i—f + b‘é—fj) are the components of a new vector, which is
certainly tangent to some curve through P. Thus there must exist a curve
with a parameter, say, s, such that at P

d dz? dzt. 0

— = b—)— 3.21
= T e (3:21)
and consequently at P it must be
d d d
— =a—+b—. 3.22
a) s~ (3.22)

In addition it is easy to verify that the directional derivative satisfies the

following properties

1) a(% + %) = a% + a% (3.23)
2) (a+ b)di = a% + b% (3.24)
3) (ab)% _ a(b%) (3.25)
4) 1 % = % (3.26)



Thus the set of directional derivatives is a vector space because it satisfies
(1-4) and (a).
In any coordinate system there are special curves, the coordinates lines

(think for example to the grid of cartesian coordinates). The derivatives along

these lines are simply a?ci' Eq. (3.18) shows that the generic directional
derivative % can always be expressed as a linear combination of azi'
It follows that 621» are a basis for this vector space. Then eq. (3.18)
shows that ‘fi—‘f\i} are the components of % on this basis. But ‘fi‘gj }

are also the components of a tangent vector at P. Therefore the space of all
tangent vectors and the space of all deriwatives along curves at P are in 1-1
correspondence. For this reason matematicians often say that % is the
vector tangent to the curve ().

Vectors do not lie in M, but in the tangent space to M, called Tp For
example in the two-dimensional case analysed above the tangent plane was
the plane itself, but if the manifold is a sphere, since we cannot define a
vector as an “arrow” on the sphere, we need to define the tangent space, i.e.
the plane tangent to the sphere at each point. For more general manifolds it
is not easy to visualize Tp . In any event Tp has the same dimensions
as the manifold M.

Any collection of n linearly independent vectors of Tp is a basis for Tp

. The most natural choice is the following: given a coordinate system {z'} in

a neighborhood U of a point P, the coordinates define a basis { a?gi} , called
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the coordinate basis, and any vector V at the point P, can be expressed as

. .0

i

In other words, the basis vectors are tangent to the coordinate lines.

If we choose a different basis {éj:}
V=Y V. (3.28)
7
The numbers {V?} are the components of V with respect to the basis
{%} , while {V7'} are the components of V on {&;}. When we write
€, the j' does not indicate a component of the basis vector €}, but

which vector of the basis we choose. It is better to indicate this index in
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parenthesis e i.e.

V=3 V¢ (3.29)

EXAMPLE
Consider the 4-dimensional flat spacetime of Special Relativity, and let

us restrict to the (x-y) plane, where we choose the coordinates
(ct,z,y) = (2°,2",2%) (3.30)
The coordinate basis is the set of vectors

= é'(o) — (1, 0, O) (3.31)

or, in a compact form

e(y = 05. (3.32)

(The superscript 3 now indicates the [-component of the a-th vector).

In this basis any vector A can be written as
A= Aog(o) + Alg(l) + A2€(2) = A%y). (3.33)

{A?} = (A%, A, A%) are the components of A with respect to the coordi-

nate basis. Let us put

€o) =€, €1y =€  €2) =€y (3.34)



Let us consider the following coordinate transformation

(
(x()’ -/L‘, y) % (x()’ 717 0)
20 =¥
< (3.35)
z =rcosf
| Y= sin 6,

A new coordinate basis will be associated to the new coordinates

5 N —

a,’L‘OI = 6(0/) = 6(0) (336)
5 - —

8(1/‘1’ = 6(1/) = €, (337)
5 N —

9.7 = ) =6

Each of these vectors will be a linear combination of the old vectors €, €, €.

To find a general rule we observe that a vector V can be written as

V= Viey, in terms of the old basis (3.38)

—

V=V, in terms of the new basis,

and consequently

NG

é’z: Zgi/. .
Ve =V e (3.39)

Vi V7' are the components of 1% respectively in the old and in the new

basis. If we now substitute eq. (3.16) which we report here again
V= AT VF (3.40)
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into eq. (3.39) we find
Vigy = A V. (3.41)

By relabelling the dummy indices this equation can be written as
[A” k&) — | VE =0, (3.42)

ie.
Eny = A k). (3.43)
Multiplying both members by A?; and remembering that

o 0x’ 0z" 07 ;

5(11) = Aki/e(k). (345)
This is the transformation law we were looking for. Summarizing:

i = Mucie (3.46)
€y = Airél).

We are now in a position to compute the new basis vectors in terms of the

old ones:
oxk

oxY”

—

€l = Mo, Ay = (3.47)

In the example we are considering only A%y # 0 and it is equal to 1. It
follows that



In addition

€y = € = AF, € (k) (3.49)
and since
0z°
A, =""-=0 3.50
or ’ (3.50)
oz' Oz
Alr = a7 =7 = 0
or or oSt
0z? Oy
2 .
r— === 0’
or or i
€, = cos 0éy + sin fej,. (3.51)
Similarly
€y = €9 = Ao, (3.52)
and since
A% =0, (3.53)
ozt 0
Ly = a—xe = 8—; = —rsind,
or? 0
A2y = 8—369 = 8_Z = rcosf,
hence
€p = —rsinfe, + r cos O€,. (3.54)
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3.4 One-forms

A one-form is a linear, real valued function of vectors. This means
the following: a one-form (or 1-form) @ at the point P takes the vector V

43

at P and associates a number to it, which we call &(V'). From now on a
~ 7 will indicate 1-forms, as an arrow “—” indicates vectors.
Properties of one-forms.

1) Linearity
&(aV + bW) = ai(V) + b (W). (3.55)
2) Multiplication by real numbers
(a0)(V) = a[@(V)] (3.56)
3) Addition
@ +6](V)=a(V)+6&(V). (3.57)
Since one-forms satisfy the axioms (3.55-3.57), they form a vector space,
which is called the dual vector space to Tp , and it is indicated as Tf,
. The reason why Tf) is called dual to Tp is that also vectors can be
regarded as linear, real valued functions of one-forms: a vector V takes a
1-form & and associates a number to it, which we call V(@). If we rewrite
eq. (3.55) we see that
(a@ + b5)(V) = (a@)(V) + (b6)(V) = ai(V) + b5(V) =  (3.58)

a [Value of V on GJ] +b [Value of V on 6] =
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aV (@) + bV (5).

Thus it is the linearity which allows the “duality”: each (vectors or 1-forms)
can be regarded as functions of the other (1-forms or vectors) to produce a

number. We can equivalently say

—

V@) =<a,V >, (3.59)

o(V)
in the sense that the three “operations” give as a result the same number.
This point will be further clarified in the following.

Since Tf) is dual to Tp , once we choose a basis for vectors, say
{€4),% = 1,n}, we can introduce a dual basis for one-forms defined as follows:
the “preferred” dual basis {&® i = 1,n}, takes any vector V in Tp

and produces its components
d(V) = V7. (3.60)

It should be remembered that an index in parenthesis does not refer to a
component, but selects the -th vector, or one-form, of the basis. Thus the
i-th basis one-form applied to 1% gives as a result a number, which is the
component V* of the vector V . As expected, this operation is linear in
the argument

GOV +W)=Vig Wi (3.61)
since V 4+ W is a vector whose i-th component is V4 W?*. In particular,

if the argument of a one-form is one of the basis vectors €;), since only
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the j-th component of ¢€(; is different from zero and equal to 1 (if it is a
coordinate basis), we have
@ (&) = 6. (3.62)
We now want to answer the questions:
1) who tells us that {@®} are linearly independent?
2) can we define the components of a 1-form as we define the components
of a vector?

—

Consider any one-form ¢ acting on an arbitrary vector V'
aV)= a3 _V7ey) =2 V7a(ey) = (3.63)
J J
= Yoy,
J

where the third equality follows from the fact that V7 are numbers, and

the last from eq.(3.60). Thus §(V') is expressed as a linear combination of

basis one-forms &) applied to 17, and the numbers

a; = q4(€y)) (3.64)

are defined to be the components of G on the basis {0®} dual to €.
Consequently we can write
i(V) =Y ;e (V). (3.65)
J

Since V' is arbitrary, we can also write

i=> qaY. (3.66)

J
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Since any one-form can be expressed as a linear combination of the n basis
one-forms @Y they form a basis.

Consider a region of space U and choose a coordinate system {z'} We
have seen that this defines a natural coordinate basis for vectors {%} For
what we said before, it also defines a natural set of coordinate basis one-forms,

indicated as {dz(®} whose components are

. - (@)
(@), = (-0 )= &

And now the most important thing. From eq. (3.65), since @@ (V) = V7,

we find

q(V) = > gV, (this operation is called contraction)  (3.68)
J

—

which tells us, if we know the components of ¢ and V | how to compute

the number which results from the application of ¢ on V.

From eq. (3.68) we can now better understand why vectors and one-
forms are dual of each other. In fact, if ¢; and V7 are respectively the

components of the one-form ¢ and of the vector 1%
q~(‘7) =qVi=qV'+qV'+..¢,V* = a number. (3.69)
Due to the linearity of the previous equation, we can also say that
GV =@V’ + V' + ... V" = V(@) (3.70)
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and define vectors as those linear functions that, when applied to one-forms,

produce a number.

Let us now make a coordinate transformation z* = z#(z*). We can
ask two things

1) How do the components ¢; of a one-form ¢ change?

2) Will the new basis 1-forms be a linear combination of the old ones,
and which combination?

1) By definition

4 = 4(€())- (3.71)
If we change coordinates, we will have a new set of basis vectors {é(;},

and we have seen that they are related to the old ones by

€y = Aoy, (3.72)
where Akuf = g;;,. The new components of ¢ will be
a5 = G(E) = QA" ew)] = A*5a(Ew) = Mg, (3.73)
hence
g = Mg (3.74)

If we compare this result with eq. (3.11) we immediately recognize that this

is the way covariant vectors transform, thus covariant vectors are one-forms.
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2) We now want to see, as we did in the case of vectors, whether the new
basis one-forms can be expressed as a linear combination of the old ones. We

shall proceed along the same lines. From eq. (3.66) we see that
§=q;09 = gua®, (3.75)

. . . . ~ 7
(sum removed according to Einstein’s convenction), where {@®*)} are the
new basis one-forms. But

q = Npa;, (3.76)

therefore

g;@0" = Npg™®. (3.77)
This equation can be rewritten as
[A'pa®) —50]g; =0, (3.78)

hence

0@ = At ®). (3.79)
The matrix A% is inverse of A*;. Thus
A¥ Ny = 6% or  AM;AT = 6L (3.80)
Multiplying both sides of eq. (3.79) by A¥, we find
AF ;00 = A¥ A o) = 5lat), (3.81)

hence

H*) = AF o), (3.82)
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Summarizing
o = Aok
(3.83)
W) = AF ;50)
EXAMPLE
Let us consider the same coordinate transformation analyzed in sec. 3.4.

We start with minkowskian coordinates (z°,z,y). The coordinate basis for

vectors is  {3%;} and the dual basis for one-forms is {dz®}

dz© — (1,0,0) = dt (3.84)
dzM — (0,1,0) = dz (3.85)
dz® — (0,0,1) = dy (3.86)

If we now change to polar coordinates, according to eq. (3.82) we find
OO = dt’ = AY ;dzV). (3.87)

Since AY; = 9% only A"y #0, and equal to unity, thus

OxJ ?

o = dt' = dz(©. (3.88)
Similarly
! p oy OzV s o O+ or ~
51 = AV dp) = 27 g0 — 2 g0 o 77 4,2
o) = A daV) = 507 dzV) = &de + aydm : (3.89)
Since
0 0
9T =% = cos 9, and T =Y —ging (3.90)
or r dy r



it follows that

dr = cos fdx + sin fdy. (3.91)
Moreover
noos 00 - a9 -
22 = dp = —dzM + L dx® 992
@ axda: + ayd:v , (3.92)
hence
~ 1. -~ 1 -
df = —sin fdx + . cos fdy. (3.93)

AN EXAMPLE OF ONE-FORM.

Consider a scalar field @(z° z',...2"). The gradient of a scalar field is

~ od 09 0P
0) .
_)(8330’&@1’ ’83:")

(3.94)

It is easy to see, for example, that the components transform according to

eq. (3.74), in fact

- o0d - o0d 0d Oz*
77 Ogi’ and - ®p = 07~ OzF  0xd (3.95)
since AF; = gwif,, it follows that
éjl - Akjlék, (396)

same as eq. (3.74). Thus the gradient of a scalar field is a one-form.
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Chapter 4

Tensors

4.1 Geometrical definition of a Tensor

The definition of a tensor is a generalization of the definition of one-forms.

N
Consider a point P of a manifold M. A tensor of type at P is
NI

defined to be a linear function which takes as arguments N one-forms and

N' wvectors and associates a number to them.

2
For example if F is a tensor this means that

—

F(@,5,V,W)

is a number and the linearity implies that

=

F(a@w +b§,5,V, W) = aF (@,5,V,W) + bF(§,5,V,W)
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and

F(@,§,aV; 4+ bVa, W) = aF (@, §, Vi, W) + bF(&, §, Vo, W)

and similarly for the other arguments.

This definition of tensors is rather abstract, but we shall see how to make it
concrete with specific examples.

The order in wich the arguments are placed is important, as it is true for any

function of real variables. For example if

f(z,y) =42® +5y  ,then  f(1,5) # f(5,1). (4.1)

In the same way

F(@,§, VW) # F(3,6,V,W). (4.2)
EXAMPLES
0 . :
A tensor is a function that takes a vector as argument, and produces
1
a number.

This is precisely what one-forms do (on the other hand this is the definition

of one-forms). Thus a tensor ia a one-form.

Q(V) = quVj = ¢ V7. (4.3)
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A tensor is a function that takes a one-form as an argument, and

produces a number. Thus a tensor is a vector
0

V(@) =gV, (4.4)

Let us now consider a tensor. It is a function that takes 2 vectors and
2

associates a number to them.

We know how to associate to each vector a number: we contract it with a
one-form according to 4.3. The obvious generalization in the case of two
vectors is

F(V, W) =5(V)i(W) = pV g W*.

where p and ¢ are two arbitrary one-forms, and V and W are
two arbitrary vectors. This operation is indicated with the following symbol
PR(q, where ® is called the “outer product sign” and means precisely that if

p and ¢ have arguments V and W the result is the number piqVIWE.

How do we compute the components of a tensor? Let us recall what
2

we did with one-forms (see eqs. 3.64 and 3.65).
The components of a one-form ¢ are defined as the numbers that we obtain

when the argument of the one-form is one of the basis vectors

q; = §(€))-

71



It is now very easy to generalize these definitions to the case of a

2
tensor: the components of a tensor will be the numbers that are
2
produced when the arguments are the basis vectors
Fop = F (€, €())- (4.5)

Since €(o) and € have n components each, Fi,s will be an nxn matrix.

So now if we take as an arguments of I two arbitrary vectors we find
F(A,B) = F(A%8.),B%s) =
= A*BPF (8, €p) =
= F,A°B". (4.6)

It is now clear what does it mean to say that F' is a linear function that

associates a number to two vectors: the number is Fang‘Aﬂ .

Can we construct a basis for tensors as we did for one-forms?
2
We want to write
F = Fop@®) (4.7)
where ©@®)  are the basis tensors.
2

-

If the arguments of F are two arbitrary vectors A and B, eq. (4.7)

72



gives
F(A, B) = F,30® (4, B). (4.8)

—,

On the other hand, we know that A® = @@ (A) and B? = o®)(B) and

therefore eq. (4.6) can be written as
F(A, B) = F.30® (40P (B). (4.9)
By equating eqgs. (4.8) and (4.9) we find
&(@)B) (j’ E) = 5@ (A)@(ﬂ)(g)’
or, by the definition of outer product

5@6) = 5@ g 76, (4.10)

Thus the basis for tensors can be constructed by taking the outer
2

product of the basis one-forms. Finally

F = Fop'® @ @) (4.11)

4.2 Symmetries

0
A tensor is Symmetric if

2

F(A,B)=F(B,A) VA, B. (4.12)



As a consequence of eq. 4.6 we see that if the tensor is symmetric

FaﬂAaAﬂ = FgaA/BAa, = Faﬂ = Fga (4.13)
ie. if a tensor is symmetric the matrix representing its components
2
is symmetric.
Given any tensor F' we can always construct from it a symmetric
2
tensor F(s)
- = 1 - = — -,
Fio(4, B) = S[P(4, B) + F(B, ). (4.14)

In fact VA , B

Moreover

P 1
F(s)(A,B) = F(s)aﬁAaAﬂ = E[Faﬂ —+ F/ga]AaA’B,
and consequently the components of the symmetric tensor are
Floap = [Fa,@ + Fpal- (4.15)

The components of a symmetric tensor are often indicated as

1
F(a[g) = §[Fa5 + Fga]. (416)
0 . .
A tensor is antisymmetric if
2
F(A,B)=—-F(B,A) VYA B, e  F.3=—Fps,. (4.17)



Again from any tensor we can construct an antisymmetric tensor

Fla) defined as

Proceeding as before, we find that its components are
1
Flayas = 5[Fap = Fpal,
also indicated as
1
Fap = E[Faﬂ — Fgal. (4.18)
It is clear that any tensor can be written as the sum of its symmetric
and antisymmetric part

-

WA, B] = S[h(A, B) + h(B, )] + 5[h(A

o
|
=
oo
=
Il
=
!
&

It is now clear that we can construct any sort of tensor using the procedure

2
that we have developed in the previous pages. Thus for example a

0

tensor T'(a, &) is a function that associates to two one-forms & and & a
number. Since we know that if we contract a vector with a one-form we get

a number the tensor 7' must be given by the outer product of two vectors
T(&,6) = V(@)W (5) = Vie,Whay,

or

<

T=VeWw. (4.19)



But now (compare with eq. 4.6)
T(&,5) = T(o;09, 0™ = o, T(@W, 6®) = T a0y, (4.20)
where T7% are the components of T
T* = T(oW, o®), (4.21)
and the basis for this tensor will be
T =T¢, ® ép. (4.22)

(It can be found by using the procedure that led to eq.4.11).

Exercise: prove that the tensor V®6 has components V7o, and

1
find the basis for tensors.

Now we ask the following question: how do the components of a tensor

transform if we make a coordinate transformation?

We start with a tensor

F = Fop® @ 3 (4.23)
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If we change coordinates, we shall have a new set of basis one forms {@(®)}

wich are related to the old ones by the equations
(D(i) — Aikf(fj(k’) : @(i') _ Ai’ka)k
In the new basis the tensor will be
I = Fa,ﬂ,a,(a/) ® B,
By equating (4.23) and (4.25)
Fa'ﬂ'@(al) ®o¥) = Faﬂa)(a) ®oP.

Replacing @(® and @® by using the first of eqs. 4.24

(4.24)

(4.25)

Fa',@'@(a,) ®oP) = FaﬂAak,aj(k') ® Aﬂi,a)(i') — FaﬂAak,Aﬂi,@(k') ® Q(i'),

or by relabelling the dummy indices

Fk’i’a)(kl) ® (:)(i’) _ FaﬁAak’Aﬂi’aJ(k’) ® a}(i,)’

and finally

Fklil = FaﬂAaklAﬂi/,
or, by writing explicitely the elements of the matrix A%

ox® 0xP

Fiow = Lot o

7

(4.26)

(4.27)



5! .
where {2"} are the new coordinates.

In a similar way, by using egs. 3.43 and 3.45 we would find that

TF = TP AR A7, (4.28)
and
T = T5A% (A, (4.29)
IMPORTANT

I would like to stress the following point: the notion of a tensor that we have

introduced is independent on which coordinates, i.e. which basis, we use.

N

In fact the number that an tensor associates to /N one-forms and
NI

N’ vectors does not depend on the particular basis we choose.

This is the reason why, for example, we can equate (4.23) and (4.25). The
operations that we are allowed to make with tensors are the following. Given
a tensor T and its components {77} on some basis, we can multiply each
component by a number a and find {aT}:}. These are the components of
the tensor aT of the same type.

Further operations are

1) Addition and subtraction of tensors of the same type
T+G=W — Tag—{-Gag:Wag

2) If we multiply the components of two tensors, we find a tensor whose
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type is the sum of the two

G Ty = WPy
2 0 2
0 2 2
Gap Ths = Wapks
0 0 0
2 2 4

3) We can contract a pair of indices one of which is up, the other down. The

N -1
result is a tensor of type
N -1

G g = Goki + G gy + GPopi 4 o+ Gy = G

These are called tensor operations and an equation involving tensor compo-

nents and tensor operations is a tensor equation.

4.3 The metric Tensor

In chapter I we have seen that the metric tensor occupies a central role in the
relativistic theory of gravity. In this section we shall discuss its geometrical

meaning.
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Definition: the metric tensor g is a tensor that, having two arbi-
2

trary vectors A and B as arquments, associates to them a real number that

is the inner product (or scalar product) A-B
g(A,B) = A-B. (4.30)

The scalar product is usually defined to be a linear function of two vectors

that satisfies the following properties

OT+V) W=U-W+V-W (4.31)

From eq. (4.31) it follows that g is a symmetric tensor. In fact

— —

U-V=g(UV)=V-U=g(V,0), —» g0V)=g(V,0). (432

Eqgs. (4.31) and (4.31) imply that g is a linear functions of the arguments, a
condition which is automatically satisfied since g is a tensor.
As usual the components of the metric tensor are obtained by replacing

A and B with the basis vectors
9op = 9(€a), €(5))- (4.33)

Thus the metric tensor allows to compute the scalar product of two vectors

m any space and whatever coordinates we use:

-

A-B=g(A,B) = g(A°€),B%¢p) = A°B°4(E), €p) = (4.34)
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AaBﬂgag.

EXAMPLES
1)
We want to show that the metric of Minkowski spacetime is
-1 0 0 O
0 +1 0 O
Jop = = Nap
0 0 41 0
0 0 0 +1
In fact, given the basis vector
5(0) = 5,5 — (1,0,0,0)
5(1) = é;u — (0, 1,0, 0)
5(2) = gy - (07 Oa 17 O)
5(3) = €, — (0, 0,0, 1)

we know that they are mutually orthogonal, i.e.
g(a) . é'(/g) =0 if o 75 8.

It follows that
9iap) =0 if o # B.
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In addition the basis vector are unit vectors, i.e.
5(k) : g(k) =1 if k=1,3,

and

since €() is a timelike vector. Consequently
gik = 1, and  goo = —1.

q.e.d.

From now on we shall call 7,5 the components of the metric tensor of
the Minkowski spacetime when expressed in cartesian coordinates.
2)
We now want to compute how the components of the metric tensor change if
we change the coordinate system. We shall answer this question in two ways
a) by using the expressions of the new basis vectors and eq. (4.33)
b) by using the transformation law (4.26).
a)
For simplicity let us consider, as we did in the example in section 3.3, a

3-dimensional spacetime, and suppress the coordinate z.
€oy — (1,0,0)
5(1) — (0, 1, 0)
5(2) — (0, 0, 1)
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and

grk=| 0 +1 0 |[=m i1=k=0,2,

2% =z, xt =rcosd, r? =rsind. (4.35)

The new basis vectors computed in sec. 3.3 are

6(1/) = é(r) = COS 95(1) + sin 95(2) (4.37)
6(2') = 6(0) = —rsin 05(1) =+ 7 cos 95(2).

Consequently

qgoo g(ol) 5(0/) = 5(0) 5(0) =-1

gov 0 i'=1,2

girv

goro

g

€y - €y = (cos B€(1y + sin 0€(2)) - (cos O€(1) + sin O€(z)) = cos® § + sin® = 1

=

(2 €y = +r2sin® 0 + r2 cos? 0 = r?

®y

—rcosf@sin@ + rcosfsinfd =0
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gmw=1, 0 +1 0 |- (4.38)

b) Let us now use the transformation law
girgr = Aai’Aﬂk’gik = Aaz”Aﬁk'naﬂ

Since 7;; is diagonal we only need to consider o = f.

A 920\
oo = A A% Nae = (w) Noa = (w) Moo = 1- (_1) =-1

0z° 0z° ozt ozt 0r? 6_3:27722 _0 #=12

i = N A%y = A oA +—,—, +—, Y
9o 0 i'Maa 9z 9z Too 929 Hzi 1 1Y Ot

0 1 2
because g;”i, = g;o, = gg'fo, =0
g = A*A% e = (Aol')zﬂoo + (All')27711 + (A21')27722 =

020\ ozt \’ or2\> oz’ oy\>
- () 0+ (35) 1+ (57) 1= () +(5)
g1 =cos’f +sin’h =1

Proceeding in this way we clearly find again the metric (4.38) in the new

frame (2%, 2", 2%) = (ct,r,0).

4.3.1 The metric tensor allows to compute the dis-
tance between two points
Let us consider, for example, a three-dimensional space.
(2°, 2, 2?) = (ct, z,y)
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The distance between a point P(z°% z!,2%) and P'(z°+ dz2°, 2t + dat, 22 +
dr?) is

ds = dz°¢(g) + dz'€) + dzEe) = dz&) (4.39)
and €4) are the basis vectors. By definition the metric tensor acting on

two vectors produces their scalar product therefore
g(ds,ds) = ds - ds = ds?, (4.40)

where ds? is the norm of the vector d_:s, i.e. the square of the distance
between P and P’
Eq. (4.40) gives
g(ds,ds) = g(dx0€(0) + d:vlé'(l) + deé'(Q), dx0€(0) -+ dxlé(l) + dx2€(2)) =
= (dz°)’g(€), o)) + dz'dz’g(&n), o)) + dz’dz’g(En), €0)) +
+ d2’dz’g(€), €n)) + (dz')*g(Eny, €n)) + dz’dz’ g(€n), €)) +

—

+ da’dz®g(E), ) + da’dz’ (), €n)) + (d2)’g(E(2), €z))

We now remember that, according to eq. (4.33) if we apply ¢ to the basis

vectors we get its components g,g, therefore the previous expression becomes

g(ds, ds) = (dz°)?goo+2dz’dz’ gor+2dx°da® goa+2dz" dz? gro+ (dz") 2gr +(dz?)? gos
(4.41)
where we have used the fact that g.s = g3a-

This calculation is simplified if we use the following notation

- -

2 2
g(ds,ds) = g(3_ du*&a), Y d1’es)) = g(d1°€(a), d2’e(s)) =
a=0 £=0
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= dz*d2’9(é(), €(p)) = Gapda®da’ (4.42)

with a, 8=0,2.
This way of writing is completely equivalent to eq. (4.41). Thus, coming
back to eq. (4.40) we find

ds?® = gapda®da’. (4.43)

For example, if the space is Minkowski spacetime g, = 745 = diag(—1,1,1),

and eq. (4.43) gives
ds® = —(dz°)® + (dz")* + (dz*)?, (4.44)

as expected.
If we now change to a coordinate system (z%,z%,2?), the distance PP’
will be ds” = ds?, ie.
g(ds',ds") = ds'-ds' =ds” =ds® =
= g(da &a), da’ &) = dz® da” g(Ey, &),
where {€)} are the new basis vectors. Therefore

ds* = gy pdz® dz® (4.45)

where now g, are the components of the metric tensor in the new basis.
For example, if we change from carthesian to polar coordinates (z%,z",2%) =
(ct,r,0),

ds® = (dz%)?goy + (dz"')’gru + (d2” ) gy = —(dz°)® +dr®+ rd6>. (4.46)

86



Thus if we know the components of the metric tensor in any reference frame,

we can compute the distance ds?.

4.3.2 The metric tensor maps vectors into one-forms

As we have seen, the metric tensor is a linear function of two vectors: this
means that it takes two vectors and associates a number to them. The
number is their scalar product.

But now suppose that we write g( , \7), namely we leave the first slot empty.
What is this? We know that if we fill the first slot with a generic vector A
we will get a number, thus g¢( ,V) must be a linear function of a generic
vector that we can put in the empty slot, and that associates a number to
this vector.

But this is the definition of one-forms! Thus g( , V) is a one-form.

In addition, it is a particular one-form because it depends on Viifl change

V, the one-form will be different. Let us indicate this one-form as
g( V) =V(). (4.47)

We leave the slot empty because we can put any arbitrary vector into it.

By definition the components of V are slot
Vo = V() = 9(€a), V) = 9(€a), VPe(5) = VP g(Ela), €8) = V" gup;
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hence

Vo = gapV?. (4.48)

Thus the tensor ¢ associates to any vector V a one-form V, dual of ‘7,

whose components can be computed if we know g, and V<.

In addition, if we multiply eq. (4.48) g®7, where is the matrix inverse to

Gory
9arg"’ =65, (4.49)
we find
9" Vo = g% g0V = VP = V7,
1.e.

VT = gV, (4.50)

Consequently the metric tensor also maps vectors into one-forms . In a

2 1
similar way the metric tensor can map a tensor in a tensor
0 1
Ai . Aik
5 gjk )
. 0
orin a tensor
2

Aji = girgin A,

or viceversa
il ik In
A” = g% g™ Agn.
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These maps are called index raising and lowering.

Summarizing, the metric tensor
1) allows to compute the inner product of two vectors g(f_f, é) = A-B, and
consequently the norm of a vector g(A,A) = A- A = A2,
2)As a consequence it allows to compute the distance between two points
ds®> = g(ds, ds) = gapdz®da’.
3) It maps one-forms into vectors and viceversa.

4) It allows to raise and lower indices.
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Chapter 5

Affine Connections

In chapter I we showed that there are two quantities that describe the ef-
fects of a gravitational field on moving bodies by virtue of the Equivalence
Principle: the metric tensor and the affine connections. In chapter IV we
discussed the geometrical properties of the metric tensor. In this chapter we
shall define the affine connections as the quantities that allow to compute
the derivative of a vector in an arbitrary space, and we shall show that they

coincide with the I"s introduced in chapter I.
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5.1 The covariant derivative of vectors

Be
V= Vaé'(a) (5.1)
a vector. Is the derivative of ‘7, %, a vector?
v Ve 20810
918 928 @ v oxP - (5:2)

The first term on the R.H.S. is a linear combination of the basis vectors
{€w}, therefore it is a vector. The term %, is also a vector for the

following reason. We can always make (locally) a coordinate transformation

-1 0 0 0

0 1 0 0
which brings the metric in the form , and introduce new,

0 0 1 0

0 0 0 1
constant basis vectors € related to the old basis vectors €) by the
equation

E(Q) =A® a_,(a’)- (5.3)

Consequently

85@) _ 8 o N
gaP (WA “) e

: - o 0y
and since the R.H.S. is a linear combination of vectors, % is a vector.

Q.E.D.

. 02 . . .
Since 3 is a vector, we must be able to express it as a linear combi-
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nation of the basis vectors {€(,)} we are working with, i.e.:

0€(q) o

where the constants T, have three indices because « indicates which
basis vector €,y we are differentiating, and (3 indicates the coordinate
with respect to which the differentiation is performed. The T, are called
affine connection or Christoffel symbols.

Thus, the derivative of V in eq. (5.2) becomes

v ave ot =
p = P €a) T 1% Fgae(u)a
or relabelling the dummy indices
v fove 1.
2P = lw +Ver a] €(a)- (5.5)

For any fixed §, % is a vector field because, given a vector field ‘7,
it produces at any point a new vector that is a linear combination of the
basis vectors {€(,)} with coefficients [%% +V°Ig,| . If we introduce the

following notation

ove o ove o
= and V B = 8 +V”Fﬂl£’ (56)

eq. (5.5) becomes

VO (5.7)



1
The quantities V3 are the components of a tensor. In fact, it is

1
easy to show that a tensor maps vectors into vectors and one-forms
1
into one-forms.
Let us see why.
~ — . 1 . ~
T(w,v) isa tensor field. Therefore it takes a one-form @, a vector
1

v and associate a number to them.
If we write T( , %), that means that if we fill the empty slot with any one-
form we will get a number. Thus T'( ,¥) must be a vector (it follows from

the definition of vectors). We shall call it
T(,9)=1()
Let us find its components
T(@®) =T = T(w®, Epv’) = vPT (0, &) = vPT%
T = P17

Similarly T(5, ) =T( ) is a one-form



1
Thus we have shown that a tensor maps vectors into vectors and

one-forms into one-forms.

From eq.(5.7) it is clear that the V* 5 can be seen as the components of

1 _,
a tensor which maps the vector €y, into the vector gTV[;. This tensor

1

field is called Covariant derivative of a vector, it is denoted as VV, and
(VV)% = VgV =V, (5.8)

In alocally inertial frame the basis vectors are constant, and consequently,
according to eq. (5.4) the affine connections vanish and from eq. (5.6) it
follows that

oV

% B = % B = @ =V BE(a)- (5.9)

In a locally inertial frame covariant and ordinary derivative coin-
cide.

In this chapter we have now introduced the connections as those quan-
tities that allow to find the covariant derivative of a vector in an arbitrary
frame. How can we compute FZ,B from what we know? Let us consider for
example a 2-dimensional flat space in polar coordinates, and remember that

the equation which defines I'; is

0€(a) S
a.’L"B = Zﬁ (1)- (510)
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Then
35(1) oe, 0

9zt or  or

(cos fey + sinbe,) = 0,

and consequently

Ff,é'(u) = P:Té'r + Pfré'(g) =0= P:r = FfT = 0.

Moreover
o€ o€, . -
;gg) = ;0 = %(cos e, + sin 0é,) =
1
= —sinfé; + cosfé, = —eéy,
r
therefore

. . . . 1
0= Ffae(u) =I5 + Pfee(e) —[7y=0, Ffa = e

S | =

Proceeding along these lines one can show that
T F0 _ 1 roo__ FO _
or =0, or = o Lo =T o9 = 0

It should be noted that altough we have used the cartesian basis to express
e, and €y and compute their derivatives, at the end the I’s depend only

on the coordinates r and 6.
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5.2 The covariant derivative of one-forms and
tensors

In order to find the covariant derivative of a one-form consider a scalar &
field. At any point of space it is a number, therefore it does not depend
on the coordinate basis: this implies that ordinary and covariant derivative
coincide

0P ~

Now remember the definition of a one-form: it is a linear function that takes

a vector and associates to it a number according to the rule
q(V) = ¢V’ (5.12)

where ¢; and V7 are the components of the one-form and of the vector.

We can therefore assume that the scalar function & is
® = ¢; V7, (5.13)

and consequently the covariant derivative will be

.oV
V] + Qj@.

_ 0% _ 9¢
oxk  Oxk

Substituting 2“2 from eq. (5.6) we find

oxk

oa: . .
v, = 8—§LVJ +g;[VI,, — VT,
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We relabel the indices to put V7 in evidence

0q; . . .
VN(I) = a—xivj + kak;u - QkV]FZj =
a. .
- [8—3 — g TE VI 4 g VE,,. (5.14)

V,® are the components of a tensor ( V,® = d~fu) as wellas V7, ¢, and
V*., 1. Therefore in order this equation to be true, also the terms in paren-

thesis must be the components of a tensor. We call covariant derivative

of the one-form ¢ a tensor Vq whose components are

(V@)ap = Vpla = Gaip = dap — Lo (5.15)
We now observe that eq. (5.14) can be written as
Viu® = Vu(0aV?) = oV + @V (5.16)

From this equation it follows that the covariant derivative satisfies the usual
property of a derivative of a product.

The same procedure that led to define the covariant derivative of one-forms
: o N
can be used to define the covariant derivative of tensors.
NI
(do it as an exercise)

(V)5 = Tung — TauTS — Tual'3, (5.17)

'here we use the word ‘tensor’ to indicate any type of tensors, included vectors and

one-forms
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(VAM), = AR 5 4 ASTH, + APOTY, (5.18)
(VB",)5 = B", 5+ B%,I — BATS, (5.19)

what is the rule?

5.3 The covariant derivative of the metric ten-
sor

The covariant derivative of g, 1is zero
Juv,a = 0.

The reason is the following. We know from the principle of equivalence that
at each point of spacetime we can choose a coordinate system such that g,,
reduces to 7,,. The coordinate basis associated to these coordinates has
constant basis vectors, therefore the affine connections also vanish (see eq.

5.4). In this frame

OMag
Gap;p = NaBsp = 6::” - quguﬂ - Fg“gau =0
. 0 . :
Japiu 18 a tensor, and if all components of a tensor are zero in a
3

coordinate system, they are zero in any coordinate system therefore

Jop;u = 0 (520)
always.
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5.4 Symmetries of the affine connections

Consider an arbitrary scalar field &.

Its first covariant derivative is a one-form and coincides with the ordinary

0
derivative. Its second covariant derivative VV® is a tensor of com-
2

ponents @ g.,. In minkowskian coordinates, i.e. in a locally inertial frame,

covariant derivative reduces to ordinary derivative:

0 0

(D,/j;a = (b”g,a = %WQ, (5.21)
and since partial derivatives commute
Q,,B,OL = (ba,ﬂ = Qaﬂ;a = ¢1a;:3' (5'22)

Thus, the tensor VV® is symmetric. But if a tensor is symmetric in one

basis, it is symmetric in any basis, therefore
Cpa— Pul'py = Pap— ®uley
in any coordinate system. It follows that for any &
@I, =@,

and consequently
I, =Ths (5.23)
in any coordinate system. Q.E.D.
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5.5 The relation between the affine connec-

tions and the metric tensor
From eq. (5.20) it follows that

9oB;p = Gapu — quguﬂ - Pgugau - 07
therefore
gaﬂ,/t = FZugVﬂ + F;ugau-
Let us now consider the following equations
Gop,p = Fgﬁguu + FZﬂgaw
—9Bu,c = _Fgagl/li - F;Uwzgﬁ’/’

It follows that

Gop,u + Gou,8 — 9Bu,a = (qu - F,Za)gllﬂ +

+ Th,+T58)9ar + Thp — Tha) G

where we have used gng = g3a-

Since I'g, are symmetric in S and 7, it follows that

9apu + Yopp — 9ppa = 203,900

(5.24)

If we multiply by ¢%’ and remember that since ¢*7 is the inverse of g,

ga’ygau = 53a
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we finally find the expression of the affine connections in terms of the metric

1
U3 = 597 (dapu + Gaus — 9oua) (5.25)

Are the T'j, components of a tensor?

They are not, and it is easy to see why. In a locally inertial frame the I'g,
vanish, but in any other frame they don’t. If it would be a tensor they should
vanish in any frame.

In the first chapter we defined the Christoffel symbols as

N or® aZfA

This definition was a consequence of the equivalence principle. We did the
following: We considered a free particle in a locally inertial frame {£%}:

d2€a
=0
dr?

(5.27)

Then we transformed this equation to an arbitrary coordinate system {z*}

and we showed that it becomes

2 0y 1] v
d*z o lda: dz ] 0, (5.28)

dr? wdr dr

with T'f, defined in eq. (5.26).
In this chapter we have defined the I[’s as those functions that satisfy the
equation

ag(ﬂ) a >
ozxV = Fuve(a)' (5.29)



What is the relation between eq. (5.26) and eq. (5.29)7

In a localy inertial frame {£{*} be €y the constant basis vectors. If
we make a coordinate transformation to a new coordinate system {z® }, the
new basis {€(,)} will be

- Q - aga pd
E(u) = A wWEM(a) = WGM(Q). (5.30)

In this frame, eq. (5.29)which defines the affine connections can be rewritten

as
0

5o (A% wens)| = TN i) (5.31)
or, being the €5 constant

aAﬂ ., o -
WjeM(g) = FN,V,AWO/GM(,Y). (5.32)

This equation can be re-written as

8Aﬂ / ! -
(aTVlf - Fz/V/A'Bal> eM(ﬂ) =0. (533)

We now multiply eq. (5.33) by Az and find

o’ aA’B“I

A% oz”

— T, A7 s\ = 0. (5.34)

Since A% 3AP, =67 o, it follows that

, ONPy 027 9PaP
P oz~ 0xP Oz OxH

’
FZI ! == AU

which coincides with eq. (5.26). Thus, as axpected, the two definitions are

equivalent. How do the I'g, transform?
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The easiest way to see it is from the definition (5.26)

dinate system {z*'} they are

F)\i ;= @782604 ==
wv o&x Oxv' OxH
B oz 9z O [ 0E* Dz B
© Qxp 0&e Oz \ Oz OzV' )

. In an arbitrary coor-

0%x°

_ Oa¥ Oxr [836" 0%€* 9z7 0L

oxP 0«
ozP OxV' Oz "7 Ox° OxV OxH

oz 0x™0x° Oxt + 0z’ OxV' Ozt

(5.35)

The first term is what we should get if T'g, were a tensor. But we know it

is not, and in fact there is an additional term.

5.6 Appendix C non coordinate basis

In Chapter 3 we have seen that if we pass from minkowskian coordinates

{z®} = (ct,z,y) to polar coordinates {z*} = (ct,r,0) the coordinate basis

€oy — (1,0,0)
{ew} = — (0,1,0)
€y — (0,0,1)
transforms to {€(a}

€o) = €0)

— — —

€11y = € = cos 0€(1) + sin e[y

€2y = €, = —7sin0€(1) + r cos O¢(
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according to the law

-

k d
Elar) = Nar€ir)-

The new basis is a coordinate basis and the matrix Af, = % is the

matrix associated to the coordinate transformation. However we may choose

a different basis for vectors. For example the vectors {€)} in the previous

example are not normalized. In fact

-1 0 0
g(a’) . é’(ﬂ:) = Qup = 0 1 0 7é Na' B -
0 0 7r?

We may decide that we want a basis composed by unit vectors, and choose

éf:€r

& =4 (5.38)
> 1=

6= &0

In this case we would find

But now the question is: do there exist coordinates {r®} such that

ozt

e@ = Nafly) = 5280

so that the basis {€4)} isacoordinate basis? Alternatively, we can formulate

the same question for the basis one-forms: if {w(®)} is the coordinate basis
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for one-forms and {w(®} is the normalized basis, is {©(®} anew coordinate
basis associated to some coordinates {z%} ? i.e.

X X oz
(@ — A& ~(B) — ~(8)9
W = A" = Bxﬂw /

(Show that in the previous example

&' = @ = cosfdx + sin Ody

> = & =rdd = —sinfdz + cosOdy ) (5.39)

The point is that if this is true, A% must coincide with the partial deriva-

tive 32_27 and consequently the following condition must be satisfied for any

Ad,y:
0 - 0%zl % 0 .
— A% = = = A%, A4
or'" P 917058~ 0zPorY  oxB (5-40)

This is an “integrability condition” that all the components of A%, must
satisfy in order the coordinates {z%} do exist.
For examples, let us check whether the basis (5.39) is a coordinate basis.

From the expression of @? we find that

,  Ox? , Oz
A2 - — _gq] 0 A2 = — = 0
1 Oz Sin 2 ay COS U,
eq. (5.40) gives
0 5 0 5 0 0
— A% = —A? —(—sinf) = —
AR A = 5.@( sin 6) 5 (cosb),

But

z =rcosb y = rsinf r=1/x% +y?,
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so that it should be

which is certainly not true.
We conclude that the basis {&(®} is not a coordinate basis, since we cannot

associate to it a coordinate transformation.

What are the consequences of choosing a noncoordinate basis?
As we have seen at the end of section 3.5, the gradient of a scalar field ® is

a one-form:

do — {3_@}_{ o) - (5.41)

For example let us start in a 2-dimensional plane with coordinates (z,y) =
(z',2?). Then change to polar coordinates (r,f) = (z',2?). The gradient

will transform as one-forms do:
d®, = A¥,dd,

where d®, = o, = g_i and gq)y =0, = g_i_

The components of the gradient in the new coordinate basis are

or -~ 8y

d®, = A*.d®, + AY,dd, = ——dd, + ——dd,

i i o gy (5.42)
= A* Y =

d®y = A%¢d®, + AYed®, = aadCI) + aod(I)
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Being

r = rcoséb,
y = rsinf
~ ~ = d
d®, = cos 0dP, + sin 0d®, = 8_ =0,
i i o (5.43)
d®y = —rsind®, + +rcos 0dP, = 50 = D y.

Thus the components of the gradient in the new coordinate basis (&), €))
will still be

~ 0P
d(I)]I — W .

But this is certainly non true if we use the non coordinate basis {€(4)}: there

28

are no-coordinates associated to this basis, thus we cannot define d®; = o

1
Let us see what happens to the affine connections if we use a non-coordinate
basis. We have defined I'g, as

Vol = =80 =T%.&u) - (5.44)

This is a definition valid in any basis, therefore in terms of a noncoordinate

basis {€a)} eq. (5.44) becomes
But now, since the {22} do not exist, is not longer true that

o ®

856 °

NeH
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If we go back to eq.(5.22) we see that we used this condition to show the
simmetry of the affine conection in the two lower indices. Thus if the basis
is a non coordinate basis

Fgﬁ # Fgﬁ
and moreover eq (5.25) which gives the connections in terms of g¢,s is no
longer true as well.

In the following of this course we shall use mainly coordinate basis, and we

shall explicitely specify when we will use a non coordinate basis.
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Chapter 6

Parallel Transport

6.1 Summary of the preceeding chapters

In the chapter I we have seen that the equation of motion of a particle which

moves under the exclusive action of a gravitational field is

d?x® Lo dat dz”| 0 (6.1)
dr? wldr dr | )
In this frame the line element is
ds® = g, drtdz”. (6.2)

Then we have seen that the Equivalence Principle allows to find a locally

inertial frame {£“} where eq. (6.1) becomes

2¢a
d& —0

drz

(6.3)
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and the line element reduces to
ds® = ny,dztdz”. (6.4)

However we do not know if this transformation holds everywhere, i.e. if the
spacetime is really flat, or if it holds only locally, which would mean that
there is a non constant and non uniform gravitational field. It follows that
the study of the motion of a single particle, or the knowledge of the I';, do
not allow to decide whether we are in the presence of a gravitational field.
Then we have introduced vectors and tensors on a manifold, we have
defined the metric tensor as a geometric object and we have shown that
its role is not only that of defining the distance between points, but also
that of mapping vectors into one-forms, and of computing the scalar product
between vectors. We have shown that if we introduce at each point of the
manifold a basis for vectors {€(,)} (and a dual basis for one forms {&®} )
any vector (or one-form) can be assigned “components” with respect to the
basis
A = A% . (6.5)
Then we have introduced an operator of covariant derivative, which gen-

erates a tensor according to the following rule
VgV“ = Va’ﬂ + F“MBV“. (66)

(and similar rules for tensors). The covariant derivative coincides with ordi-

nary derivative in two particular cases:
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1) the spacetime is flat and we are in a basis where the vectors €, are
constant. Consequently I'“,3 = 0.

2) the spacetime is curved, but we are in a locally inertial frame. In
fact, in this frame eq. (6.1) reduces to eq. (6.3), which means again that
e, =0.

The fact that we can always find a frame where ¢,, reduces to 7,, and
the I'“,;3 = 0 (and consequently the first derivatives of g,, vanish) implies
that in order to know if we are in the presence of a gravitational field, (i.e.
if the spacetime is curved), we need to know the second derivatives of
the metric tensor g,, .. This result should not be surprising. In fact in
chapter I when we introduced the 2-dimensional gaussian geometry we said
that one can always choose a frame where the metric looks flat, but there
exists a quantity, the gaussian curvature, which tells us if the space is flat or
curved. The gaussian curvature is computed from product of first derivatives
and from the second derivatives of the metric, thus we are now looking for
a generalization of the gaussian curvature. We already mentioned that in
four dimensions we need more than one invariant to describe the intrinsic
properties of a curved surface: we need six functions, and it is clear that a
vector would not be enough. Thus we need a tensor, but which tensor? At
the moment we only know that it should contain the second derivatives of
g,v- But this is not enough. In order to introduce the curvature tensor we

first need to introduce the notion of parallel transport of a vector along a
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curve.
Parallel Transport
In the chapter I we discussed and compared the intrinsic geometry of
cones, cylinders and spheres, and we noticed that while it is flat for cones
and cylinders, it is curved for spheres. That means, for example, that two

lines which start parallel do not remain parallel when prolonged:

consider two segments in A and
B, perpendicular to the equator,

i.e. parallel.

The same lines when prolonged:

they do not remain parallel.

It is also interesting to see what happens when we parallely transport a vector
along a path. Parallel Transport means that for each infinitesimal
displacement, the displaced vector must be parallel to the original
one, and must have the same lenght. Let us consider first the case when

the path belongs to a flat space.
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a) FLAT SPACE

C

AN

] I B

\J

When we return to A the dis-
placed vector coincides with the

original vector in A.

b) ON A SPHERE

(remember that the vector must always be tangent to the sphere)

C

When the vector goes back to A
it is rotated of 90 degrees This is
a consequence of the curvature of

the sphere.

On a curved manifold it is impossible to define a globally parallel
vector field. The parallel transport of a vector depends on the path

along which it is transported.
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Let us now compute how does a vector change when it is parallely trans-
ported. Consider a curve of parameter A and a vector field V defined at

every point of the curve. Be U— %} the vector tangent to the curve

At every point of the curve we can choose a locally inertial frame. In this
frame, if we move 1% along the curve of an infinitesimal d\, parallel to itself
and keeping its lenght unchanged, its components do not change

ave

) 6.7
o =V (6.7)
But
dVe  dVedxb
= = ﬂ @ = .
N Y U"ve 5 =0. (6.8)

Since we are in a locally inertial frame, ordinary and covariant derivative
coincide and therefore we can write

ave
dA

= UV = 0. (6.9)
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If this equation is true in a locally inertial frame, since it is a tensor equation
it must be true in any other frame. Therefore eq. (6.9) is the frame-invariant
definition of the parallel transport of 1% along the curve identified by the

tangent vector U. We can therefore use the following equivalent notations

UPVes =0, ——=VsV=0, (6.10)
’ dA
where
Lo dzf [oVe dve
(VaV)" = % [%ﬁ +raﬂuvv] =+ TRV (6.11)

From eq. (6.11) it follows that, contrary to what happens in flat space, the
components of a vector parallel-transported along a curve in curved space do

change.

6.2 Geodesics are those curves which parallel-
transport their own tangent vectors
Let us prove this statement. It says that geodesics are those curves such that
VU =0. (6.12)
In components this becomes

UPU® 5 = UP[U* 5+ T°,5U"] = 0. (6.13)
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If X is the parameter U? = %, and

0 dz®\ dz?  d’z°
bue 5 = = ; 6.14
VU <axﬂ d/\) dx — d\?’ (6.14)
eq. (6.13) becomes
d?x® dz* dz?
— 4T === =0 6.15
e “’Bld)\ dA] ’ (6.15)

which is indeed the geodesic equation. The only difference is that in place
of the proper time there is the parameter A. However we can change the
parameter (and make it coincides with 7), which means that the path re-
mains the same, but the curve changes. But there are some restrictions if we
require the new curve to be a geodesic:

If ) is a parameter of a geodesic, only linear transformations of

s=a\+b, a,b = const, (6.16)

give new parameters in which the geodesic equation is satisfied.

In fact
d d ds d
2w _,9 6.17
A\~ dsdx  "ds’ (6.17)
and it is immediate to see that eq. (6.15) becomes
d?x® dx* dz¥
— 41 | — =0. 6.18
d52+’“’[ds ds] 0 (6.18)

A and s are called affine parameters.
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Chapter 7

The Curvature Tensor

We are now in a position to introduce the curvature tensor. We will do it in

two different ways.

7.1 a) A Formal Approach

Let us start writing the transformation rule for affine connections

S oz 9z oz __, N oxr 9%z™
H gt gk Qzv - P Qx! Qrkdx”

(7.1)

As we already noticed (Chapter V sec. 4) if the last term on the right-hand

side would be zero F)‘W would transform as a tensor. Let us isolate the

‘bad term’, by multiplying eq. (7.1) by 2Z:
0?z™ ox™ 0z 0z,
roy il S il iy R (72)
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We now differentiate this equation with respect to z*

83$T/ 82.’L'TI ax'rl 8
= M, +— (=TI, 7.3
oxkozrdzr  Ozkoxr * + oz (836’“ K ) (7.3)
Pz Oz ., Oz %27 ., 02" 0x” (0 -
ozkoxt Oxzv~ 77" Ozt OzkOxv P Ozr ozv \oxzk P

We now use eq. (7.2):

3™
drkdTrOTY (74)
PN [ VoL N B
B Oge ozk o> ox> | Oxk™ M
oz oz? Ox¥ Ox'
o [@F 0" Gk D ]
ox”' e oz, ox" oz __,
R iy
_ 0z 0z [ 0 e
ozt Ozv \oxk~ ') "
Let us rewrite the last term as
0z 0z 0z (0 _,
O+ Ox¥ Oxk (83;"'F p'“') ' (7.5)

(The reason is that the indices of I" have a prime, thus the derivatives must
be computed with respect to the {x*}). We now rewrite eq. (7.5) in the

following way

83$T/

_ 7.6
oxkozroxY (7.6)
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oz™ [ 0 oz™ _,
laﬁ (@FAW> + (axaf k/\F/\uu)]

[ OxP' 0z 0™ [ O _, dz°' Oz Oz o e
| 0x# Ozv Ozk \dzv” ') Oxv Oxk oxn T M

[ 9,.0! il gt
|0z 02" Oz [ o
ozt dzk dzv = PO M
[ 9,01 ol p! al it 9t
| 027, O ro Oz v Oz ro +8x Oz o
ozv "~ P oge” KT gan P gga KT Gk ggat et Wl

We now relabel the indices in the following way

63,1.7'/
% R
oz

6$TI

eI,
ora Ao

FAknFnuu (77)

ol i/ j! o! ot p!
0z 0z 07" ., NN 0z 0x™ Ox TN
ox* Ok Or* plat= gt OV Oxk Orh Io! npl
Oz Oz" Oz OzP' O™ Oz

& FTIpIo’IFU,inI — S k A
ozx* 0xk Oxv ozt Oz Oxv

! i
I pl)\IF nlot

oz, O0z” re. oz [ 0z
1ol k 1p!

Oxv = P oxe” "HT gxvT TP oA

oz ox” oz 0z’
Tlplal Faku — 7-Ipla'l BN

ozt oz® ozt oz

il 4! pl ol
0z % AT s aiai AT
Lk pih . ket it . uul  prot

A
| P

A
Fku

With these changes the terms can be collected in the following way

3z _ Oz 0
Orkdrroxy Oz |\ Ok

oz 0z O™ K 0

F’\W) + r'\,mrﬂwl (7.8)

T! T! A T/ A
r pIo‘I) -T )\IUIF T]lpl_F pl)\IF nlo’l]

~ Ozn Oz Oxk |\ oz
oz” N Oxf' . Oz, Ox”
_ax)‘r prot [F kv +T W opn +I moxk |
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We now subtract from this expression the same expression with &£ and v

interchanged

B B!
Oxkdrroxy  Ox’OxtOxk 0= (7.9)

ox™ 0
l<—r/\’“’> + F/\knrnwj

oz* |\ Ozk

oz? 0z 0z™ 0
- Ok Oxv 8.’L‘k [(axn, PTIpIaI> - FTI)\IUIF)\InlpI - FTIP/A/FAIn,J,]

oz’ oz
_ r — T,
oz ki v Tk ok T ozk

oz™ 0
B> Kax" FA"’“) " FA”"FW”'C]

ox” 0z Ox™ 0
oxk Oxk Oz [(8:6"’
ox” ox”
"o e

FTIpIaI lPA

! ! i T! M
r plo’l) =T )\IO'IF nlpt — r pl)\IF nlo‘l]

oz, Oz ]

M ——
+ * oxh Lk oxV

FT,pIo‘I |}'v\

collecting all terms we find

o [ 9 _, )

5 la— W A
oxf 0x oz" | 0O

Ozt dxv Oxk la

T + T2, 07, — F’\,,nl“”uk] (7.10)

. D

! ! Y i A
I pmt +17 )\/n/F alpt — I /\IUIF 'qlpl] =0.

If we now define the following !

0 0
— T, - —
oxk  H oY

!The - sign does not agree with the definition given in Weinberg, but it does agree

R/\uuk == l FAuk + FAknFnuv - FAvnFnuk] J (7.11)

with the definition given in many other textbooks. As we shall see in the next section it

is irrelevant. What is important is to write the Einstein equations with the right signs!
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we can write eq. (7.10) as the transformation law for the tensor

0z Ozt Ox¥ Ox* \
x> Oz OB gz Mk

Rala/ﬁlry[ = (712)

The tensor (7.11) is The Curvature Tensor, also called The Riemann
Tensor, and it can be shown that it is the only tensor that can be constructed
by using the metric, its first and second derivatives, and which is linear in
the second derivatives.

This way of defining the Riemann tensor is the “old-fashioned way”: it is
based on the transformation properties of the affine connections. The idea
underlying this derivation is that the information about the curvature of the
space must be contained in the second derivative of the metric, and therefore
in the first derivative of the I'*,,. But since we want to find a tensor out
of them, we must eliminate in eq. (7.1) the part which does not transform

as a tensor, and we do this in eq. (7.9).

7.2 b) The curvature tensor and the curva-
ture of the spacetime

We shall now rederive the curvature tensor in a different way that explicitely
shows why it espresses the curvature of a spacetime. This derivation, due
to Levi Civita, will use the notion of parallel transport of a vector along a

closed loop.
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Consider a closed loop whose four sides are the coordinates lines z! = a,

t=a+da, 22 =0b, 22 =0+ b

Take a generic vector V and parallely transport 1% along AB, i.e. consider

Vs, V =0. From eq. (6.10) it follows that

€(1)
6’(31) Va;ﬂ = O

Since €y has only ef;) #0 then

ove

5o TV =0.

This equation can be integrated along the line AB:
B
oVig =— - re, Vide'.
In a similar way, if we go from B to C along the line z! =a + da

ove
0x?

C
_ _ T« I a «a B2
S P (N /s /B oy TV
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(7.16)



From C to D

Ve _pajve S sye ——/D re, Vede!,  (7.17)
ozl u R e A ’ '

and from D back to A

ove
0x?

A
= TOLVE o VS, = / oy TV (118)
D(x'=a

The change in V due to this parallel transport will be a vector 8V whose

components can be found by addinge egs. (7.15)-(7.18):

A
SV = — / e, Vide? (7.19)

D(z'=a)

c D
- re,sVida® — [ I, Vidz!
B(zl=a+da) C(z2=b+6b)

B
- re, Vidz!.
A(z?=b)

If the spacetime is flat V# does not change when paralleley transported, and
0V* = 0. But in curved spacetime 6V will in general be different
from zero.

If we consider an infinitesimal loop, i.e. da and db tend to zero, we can

take an expansion of eq. (7.19) to first order in da and 6b:

A
SV~ — / r®,,Vidz? — (7.20)

D(z'=a)

C
[ [ TV + o ( / re, V“dx)éa]
B(zl=a)
D
- V Do Vide! + (/ re, wm«)(sb]
C(z2=b)
B
— / e, Veda!,
A(z2=b)
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Since

A= (a,b), C=(a+da,b+6b), B=(a+da,b), and D = (a,b+ db),

(7.21)
the previous equation becomes
b+db
SV~ /b I, Vhda? (7.22)
b i 9
—/b PMZde—/b s ([,0V*) da? | da
a+da N o atda o " 1
+/a ru1de+L o (0% V") dat | 8b
a+da
_ / e, Vida!,
ie.
N L
SV =~ —ba /b s (MaV") do (7.23)

atbe § 0 o 0 o tru
+5b/a 55 (M2 V*) da' = 6adb | — o (T V") + 5= (D% VH) |

Eq. (7.23) can be further developed by using eq. (7.14)

ovY ovY
5 =-I",.V¥, £l = I,V (7.24)
and it becomes
o ore o OVV  oU%, . VY
oV = 5@(5()[ axg V“+P vl 8,272 - axf Ve —-T v2 8:51] (725)
or« or«
= dadd [ aacgl — (93:52 =T 0 + Fauﬂw,u] VE,
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What does that mean? The term in parenthesis is a number, thus eq. (7.25)
says that the 6V* are a linear combination of V#. The indices 1 and 2
appear because we have choosen the path along z' and z? coordinates.
Note also that it is antisymmetric in 1 and 2 (if we interchange 1 and
2 0V reverse their sign, and this because we would go around the loop in
opposite direction). If in place of ' and x?, we choose arbitrary coordinate

lines z% and z* we find

ore,, ore
OV = dadb | =L — =2 — T, I + D0 | VA (7.26)

The term in parenthesis coincides with the definition of the Riemann tensor
(7.11). If we would go around the loop in the opposite direction the sign
would reverse. This shows that the sign can be chosen arbitrarily, and this is
the reason why the definition of the Riemann tensor given in textbooks may
differ for a sign. In the following we shall assume that the curvature tensor
is
R =T%u 0 — T + T 078, — 15,175, (7.27)
We have already shown that this is a tensor by looking at the way it
transforms under a coordinate transformation (eq. 7.12). But we want to
see if it also agrees with the definition of tensors given in chapter 4. Let us

contract eq. (7.26) with V.

re,, o
OV Vo = dadh aaxf —aax? — T T + T | VAV, (7.28)
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The result of this contraction is, of course, a number. First we note that
(7.28) is linear in V¢, V,,da,0b. da and 0b are the displacement along

the basis vectors €,y and €, thus 6V depends linearly on da€y

1
and 0b€(y). If we consider a generic tensor, T%g,s , since by

3

definition it is a linear function of one one-form and three vectors, when
supplied with these arguments (for example the one-form V, and the three

vectors 17, 8a€(q), 6bE(y)), it will produce the following number
T(V,V,6a€(), 6bé(r)) = T%pp5VaV P ae], 6bely,. (7.29)

Eq. (7.29) has the same structure of eq. (7.28). Therefore we are entitled to
define the components of the Riemann tensor as in eq. (7.27).

It should now be clear why the Riemann tensor deserves its name of
Curvature Tensor: it tells us how does a vector change when it is parallely
transported along a loop, due to the curvature of the spacetime. If the

spacetime is flat

V=0 — Raﬂ,yg =0, (730)

in any reference frame. The components of the Riemann tensor assume

a very nice form when computed in a locally inertial frame:

1
Raﬂ;u/ = _gaa [gau,ﬂu — gau,ﬁll + gﬂu,au - gﬂl/,au] ) (731)

2
or lowering the index «

1
Raﬂuv = ga)\R/\/juV = 5 [gau,ﬂu = Gap,pv T 9Bu,av — gﬁv,au] . (7-32)
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It should be stressed that
1) The Riemann tensor is linear in the second derivatives of -
2) In a locally inertial frame the I'®,, vanish and therefore the non-linear

part of the Riemann tensor vanishes as well.

7.3 Symmetries

From eq. (7.32) it is easy to verify that
Roguw = —Rpapy = —Rapuy = Ruvas, (7.33)
Rapuw + Ravpy + Ropvs = 0. (7.34)
Since Rapu, is a tensor, these symmetry properties are valid in any refer-

ences frame. The symmetries of the Riemann tensor reduce the number of

independent components to 20.

7.4 The Riemann tensor gives the commu-
tator of covariant derivatives

Let us consider the second covariant derivatives of a vector field V
VaVV = Vo(VEg) = (Vi) o+ ThoaV7g = TV, (7.35)
In a locally inertial frame I'*,, =0, and eq. (7.35) becomes
VoVaVE = (VEg) o=V 54 +TH V" (7.36)
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By interchanging o and g
VeV VE = (VE,) g =VH ap+THasV". (7.37)
The commutator of the covariant derivatives then is
[Va, V| VE =V, VaVH = VgV VH = (TH, 50 —THas) V. (7.38)
Since in a locally inertial frame
Rk =T — Tk (7.39)
(equivalent to eq. 7.32), eq. (7.38) becomes
[Va, V] V¥ = RF o V. (7.40)

This is a tensor equation and since it is valid in a given reference frame, it will
be valid in any frame. Eq. (7.40) implies that in curved spacetime covariant
derivatives do not commute and therefore the order in which they appear

is important.

7.5 The Bianchi identities

Let us differentiate eq. (7.32) with respect to z* (and rememeber that it is

valid in a locally inertial frame)

1
Raﬂuu)\ = 9 [glw,ﬁu)\ ~ Gop,pvr T 9ppovr — gﬁu,au)\] : (7'41)
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By using the fact that g.s is symmetric and eq. (7.41) one can show that

Raﬂuu,)\ + Raﬂ)\u,u + Raﬂu)\,u =0. (742)

Since it is valid in a locally inertial frame and it is a tensor equation, it will

be valid in any frame:

Ra/)’uu;)\ + Raﬂ)\u;u + Raﬁu)\;u = 07 (743)

where we have replaced the ordinary derivative with the covariant deriva-
tive. These are the Bianchi identities that, as we shall see, play an

important role in the development of the theory.
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Chapter 8

The stress-energy tensor

Now we know that there exists a tensor which allows to understand if the
spacetime is curved or flat, i.e. if we are in the presence of a non-constant
gravitational field. But in order to derive Einstein’s equations, we still need to
answer the following question: how do we describe matter and fields in
general relativity? This question is relevant because we want to find what
to put on the right-hand-side of the equations as a source of the gravitational

field.
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8.1 The stress-energy tensor in Special Rela-
tivity

In Special Relativity, we define the energy-momentum four-vector of a
dz

particle of mass m and velocity ¢ = ¢ in the following way

p* = mcu®, a=0,3, (8.1)

where u® = % is the four-velocity, 7 is the proper time

dr? = —napdzda”, (8.2)

2
dr = (Adt* —dz? —dy? — d2*)V? = (1 - 2—2)1/2cdt,

and
-1 0 0 O
0 100
Nuv = . (8.3)
0 01O
0 001

The time-component of the energy-momentum vector does represent, the en-

ergy of the particle
p = —, y=(1-v*/)""? and E =mcy. (8.4)

The space-components are the components of the three-dimensional momen-
tum

7= mnu. (8.5)



What does it change if we are dealing with a continuous or discrete distribu-
tion of matter and energy? In that case we should be able to measure some
other quantities, as the mass and the energy which are contained in a unitary
volume, or the flux of energy and momentum that flows across the different
faces of this volume. These informations are contained in the stress-energy
tensor we are now going to define.

Let us consider the simple case of a system of n non-interacting particles
located at some points z,(t), each with an energy-momentum vector pg.
(We will define the stress-energy tensor for fluids and for electromagnetic
fields when we will study stars and charged black holes).

We define the density of energy as

7% = Z epd ()83 (x — x,(t)) = Z E, 0% (x — x,(t)), (8.6)

n

the density of momentum 7% where T% is defined as

T% =3 eph (1)8° (x — x,(t)), i=1,3 (8.7)

n

and the current of momentum as

TkiEZpﬁ(t)%é?’(x—xn(t)), k=1,3 i=1,3. (8.8)

n

§3(x —x,) is the Dirac delta-function defined by the statement that for any

smooth function f(z)
/_ O:o dzf(x)*(x —y) = f(y), (8.9)
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where, if y = (20, y0, 20)
3 (x—y) =6(z —20)6(y — y0)§(z — 20), (8.10)
or, in polar coordinates

5(r — 10) = %5(7« — 10)6(0 — 60)5( — ). (8.11)

72 sin

It should be noted that according to the definition (8.9) the three-dimensional
S-function has the dimensions of the inverse of a cubic lenght [~2. For this
reason, for example, since 7% has the dimensions of an energy per unit
volume, it is the density of energy. ! The two definitions (8.7) and (8.8) can

be unified into a single formula

T = Zpﬁ%d?’(x — x,(t)), a,f=0,3. (8.12)

Since

(8.13)

eq. (8.12) can also be written as

IProperties of the é-function

/d%f )8'(x —y) = —f'(y).
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B
T = 2 Y 7%53@ — xa (1)), (8.14)

n

which clearly shows that 7% is symmetric
TP = TP, (8.15)

Finally, an alternative way of writing eq. (8.12) can be found by using the

property (8.9) of the d-function

To8 = cz / pe "54 %o (7)) AT, (8.16)

where

§'(x —y) = 6(mn — ct))d(z — 20)5(y — y0)6(z — 20), (8.17)

The meaning of the different components is the following
T% = energy-density. In the non-relativistic case v << ¢, p2 ~ m,c?

and T% ~ 3, m,c?§3(x —x,(t)) reduces to the density of matter pc? where

p=> mpo*(x —x,(t)) (8.18)

(remember the dimensions of the J-function) .

T% = energy which flows across the unit surface orthogonal to the axis
z' per unit time (i=1,3) (see eq. (8.16)).

T% = flux of the i- component of the three-momentum p across the
unit surface orthogonal to the axis z* (i,k=1,3).

Now we must check several things:
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1)is T% a tensor?

2) does it satisfy any conservation law? (remember that the energy-
momentum four vector does satisfy a conservation law).

3) if it does, how to write this law in a curved spacetime, i.e. in the
presence of a gravitational field?

1) T% is a tensor

Let us subject the coordinates z® to a Lorentz transformation

2 = [, (8.19)
where v = (1 — Z—z)_% ,
- 1
Loy =v, L=Lj= %uj, Ly =6+ —vw;. i,j=1,3 (8.20)

and »' are the components of the velocity of the boost. Accordingly, the

four-momentum will transform as

pp = Lpy, (8.21)
and T becomes
dxé/
T8 = >3 / dTnLay,L’B(g,pz'd—”&(x' — Xp (7)) = (8.22)

=L° 7,L ,CZ/dT”p "(54 (x' = x,, (7)) d 7.
Consequently 7 is a tensor because it transforms as a tensor
T = L*,LP5 T (8.23)
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2) T*# does satisfy a conservation law

In order to show it we differentiate eq. (8.8):

o i (t) 0

o' _; dt 3xz(53( x — x,(t)), (8.24)

where o =0,3 and ¢=1,3. Since

0 4 0
83:1'5 (x—x,(t) = _830%5 (x — x,(t)), (8.25)
eq. (8.24) becomes
38’1::% _ Zn:pg(t) dxébt(t) %53()( — x.(1)) (8.26)
- -2 dt( (= xa(0)

= —an (53 (x — x,(1)).

By making use of egs. (8.6) and (8.7), eq. (8.26) gives

aTai_ 10,00 dpiy () o3 .
o = c@tT —I—; o 5% (x — xp(1))- (8.27)

Since

dpy(t) _ dpp(7) dr _ 41 .
dt —  dr dt dt’™

(8.28)

where f¢ isthe relativistic force, the last term in eq. (8.27) can be considered

as a density of force G* defined as

Go(x,t) =) Ch’%pdi”(x — Z 83 (x — x,(t f”‘. (8.29)

n
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It is a density because the §-function is [I73]. If the particles are free, f* =10

and eq. (8.27) becomes

o . 10 0
LBy 208 — T paB _ 8.30
ox? + cot o0xB ’ ( )
or
Taﬂa/ﬁ = 0’ (8.31)

which is the conservation law we were looking for.
Why is 7% 5 = 0 a conservation law? To answer this question, let
us start with a familiar equation in classical electrodynamics. Consider a

collection of charged particles of density p enclosed in a volume V.

% /V pdV (8.32)
will be the variation of charge inside the volume V. Be S the surface
enclosing the volume, and 7 the normal vector, which is assumed to be
positive if pointing outward.

pU - ndS (8.33)
will be the charge which flows across dS per unit time. It is positive if the

charge goes out, negative if it flows in. Thus

/ o7 - 7S (8.34)
S
is the total charge per unit time, which flows across the surface S enclosing

the volume V. The continuity equation then says that
a — —
—/ pdV = —/ pv - 1idS. (8.35)
ot Jv s
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The minus sign is because the right-hand side is positive if the charge con-

tained in V' increases. If we now introduce the three-dimensional current

J = pt, (8.36)
eq. (8.35) becomes
0 -
= [ pav =~ [ J-7as. 8.37
ot /v P so " (8:37)
We now apply the Gauss theorem:
/ J-dS = / divJdv, (8.38)
s v
and eq. (8.37) becomes
9 / qv = — / divJdV. (8.39)
at v T TNy ' '

Since the volume V is arbitrary, we can write

dp

divg = —=
wJ 5%

(8.40)

or

9, 8J, 9l  9p
oz "oy T oz ot (841)

which is the continuity equation in a differential form. Let us now trans-

form eq. (8.40) in a four-dimensional form. We define a four-current

dz® =
JO = Py = (pc, J), (8.42)

Then eq. (8.40) becomes

0
oxr®

J* =0, a=0,3. (8.43)

138



We are now going to show that any current J%(x) which satisfies the con-

servation law (8.43) is associated to a total charge @ defined as

Q= /V Jdv, (8.44)

which is conserved. The integral in eq. (8.44) is evaluated at some
fixed time, thus we say that the integration is performed on an
hypersurface z° = const over the whole three-dimensional space.

The total charge () is a conserved quantity for the following reason. By

virtue of eq. (8.43)

1dQ 10 o
e =2 gy = —/ divJdV = —/ JEdSy.  (8.45
c dt allspace C ot allspace w sur face k ( )

The last equality follows from the application of the Gauss theorem, and
the subscript ‘surface’ means that we are considering the flux of J across
the surface which encloses the whole space. dS; are the element of surface
orthogonal to z*. If J goes to zero at infinity, the last term in eq. (8.45)
vanishes, and therefore the total charge () is a conserved quantity. It can
also be shown that @ is a scalar (see Weinberg pg. 41).

And now let us go back to equation (8.31). Let us assume for example

that o = 0:
ors  gr%  91"% 10T
=—— . 8.46
ox * oy + 0z c Ot ( )
If we integrate over a volume V as we did before, we get
10 00 .0k Ok
22 dV=/ div(T )dV:/T dS. (8.47)
catJv % s
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Remembering that T is the energy-density and 7T°F is the energy which
flows across the unit surface orthogonal to z* it is clear that eq. (8.47)
expresses a law of conservation of energy, and a similar procedure can be
used to find the conservation of momentum by putting o = 1,2,3. In

analogy with eq. (8.44) we can define a vector
pe— / T4V,  a=0,3, (8.48)
1%

which can be identified as the conserved energy-momentum vector of the
system. For example

P° = / gV, (8.49)
1%

does represent the total energy of the system. It is conserved because

1dP° 1 0 0 . )
el / Cpoogy — / 2 poigy — _ / TS, = 0.
c dt C Jallspace ot allspace oxt sur face
(8.50)
It should be reminded that this derivation has been carried out in the frame-
work of Special Relativity.
3) How do we write this conservation law in curved spacetime?

In order to answer this question we need to state The Principle of General

Covariance which will be the foundation of the theory of General Relativity:

8.2 The Principle of General Covariance

A physical law is true if:
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1) it is true in the absence of gravity, i.e. it reduces to the laws of special
relativity when g, — M and 1'%, wvanish. It is clear that this first
proposition includes the Equivalence Principle.

2) In order to preserve their form under an arbitrary coordinate trans-
formation, all equations must be generally covariant. This means that all
equations must be erpressed in a tensor form.

The physical content of the Principle of General Covariance is that if a
tensor equation is true in absence of gravity, then it is true in the presence of
an arbitrary gravitational field. It should also be stressed that the Principle
of General Covariance can be applied only on scales that are small compared
with the typical distances associated to the gravitational field, (for example
to the curvature) , because only on these scales one can construct locally
inertial frames.

And now we can give an answer to the question 3). First we note that eq.
(8.31) is valid in special relativity, i.e. in the absence of gravity, therefore, ac-
cording to the Principle of Equivalence, it will hold in a locally inertial frame
of a curved spacetime. In this frame, the covariant and ordinary derivative

coincide, therefore we can write eq. (8.31) in the alternative form
T 5 = 0. (8.51)

Then we observe that in the light of the Principle of General Covariance,

since the conservation law (8.31) is a tensor equation, it will hold in any
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arbitrary frame. Thus in order to transform a generic tensor equation valid
in Special Relativity to a generally covariant form it will suffice to replace
the comma with a semi-colon. The general conservation law satisfied by the
stress-energy tensor therefore is eq. (8.51).

Is this a conservation law?

To answer this question we need to compute the covariant divergence of a
tensor. From the expression of the affine connections in terms of the metric

we find that

1 0gmr  O0m 09
THy, = —g"™ B = 8.52
=59 < Oxk + ox* ox™ (8.52)

The first and the third term give

'umagm)\ o umag)\ﬂ — Nmagm)‘ _ mu% =0, (853)

ozxH ozx™ ozH ox™

due to the symmetry of g,s, therefore

1 ., 0g
I‘ll)\“ = igup%p;f. (854)

For any arbitrary matrix M

Tr [M‘l(a:)wM(x)] = %m[petM(x)]. (8.55)

But this is what we have on the right-hand side of eq. (8.54), therefore, if

we call Det(g) = —g, eq. (8.54) becomes

= o inf~g) = \/—__g%\/——g. (8.56)



Thus for example, if V# is a vector

1 9
VA=V + T, Ve = = (vV=9V?), (8.57)
and for TH
__L 9
O /—_g o

In particular, if F* is antisymmetric, the last term in eq. (8.58) is zero

i (vV=gT") + T, TH. (8.58)

and

1 0
o/ —g 0>
Now we go back to eq. (8.51). By using eq. (8.58) it becomes

0

x>

v (V=gF™). (8.59)

(V=gT") = —/=gT"\,TH, (8.60)

and this is not a conservation law. Thus we cannot define a conserved four-

momentum as we did in Special Relativity. We may be tempted to define

pe :/ V=gTdV,  a=0,3, (8.61)
14

but this would not be a vector. The physical reason for this failure is that
now we are in General Relativity, and we must take into account not only
the energy and momentum associated to matter, but also the energy which
is carried by the gravitational field itself, and the momentum which may be
carried by gravitational waves. However we shall see that if the spacetime
admits some symmetry (for example if it is spherically or plane-symmetric,
or it is invariant under time-translations etc.) conserved quantities can be

defined.
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Chapter 9

The Einstein equations

We now have all the elements needed to derive the equations of the grav-
itational field. We expect they will be more complicated than the linear
equations of the electromagnetic field. For example electromagnetic waves
are produced as a consequence of the motion of charged particles, but the
energy and the momentum they carry is not a source for the electromag-
netic field, and it does not appear on the right-hand side of the equations.

In gravity the situation is different. The equation
E =mdc, (9.1)

establishes that mass and energy can transform one into another: they are
different manifestation of the same physical quantity. It follows that if the
mass is the source of the gravitational field, so must be the energy, and

consequently both mass and energy should appear on the right-hand side
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of the field equations. This implies that the equations we are looking for
will be non linear. For example a system of masses arbitrarily moving will
radiate gravitational waves, which carry energy, which is in turn source of the
gravitational field and must appear on the right-hand-side of the equations.
However, since newtonian gravity works remarkably well when we are dealing
with non relativistic particles, or in general when the gravitational field is
weak, in formulating the new theory we shall require that in the weak field

limit the new equations reduce to the Poisson equation
V2® = 47Gp, (9.2)

where p is the matter density, ® is the newtonian potential and V? is
the Laplace operator in cartesian coordinates

0?0

2 __
V= 8x2+8x2+8x2'

(9.3)

Let us start by asking how the equations should look in the weak field limit.

9.1 The geodesic equations in the weak field
limit

Consider a non-relativistic particle which moves in a weak and stationary
gravitational field. Be 7 the proper time. Since v << ¢ , it follows that

dzt dz’ cdt  dx®
— << c — =

o et _ 4
dt ar S dr T dr (9-4)
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In an arbitrary coordinate system the geodesic equations are

A2zt dz® dzP A2zt cdt\’
— 4 =0 — s [ —1| =0. 9.5
dr? thap dr dr dr? *hoo (dT) (9:5)

From the expressions of the affine connections in terms of g,, we easily find

that
1 a
oo = 59“ (2905,0 — 9o0,5) - (9.6)
In addition, if the field is stationary go,0 =0 , and

1w 3900'

I =
00 29 oro

(9.7)

Since we have assumed that the gravitational field is weak, we can choose a

coordinate system such that
Juww = Nuv + huu; ‘h;w‘ << 1, (98)

where h,, is a small perturbation of the flat metric. In other words, we are
assuming that the field is so weak that the metric is nearly flat. Since we are
interested only in first order terms, we shall raise and lower indices with the

flat metric n*. For example
W, = ¢h,, ~ 1h,, + O(h2,).

If we substitute eq. (9.8) into eq. (9.7), and retain only the terms up to first

order in h,, we find
1 8h00
[, ~ —=nH
00 277 9z

(9.9)
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and the geodesic equation becomes

A2t _1 uaahoo (Cdt)Q

= (9.10)

drz 2" e
or, splitting the time- and the space-components

2i 1= cdt\’ et 10hg (cdt\”
p—§ h()()( ) y and (E) —0, (911)

dr

dr? ~ 2 dct
where

(82} Jy 82) (9.12)
is the gradient in cartesian coordinates. The second equation vanishes be-

cause we have assumed that the field is stationary (a—ggﬂ = (). We can rescale

the time coordinate in such a way that f% =1 and the first of egs. (9.11)
becomes
ez 1o

We should remember that the corresponding newtonian equation is

27 -
d—tf = -V, (9.14)

where & is the gravitational potential given by the Poisson equation (9.2).
By comparing eqs. (9.14) and (9.13), and since 7 = ¢t we see that it must
be

)
hoo = _2(:_2 + const. (9.15)

For example if the field is stationary and spherically symmetric, the newto-

nian potential is
GM

P = 9.16
-, (9.16)
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and if we require that hgyy vanishes at infinity, the constant must be zero

and eq. (9.15) gives

)

(0]
hoo = _20_2’ and goo = —(1+2=). (9.17)

Thus we have shown that in the weak field limit the geodesic
equations reduce to the newtonian law of gravitation. This suggest
the form that the field equations should have. In fact if the field is weak,
matter will behave non-relativistically, i.e. 7% = Tyy ~ pc?> and therefore

the generalization of Laplace’s equation (9.2) could be

1

ct

V2900 = ——To- (9.18)

But this equation is not even Lorentz-invariant! It doesn’t work. However
it suggests that if in place of a stationary field, we would have an arbitrary
distribution of energy and matter, we should construct a tensor starting from

g and its derivatives such that the field equations are

811G
G/,w: ! T,uu; (919)

where G, is an operator which acts on g¢,, which we shall now define. It

should be stressed that, by the Principle of General Covariance, if equation

(9.19) holds in a given reference frame, it will hold in any other frame.
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9.2 The Einstein’s field equations

Let us first see which derivatives and of which order do we expect in G, .
A comparison with the Laplace equation shows that (G, must have the
dimensions of a second derivative. In fact, suppose that it contains terms of

this type
0 gy %9 0w O
ox3 oz2  Ox,’ oz, ’

(9.20)

then, in order to be dimensionally homogeneous each term should be multi-

plied by a constant having the dimensions of a suitable power of a lenght

3 2
Pow ) Powdow ;  Ogw L (9.21)
0x3 02 O, Oy

In this case, a gravitational field acting on small or on very large scale would
be described by equations where some of the terms would be negligible with
respect to some others. This is unacceptable, because we want a set of
equations that are valid at any scale, and consequently the only terms we can
accept in G, are those containing the second derivatives of g,, in a linear
form and products of first derivatives. Let us summarize the assumptions
that we need to make on G, :

1) it must be a tensor

2) it must be linear in the second derivatives, and it must contain products
of first derivatives of g, .

3) Since T}, is symmetric, G, also must be symmetric.
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4) Since T, satisfies the “conservation law” T, =0, G, must

satisfy the same conservation law.

G, = 0. (9.22)

’

5) In the weak field limit it must reduce to (compare with eq. (9.18)
Goo ~ —Vguo. (9.23)

In this last assumption the Principle of Equivalence and the weak field limit
explicitely appear.

In the preceeding section we have shown that there exists a tensor which is
linear in the second derivatives of g¢,, and non linear in the first derivatives.
It is the Riemann tensor, given in eq. (7.11), and it contains the information

on the gravitational field. However we cannot use it directely in the field

1
equations we are looking for, since it has four indices (it is a tensor)

3

2 0
while we need a (or ) tensor. In addition, it does not satisfy

0 2

the same conservation law as the stress-energy tensor (8.30). However it can

0
be shown that there is only one tensor, and only one scalar which

2
can be constructed starting from the Riemann tensor and contracting it with

the metric:

the Ricci tensor:
R/u/ = gkaRkuau = Rauau, (924)
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which is a symmetric tensor because of the symmetry property of the Rie-
mann tensor

Rkuau = Raukua (925)

and the scalar curvature

R = R°,. (9.26)

(remember that the contraction in eq. (9.26) has the following meaning
R*, = R% + RY + R* + R%3). (9.27)

It can be shown, by using the symmetries of the Riemann, tensor that R,
and R are the only second rank tensor and scalar that can be constructed
by contraction of Ry,q, with the metric (see Weinberg pg. 143). Both in
R,, and R the second derivatives of g, appear linearly. Therefore the

tensor we are looking for should have the following form
G/u/ = CIR[,U/ + CZQuuRa (928)

where C; and Cy are constants to be determined. The tensor G, satisfies

the points 1,2 and 3. Condition 4 requires that
G".,, = CiR",, + Cyg"™ R, = 0. (9.29)

(remember that the covariant derivative of g,, vanishes). Now a very

remarkable thing happens: eq. (9.29) is satisfied because of the Bianchi
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identities
R)\puk;n + R/\,unu;k + R)\ukn;u =0. (930)

In fact by contracting these equations we find

9" (Rauvksn + Rapmwse + Rauknw) = 9™ (Rauwksn — Bapwmsk + Ruknw) (9.31)

(Ruk;n — Rype + Ruukn;u) =0.
Contracting again

guk (Ruk;n - Run;k + Ruukn;V) = R'n - Rkn;k - Run;l/ =0. (9-32)

)

The last expression can be rewritten in the following form

1
(R’“’ _ 59“"}3) 0. (9.33)

N
Therefore, the Bianchi identities say that if

C; 1
2=z 34
a2 (9:34)

eq. (9.33) will be satisfied. We still need C;.
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In the weak field limit !
|ﬂ]| << |T00|: 7’7.7 = 1737 (937)

and therefore

|Gij| << |Gool, 1,7 =1,3. (9.38)

From eqs. (9.28) and (9.34) it follows

1
|Cl (Rij - §gin> ‘ << |GOO|, (9.39)
hence
1
R;; ~ §9in- (9.40)
Since g;; =~ n;j
1
Ry, ~ iR’ k=1,3 (9.41)
consequently
v v 3
R = g“ R;w =~ 77“ R,w = _ROO + Z Rkk = —Roo + §R, (942)
k

I'The fact that in the weak field limit Ty, << Ty can be easily understood if we

consider a system on non-interacting particles. If p is the mass density

p= mib(F—7i), (9.35)
i
where 7; denotes the positions of the particles, the stress-energy tensor (8.12) can be also
written as
dxt dx¥
TH = pc? —— . 9.36
¢ dr dr ( )

It is clear that, if 92 << 9% j =13 the dominant term will be 7 .
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and

R ~ 2Ry,. (9.43)
Since
G = C1 (R - %gu,,R> , (9.44)
we find
Goo ~ C12Ry,. (9.45)

If we now compute Rgy in the weak field limit (assuming the field is station-
ary), we find that the non linear part is second order. Retaining only the

first order terms we get

1 8?00 1 .
Roo ~ =5 505 —§V29007 ,k=1,3 (9.46)
namely
GOO ~ —01V2g()0, (947)

A comparison of this equation with eq. (9.23) shows that if we require that
the relativistic field equations reduce to the newtonian equations in the weak
field limit it must be

C,=1. (9.48)
In conclusion, the Einstein’s field equations are 2

87
G/,w: ! T,uu; (949)

2 Although we call these equations the Einstein equations, they were derived indepen-
dently (and in a more elegant form) by D. Hilbert in the same year. However Einstein

showed the implications of these equations in the theory of the solar system, and in par-
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where
1
Guu = (R;w - Eg;wR> ’ (950)
and it is called The Einstein tensor. An alternative form is

e 1
= (T,W - 5g,wT> . (9.51)

ct

R
In vacuum 7, =0 and the Einstein equations reduce to
R, = 0. (9.52)

Therefore, in vacuum the Ricci tensor vanishes, but the Riemann tensor does
not, unless the gravitational field vanishes or is constant and uniform. We

may still add to egs. (9.49) the following term

1 81
(Ruu - Eg/uxR - )‘guu> == 7TI$U' (953)

where A is a constant. This term satisfies the conditions 1,2,3 and 4, but
not the condition 5. This means that it must be very small in such a way

that in the weak field limit the equations reduce to the newtonian equations.

ticular that the precession of the perihelion of Mercury has a relativistic origin. This led
to the theory’s acceptance and since then the equations have been called the Einstein

equations.
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9.3 Gauge invariance of the Einstein equa-

tions

Since there are 10 independent components of G, Einstein’s equations pro-
vide 10 equations for the 10 independent components of g,,. However these
equations are not independent, because, as we have seen, the Bianchi identi-
ties imply the “conservation law” G*”., = 0, which provides 4 relations that
the Einstein tensor must satisfy. Thus the number of independent equations
reduces to six.

Do we have six equations and 10 unknown functions? Why do we have
these four degrees of freedom? The reason is the following. Be g,, a solution
of the equations. If we make a coordinate transformation z*' = z#(z®) the
‘transformed’ tensor gl’“, = guw 1s again a solution, as established by the
Principle of General Covariance. This also means that g,, and g, do
represent the same physical solution (the same geometry) seen in different
reference frames.

The coordinate transformation involves 4 arbitrary functions z#(z%),
therefore the four degrees of freedom derive from the freedom of choosing
the coordinate system, and disappear when we choose it. For example, we
may choose a frame where four of the ten g, are zero.

Thus Einstein’s equations do not determine the solution g,, in a unique
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way, but only up to an arbitrary coordinate transformation. A similar situ-
ation arises in the case of Maxwell’s equations in Special Relativity. In that

case the equations for the vector potential A* are

02 AP A
04, — —— =-""7. 9.54
0x®0xP c (5:54)
(where O = —% + V2 =n*#-2 2, ). These are four equations for the

four components of the vector potential. However they do not determine A*

uniquely, because of the conservation law

0 0?2 AP
@ = i.e. OA — ——— | =0. .
JY . =0, ie s < 8xa8x5) 0 (9.55)

Equation (9.55) plays the same role as the Bianchi identities do in our con-
text. It provides one condition which must be satisfied by the components
of A*, therefore the number of independent Maxwell equations is three. The
extra degree of freedom corresponds to a gauge invariance, which means the
following.
If A, is a solution,

0P

L -
Ay = Aot 5, (9.56)

will also be a solution. In fact, by direct substitution we find

0 0? Al 02 0d 4
OA4A' — — 0O —pPd_— -9 gs__ Y = _ 0
¢ Oz g 02,028 g 0x,02P 09 c

Ja,s (9.57)
and since the second and the last term on the left hand-side cancel, it becomes

02 Al 47
Y e = (9.58)

ElA'a—n
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q.e.d.

Since & is arbitrary, we can chose it in such a way that

G,
AP = 9.59
5z, (9.59)

and eq. (9.58) becomes

oAl - — —4%,]&, (9.60)

This is the Lorentz gauge.

Summaryzing: in the electromagnetic case the extra degree of freedom
on A, isdue to the fact that the vector potential is defined up to a function
® defined in eq. (9.56). In our case the four extra degrees of freedom are
due to the fact that g,, is defined up to a coordinate transformation. This
gauge freedom is particularly useful when one is looking for exact solutions

of Einstein’s equations.
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9.4 Example: The armonic gauge.
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The armonic gauge is defined by the condition
A A
"= g"Ty,, =0. (9.61)

As we shall see in a next lecture, this gauge is of particular interest when
we study the propagation of gravitational waves, because it simplifies the
equations in a way similar to that of Maxwell’s equations when written in
the Lorentz gauge. It is always possible to choose this gauge, in fact given a
generic coordinate transformation, the affine connections I'F, transform as

(see eq. (6.10))

Vo Ox'* 0x™ Ox° , OxP dz° 9%z ' (9.62)
a oxP Ox'* Ox' oz’ Ox'* QxPOx°
When contracted with ¢ they give
ax/)\ 82 m/)\
= [* — g 9.63
Oxr OxrOzo’ (9.63)
where we have made use of the equation
0x™ 0x°
70 = gtV —— . 9.64
g ox'* 0z ( )
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Therefore, if T is non zero, we can always find a frame where I'”’ = 0 and
reduce to the armonic gauge. The condition ['* = 0 can be rewritten in a,
more elegant form remembering the expression of the affine connections in

terms of the metric tensor

1 agk agku 89 v
[ = — g gk K — 2L —. 9.65
29 g {ax“ + ozt ozk ( )
Since

g ogr*
AR ZIP — gy —— 9.66
Ox¥ T g (9.66)

1wl _ — 0 1

29" gk — V Ik N

it follows that

1 89/\k ag/\k g/\k a
A_ T v ) e . —
=29 { gkulax,,] gkulaxu \/——gaxk‘/ g=0. (9.67)

The term in brackets is symmetric in g and v, therefore

1 0 Ak Ak 0
M= _5 {QQMngM a‘i‘a } - \i_—gaxk V—g= 0, (968)

and, since g"’ gx, = 0%

A _
'"=- o \/__gaxk\/—g =0, (9.69)
from which we find
1 0
This means that
0
M=o implies Ak <\/—gg)‘k) =0. (9.71)
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The reason why this gauge is called ‘armonic’ is the following. A function &
is armonic if

06 =0, (9.72)

where the operator O is the covariant d’Alambertian operator defined

as

06 = ¢*V,V,9, (9.73)

and V, is the covariant derivative. Since

0. N
g¥VLV® = g™ < 833}“/\ - P/\kq);a> = (9.74)
g)\k 82(1) T 8_@ — Ak aQ(D _Fa 8@ ]
ozrkoz? M dze ozrkoz? oz®

If T* =0 the armonic gauge condition becomes

=0. (9.75)

If T =0 then the coordinates itself are armonic functions, in fact

putting ® = z# in eq. (9.75) one finds

Ozt v O
orkarr Y @65 =0 (5.76)

Oz* = g’\’C

q.e.d. If the spacetime is flat, armonic coordinates coincide with minkowskian

coordinates.
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Chapter 10

The Geodesic deviation

The Principle of equivalence establishes that we can always choose a locally
inertial frame where the affine connections vanish and the metric becomes
that of a flat spacetime. Conversely, if the spacetime is flat we can always
define a coordinate system which “simulates”, locally, the existence of any
arbitrary gravitational field. In this frame we could measure the “simulated”
gravitational force by studying the motion of a single particle, but these mea-
surements would never allow us to know whether that force is simulated or
real: this can be understood only by comparing the motion of close particles,

i.e. by comparing the behaviour of close geodesics.
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10.1 The equation of geodesic deviation

Consider two particles moving along the trajectories z#(7) and z#(7) +
dz#(T), where dx* is the vector of separation between the two close geodesics,
and 7 is an affine parameter. This is equivalent to say: consider a two-

parameter family of geodesics z# (7, p), where the parameter p labels different

geodesics
Be
ox®
¢ = — 10.1
or (10.1)
the tangent vector to the geodesic line, and be
Ox®
0x* = —. 10.2
v = (102)
Note that
ot*  00x®
— = . 10.3
Op or (10.3)
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We now compute the covariant derivative of the vector ¢ along the curve
7 = const whose tangent vector is 0z#, ie. Vg i= 4 = 0Ld" Tpe
g y -G oz dp dzk dp *

components of this vector are

a Ozt | Ot* a | ot o

The covariant derivative of the vector ¢z along the curve p = const i.e.

along the geodesic, similarly has components

(V7 oz)" = (%) = 5z, = agx + T, 00" ", (10.5)

T

From eq. (10.3) and from the symmetry of I'“,, in the lower indices it
follows that

— -

Viiz = V{; t. (10.6)

The quantities (V; 5})(1 or (V o f)a involve only the affine connections,
and therefore they do not give significant information on the gravitational
field. We then compute the second covariant derivative of the vector 5z
along the curve p = const, i.e Vy (V; (5}) . From eq. (10.6) it follows
that

Vi (Vroz) = Vi (Vs ). (10.7)

This equation can be rewritten as

4?6z _ V(v 9] (10.8)

dr?
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In order to develop the right-hand side of eq. (10.8), consider V,: f asa

—

vector A

A= (Vg t‘)“ = %ip + I, 461", (10.9)

and apply the operator Vj :

»~a  0A%
(Ve A)" = o H DA (10.10)

Following this procedure we find

d* 5z B 0%t n
dr?2  O0tdp

Lo (ot 06z . (ot 3}
4T, (a—T(Sx it ) +T°,, (a_p T )t”.

re,, stPthsx” (10.11)

This equation can be further simplified. In fact, since ¢* is the geodesic
tangent vector, when it is parallel-transported along the geodesic it gives (see
chapter 6.2)

Vyt=0, (10.12)

and consequently

Vs (Vet) =0. (10.13)

This derivative can be computed by using the same procedure described
above: introduce a vector B whose components are B = (V;f)a =
% + I'*,,t*t”, and take its directional derivative along the geodesic. Eq.

(10.13) then becomes

0%t

— =T, gtht’ 62 10.14
aTap 14 \B x ( )
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ot# ot” otP
-Ire,, | —t'+ —| -T° — 4+ T7, 'Y | 627
7 < ap + ap ) Y ( or + 10 ) z

If we now substitute eq. (10.14) in eq. (10.11), and use the symmetries of

the I'*,, , we find

d25x”

dr2? = t7th6z” (T = T + T — T T 5) - (10.15)

The term in parenthesis is the Riemann tensor, therefore

d?5x® dx? dxt
L L 10.1
dr? Bus dr dar " (10.16)

This is the equation of the geodesic deviation. Since the Riemann tensor
appears on the right-hand side of this equation, and since it is zero if and
only if the gravitational field either zero or constant and uniform, the equa-
tion of the geodesic deviation really contains meaningfull information on the

gravitational field.
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Chapter 11

Gravitational Waves

One of the most interesting predictions of the theory of General Relativity
is the existence of gravitational waves. The idea that a perturbation of the
gravitational field should propagate as a wave is, in some sense, intuitive. For
example electromagnetic waves were introduced when the Coulomb theory
of electrostatics was replaced by the theory of electrodynamics, and it was
shown that they transport through space the information about the evolution
of charged systems. In a similar way we can think that when a distribution
of masses evolves in the spacetime, the information about this motion should
propagate in the form of waves. Since both the gravitational potential and
the spacetime metric are expressed by the metric tensor g,,, gravitational
waves are metric waves. When they propagate through the space, the

geometry, and consequently the distance between points, changes in time.
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Gravitational waves can be studied by following two different approaches
1) Assume that a given metric, which is an exact solution of Einstein’s equa-
tions, is perturbed by some external agency. This perturbation induces small
changes in the gravitational field, and the corresponding metric tensor can

be written as
G = Gy + o, (11.1)

where the superscript zero indicates the unperturbed exact solution, (for
example the flat metric 7,, or the metric generated by a black hole or a

star), and h,, is a small perturbation
|hu| << 1.

It is clear that this assumption is ambiguous, because we should specify in
which reference frame this is true; however we shall assume that this reference
does exists.

The Einstein tensor computed for the metric (11.1) contains non-linear
terms involving products of first derivatives of g,,. These terms are second

order in h and if we restrict our study to first order perturbations they

wys
can be neglected. Then the resulting equations will be linear, and their
solution will describe the propagation of gravitational waves in the considered
background. This approximation works sufficiently well in a large variety of

physical situations, because gravitational waves are very weak. This point

will be better understood when we shall study the generation of gravitational
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waves.

2) A different approach is to look for exact solutions of Einstein’s equa-
tions. The problem of finding an exact solution which describes both the
source and the emitted wave is still unsolved. Of course the non-linearity of
the equations makes the problem very difficult, but it should be remembered
that in electromagnetism also an exact solution describing the electromag-
netic field produced by a current that decreases due to the emission of waves
in an electric oscillator has never been found.

Exact solutions of Einstein’s equations which describe gravitational waves
propagating in vacuum can be found only if one imposes some particular
symmetry as for example plane, spherical, or cylindrical symmetry. The
interaction of plane waves can also be described in terms of exact solutions,
and due to the non-linearity of the equations of gravity, it is very different

from the interaction of electromagnetic waves.

11.1 Perturbations of a flat spacetime

In this section we shall start the study of gravitational waves by considering
the simplest case: very weak disturbances propagating in flat spacetime.
We will use the perturbative approach, and solve the linearized Einstein
equations.

Consider a flat spacetime 17,, and a small perturbation propagating
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through it, such that the resulting metric can be written as

g[ﬂ/ = T’NV + hul/) ‘huy‘ << 1.

(11.2)

Since we are interested only in first order terms, we shall raise and lower

indices with the flat metric n*”. Let us write Einstein’s equations in the

form

IrG
Guy = 7ij.
Remember that

1
Guu = R;w - §g;wR7 Ruk: = gAVR)\ul/k = Ruuuka

and that the Riemann tensor is

o or,
B A T TN, = T, T

A P
B oz” ozk

Consequently the Ricci tensor is

orv uk orv .
oz” ok

Ruk = Rulwk = + F"ukF”Un — F"WF”,C,,.

By retaining only first order terms in h,,,, it becomes

iz

T 4k B or”,,
oz” oxk

Ryp ~ +O(h?%).

The affine connections computed for the metric (11.2) are

1,,[@ 9 9

P = 51" it o = e | + O
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(11.4)

(11.5)

(11.6)

(11.7)

(11.8)



By using these equations we find that

oz oxk ¥ 0z dxr P OxnOzv

1 2 2 2
G ~ 3 {—DFh,w + l 0 . 9 p 0 hﬁ] } , (11.9)

2
where Op = —CQaatz +Vv2 !

In eq. (11.3) T}, is the stress-energy tensor associated to the source of

the perturbation and it satisfies the conservation equation

which, in the weak field limit, becomes

0
—Tm =,
oxt

'Tf one wants to compare our expression of G, with eq. 8.32 given in Schutz:

1
GI,I,V = _5 [h”u,a,a + npuh(:yﬁ’a,ﬁ - hua,u’a - hua,p’a] ]

it is immediate to check that the first term is the d’Alambertian

e

hlw,a = naﬁhw&a,ﬂ‘

Consider now the terms in square bracket in eq. (11.9). They can be rewritten in the

following form

0? 0? 0?
h)\ h/\ _ h)\

Oz dzk " + oz dzr *  Qxrdzv
= nl\ahau,)\u + nkahau,/\u - nxaha/\,uu =

A A
= hua,u’a + hua,l/’a = MvalauN *hax’™

that coincide with Schutz’s terms.
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Einstein’s equations finally are

2 2 2
1
{Dphw — l 0 Ry + O . 9 hAH = —6LGT,W. (11.10)

0z OxH Oz oxv *  Qrrdzr ct
In order to take into account the back reaction due to the energy and momen-
tum transported by the gravitational waves traveling in the flat background,
one should add on the right-hand-side the energy-momentum pseudotensor
of the gravitational field ¢,,. t,, can be constructed in a variety of ways by
imposing the condition that, when added to T}, it satisfies the conservation
law
(™ + T“”);V =0.

The definition of ¢, would require a detailed discussion on how to construct
conservation laws for perturbed spacetimes, which is a very interesting and
conceptually relevant problem. However in what follows we shall restrict our
study only to the solution of eq. (11.10).

As already discussed in chapter 9, the solution of egqs. (11.10) is not
uniquely determined. If we make a coordinate transformation, the trans-
formed metric tensor will still be a solution: it will describe the same phys-
ical situation seen from a different frame. But since we are working in the
weak field limit, we are entitled to make only those transformations which
preserve the condition |hj,,| << 1 (here and in the following we shall use

the notation A, = hu,). If
oM =zt + e (z), (11.11)
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where € is an arbitrary vector such that g:: is of the same order of A,

it is easy to check that since

axa axﬂ axa 8.T6
Q,Iw = gaﬂww = (Uaﬂ + haﬂ) ww, (11.12)
then
Oe Oe
B, =hy, — — — —. 11.13
1224 u axu axu ( )

In order to simplify eq. (11.10) it appears convenient to choose a coordinate

system in which the harmonic gauge condition is satisfied
VA
g'r,, =0. (11.14)

Let us see why. This condition is equivalent to say that, up to terms that

are first order in hy,,, the following equation is satisfied 2

0 10
—ht, == L 11.1
ozt " 28x”h K ( )

If this is true, it is clear that the term in square brackets in eq. (11.10)

vanishes, and it reduces to a simple wave equation supplemented by the

2

1 Ohiy Ol O ) 1 e 1y ,
gﬂurzy — _nuu,’,})\k{ ku + kv © } — 5,,7)\k {h ko +huk,“ —h V,k}

2 oz? OzH ozk

Since the first two terms are equal we find

1
0= gl“’]_";)y = 77)‘k {huk,u - §hyu,k}
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condition (11.15)

DFh[UJ IGZGT/LU
{ b ;hu (11.16)
ozk'" Y 20zxv " M
In vacuum they become
Ophy, =0
{ o pu _ 10 (11.17)
ok’ V 20zv’'" M

Thus, we have shown that a perturbation of a flat spacetime
propagates as a wave at the speed of light, and that Einstein’s

theory of gravity predicts the existence of gravitational waves.

In appendix 11A we shall show how to choose €* in such a way that the
condition of harmonic gauge is satisfied.
The solution of eqs. (11.16) can be written in terms of retarded potential

as in electrodynamics

4G / d*2'T,, (%', t — [x-x'|)

hu (%,1) = — , (11.18)

[x-x'|
and the integral extends over the past light-cone of the event (¢,x). This
equation represents the gravitational waves generated by the source 7),,.
We may now ask how egs. (11.17) and (11.16) should be modified if, in
place of considering a disturbance propagating in flat spacetime, we would
consider a perturbation of a curved background. For example, suppose we
know the exact solution gj, which describes the gravitational field external

to a spherically symmetric object, a star or a black hole, If h, isa
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perturbation of ggu as described in eq. (11.1), it is possible to show that,
by a suitable choice of the gauge, the Einstein equations written for certain
combinations of the metric function, say ®, can be reduced to a form
similar to egs. (11.16) or (11.17). However, since the background spacetime
is now curved, the propagation of the waves will be modified with respect
to the flat case. The curvature will act as a potential barrier by which the

waves are scattered and the final equation will have the form

167G
——2T,, (11.19)

C

where O is the d’Alambertian of the flat spacetime and V is the po-
tential barrier generated by the spacetime curvature. In other words, the
perturbations of a sperically symmetric, stationary gravitational field would
be described by a Schroedinger-like equation! A complete account on the
theory of perturbations of black holes is given in the book The Mathematical
Theory of Black Holes by S. Chandrasekhar, Oxford: Claredon Press, (1984).

11.2 Plane gravitational waves

The simplest solution of the wave equation
Ophu =0, (11.20)
is a monocromatic plane wave
hyw = R{ Ay e} (11.21)
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where A, is the amplitude of the wave, called the polarization tensor, and
k is the wave-vector. Let us verify if eq.(11.21) is really a solution. By direct

substitution into eq. (11.20) we find

(11.22)

0 0 : 0 oz
_ o 2 Y ik e zk 7
Orh =11 Ox® 0P (e ) = e [Zk”’ Pr ]

[zk 873 ’kVﬂ] [zk e”“"“ﬂ] =

e
= —nPkokg = 0.

n“ 8—

It follows that k is a null vector. In addition the harmonic gauge condition

requires that

0 10
9o, == 11.23
oxH 20zv " ( )
which can be written as
0 0
MRy = " ——hg, 11.24
U 277 57 (11.24)
Using eq. (11.21) it becomes
0 0 5
e Ay, ef ™ = —pf— Ag, e 11.25
U T 2’7 oz PRE (11.25)
i.e.
1
" Aavk, = 577“/314/3“/@ (11.26)
and finally
1
kudly = Sk AV (11.27)

Thus eq. (11.21) is a solution of eq. (11.20) if % is a null vector, and if the

condition (11.27) is satisfied.
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Since hy,, is constant on those surfaces where
kox® =0, (11.28)

these are the equations of the wavefront. It is conventional to refer to k°

as ¢, where w is the frequency of the waves. Consequently

k— (w,k). (11.29)

Since k is a null vector
—(ko)® + (kz)® + (ky)* + (k,)> =0, i (11.30)
w = cky = c\/(kw)2 + (ky)? + (k)% (11.31)

This is the general case of a wave which propagates in the direction

1

1o (ks oy ), (11.32)

11.3 The TT-gauge

We now want to see which one of the ten components of h,, (orof A, in
the case of plane waves) has a real physical meaning. Let us consider a plane
gravitational wave propagating in flat spacetime along the z' = z-direction.

Since hy, isindependent on y and z, eqs. (11.17) become (as usual we raise
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and lower indices with 7, )

0? 02
_ Y NV
( c20t? + 8x2> Wy =0,
0 1 0
—ht, = - h* .
ozt 20z M

Consequently, h*, is an arbitrary function of 4+ 2

be rewritten in the alternative form

i [h“,, _ %(wyhaa] =0,

oxH

and if we introduce the tensor
1
g = [h“” - 5nﬂ”haa] .

eq. (11.35) becomes

0 g, — .

Ozt

(11.33)
(11.34)

. Equation (11.34) can

(11.35)

(11.36)

(11.37)

This equation, equivalent to eq. (11.34), expresses the harmonic gauge con-

dition (see eq. (11.14)). If we restrict our analysis to progressive waves, W#,

will depend only on ¢ — 2 = x(t,7), i.e.

UH, =W, [x(t, )] (11.38)
and since
D\yn  — dUE, Ox _ JUH,
ot v dx Ot ox ? (11 39)
O \pp — Ok, X _ _ 19VH, '
O v dx O c Ox ?
eq. (11.37) gives
0 100! ov® 10
—PH, = Y= |, -7, | =0. 11.40
oxH c Ot + ox cOx [ ] ( )



This equation can be integrated, and the constants of integration can be set
equal to zero because we are interested only in the time-dependent part of
the solution. The result of the integration is
Ul =0, VASECR A (11.41)
\I;tm = \I;wxa qltz = \Ijmz
We now observe that the harmonic gauge condition (11.37) does not deter-

mine the gauge uniquely. In fact we still have the freedom of making an

infinitesimal coordinate transformation
, x
o't = ot 4 (- ), (11.42)
c
provided &# satisfies the wave equation

Opeh(t — %) =0, (11.43)
and we can use the four functions &#(t— %) to set to zero the following four

quantities

v, =0t =V, =0, +¥%, =0. (11.44)

From eq. (11.41) it then follows that

U7, =0 =97, =¥, =0, (11.45)

where W', is zero because

Ue, = -t (11.46)

179



The remaining non-vanishing components are ¥?, and WY, — W?,. These
components cannot be set equal to zero, because we have exhausted our
gauge freedom.

From eqs. (11.44) and (11.45) it follows that

Uh, =T + 0%, + Y, + 0%, =0, (11.47)
and since
WH, = B (11.48)
it follows that
W, =0,a  — UM, =hk, (11.49)

both h,, and ¥, are traceless. In conclusion a plane gravitational wave
propagating along the z-axis is characterized by two functions hes = hy,, e
hoy = —hss (hyy = —h,,), and the remaining components can be set to zero

by a suitable choice of the gauge:

00 0 0
00 0 0

By = . (11.50)
0 0 hy, hy,
0 0 hy, —hy,

Thus, a gravitational wave has only two physical degrees of freedom
which correspond to the two possible states of polarization. The

gauge in which this is clearly manifested is called the TT-gauge, where ‘TT-’
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indicates that the metric perturbation h,, is different from zero only on the
plane orthogonal to the direction of propagation (transverse), and that it is

traceless.

11.4 How to find the TT-gauge

Consider a plane wave solution of the wave equation eq. (11.20)
By = Aye*a™. (11.51)

Here we have omitted R, but it should be understood that at the end we
will take the real part of the quantities we shall compute. Choose &, of this

form

£o = Boe'e™ (11.52)

where k* is the same null vector as for the solution (11.51). We know A,,,
and we want to determine B, in such a way that the harmonic gauge
condition is satisfied.

In the new frame
hap = has = €ap — Epa (11.53)
1
Wap = |hog — 577a,3h'“u =Vus —ap — EBa + Naplt 4 (11.54)

We now substitute eqs. (11.51) and (11.52) in eq. (11.54), impose that in

the new gauge W',5="h,s (see eq. (11.49), and find
A’ag = Aaﬂ — ’l'Bakg — inga + ’L'T]agB“k“. (11.55)
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We now impose the TT-gauge conditions

1) traceless condition

In order to satisfy this condition we multiply eq. (11.55) by 7%® and
find

A, = A% —iBPkg — iB%ko + iB"k, = A%, — iBPkg = 0. (11.56)

This equation provides one condition on B,,.
2) “Transverse”-condition
Choose an arbitrary and constant timelike vector U® (for example we

may choose U = §%;), and impose the following condition
AlygUP = Ay = 0. (11.57)

i.e.

Ago — 1Boko — iBoky — 1B"k, = 0. (11.58)
This equation can be used to put
Al = A;O =A,=0. (11.59)

If we now orient the axes of our frame in such a way that the incoming

wave travels along the x-direction, from the harmonic gauge condition W#

satisfies, 2% = 0, it follows that (compare with eq. (11.41)

oxk

Algy=0, Ay=0, Ay=0, A, =0, (11.60)

182



while eq. (11.56) implies that
Ay =—A,. (11.61)

Thus we have reduced the wave to the transverse-traceless form (remember

that we have assumed that the wave travels along the x-axis).

11.5 How does a gravitational wave affect the
motion of a single particle

Consider a particle at rest in flat spacetime before the passage of the wave.
We set an inertial frame attached to this particle, and take the x-axis co-
incident with the direction of propagation of the incoming wave. We can
also set a T'T-gauge as explained earlier (for example the four-velocity U®
may coincide with the initial four-velocity of the particle). When the wave
arrives, the particle will follow the geodesic equation

A2z de* dx¥  dU®
¢2 e, = re  UrUY = 0. 11.62
dr? T dr dr dr T ( )

At ¢t =0 the particle is at rest and

dUu*® 1
< d ) = % = _Enaﬂ [hgo.0 + hop.o + hoo ] - (11.63)
T/ (t=0)

Since we are in the 77-gauge it follows that

(dU ) = 0. (11.64)
dr (1=0)
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Thus, the particle is not accelerated neither at ¢ =0 nor later! It remains
at a constant coordinate position, regardeless of the wave, and the same
will be true for any particle which is at rest before the passage of the wave.
We conclude that the study of the motion of a single particle does

not allow to detect the passage of a gravitational wave.

11.6 (Geodesic deviation induced by a gravi-
tational wave

We shall now study the relative motion of particles in the gravitational field
produced by a gravitational wave.

Consider two neighbouring particles A and B, and a TT-reference frame
constructed as explained in Section 4, and with the x-axis aligned with the
direction of propagation of the incoming wave. If we choose the origin coin-

cident with the position of the particle A
% = (1,0,0,0). (11.65)

T = ct is the proper time of the particle A. Since the two particles are initially
at rest, they will remain at a constant coordinate position even later, when
the wave arrives. However, since the metric changes, the proper distance

between them will change. For example if the particle B is initially at some
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point on the y-axis

1 Y 1 Y 1
Ag:/\dsﬂg :/OB\gyypdy:/O "1+ KT, | dy # constant.  (11.66)

Another way of studying the effect of the passage of the wave, is by means of
the equation of the geodesic deviation. Be dx* the vector which separates

the two particles, i.e. initially

61# = (07 TB,YB, ZB)-

The equation of geodesic deviation found in chapter 10, written in the gauge
we have choosen, is
d2

Wéﬂ?/\ = R/\OON(S.’E“ (1167)

If the gravitational wave is due to a perturbation of the flat metric, as dis-
cussed in this chapter, the metric can be written as g,, = 7, + by, and

the Riemann tensor

R 1 ( 0% Gim *gr %gi * Grm
iklm

— - — — - 11.68
2\ 8a*dal © Bzidam  drFoum axzaxl> + (1168)
+ gnp (Fnklrpim - Fnkmrpil) )

after neglecting terms which are second order in h,,, becomes

Ripim =

1 < 0?Nim, 0% hi ?hiy 0% N

- : — - h? 11.
2 \ 9zkoxt  Oxiox™  OzkOrm 8x’6xl>+0( ), (11.69)

and consequently

po 1 0%h,,, Ohoy  Ohiy  0*hon
00m =9\ 920020 ' Ozioz™  0z00rx™  Ozidx0 )

(11.70)
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Since we are in the TT-gauge, h;y = hgo =0 and it simply becomes

Rioom = hTT (11.71)

2 1m,00?

where ¢ and m can assume only the values 2 and 3, i.e. they refer to the

y and 2z components. It follows that

) 1 thTT/\
Yoom = 1 Rigom = = ——m5 11.72
R00m = 1" Rioo 5 292 ( )
and the equation of geodesic deviation (11.67) becomes
d2 1 82hTT)\
— ot = = —— 5™, 11.73
e’ T2 o (1L.73)

In this equation the transverse nature of the wave is clearly manifested. In

hTT)\

fact, since ¢ 1s non-zero only in the (y — z)-plane, orthogonal to the

direction of propagation, the particles will be accelerated on that plane, i.e.

5;5 0= ;:2 dzt =0 — 2% = 62! = const.
2L 532 = Pl a5y ? 4 Pl Paggd £ (11.74)
2L 5% = Pl P05y 4 Pl Dagyd 0,

Suppose that at ¢ =0 the two particles are at rest relative to each other,

and consequently
if  t<o0, ox) = o), with éz) = const. (11.75)

Since hy, is a small perturbation, we expect that the relative position of

the particles will changes only by infinitesimal quantities
if >0, Sx(t) = 0z + 67 (t), (11.76)
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where dz7(t) has to be considered as a small perturbation with respect to
the initial position 6z} . Inserting eq. (11.76) in eq. (11.73), remembering
that 6z} is a constant and retaining only first order terms, eq. (11.73)

becomes
d_2 x}\ _ 182hTT)‘k
a2t T2 o2

This equation can be integrated, and the final solution for dz7 is

Sxf. (11.77)

. 1 .
Sad = sl + idxghTT’k. (11.78)

From eq. (11.78) we see that if the two particles at ¢ = 0 lay along the
direction of propagation of the wave (the x-axis) and therefore only dzj # 0,
since h'17; = 0 it follows that their relative position will not be modified
by the passage of the wave, as we already established in eq. (11.74).

Let us now study the effect of the polarization of the wave. Consider a

plane wave whose nonvanishing components are
hy = —h, =% {A+ei‘*’<t—%)} (11.79)

hy: = hoy=R{A~02)}

Consider two particles initially at a relative distance yq and 2z, from the

origin of the frame as indicated in figure (11.1). Let us assume that
AL #0 and Ay =0. (11.80)
For example, if A, is real
R {A+ei“’(t_%)} =2A, cosw(t — %), (11.81)
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therefore

hyy = —hss = 24, cosw(t — =), hyy = hyy = 0. (11.82)
C

Assume that the instant ¢ =0 corresponds to w(t—%) = 3 . Remembering
that dz7 is the distance of the particles 1 and 2 from the origin, and
comparing with eq. (11.78) we find that the motion of 1 and 2 for ¢ > 0

follows from these equations

1
1) 2=0, y=yo+ Eyohyy = y0[1 + A, cosw(t — %)], (11.83)

1
2) y=0, z=z+ §Zohzz =20[1 — A, cosw(t — f)]
c

After a quarter of a period ( cosw(t — %) = —1)
1) z=0, y=y0[l—A], (11.84)
2) y=0, z=20[1+ A4].

After half a period ( cosw(t — %) = 0)

1) z=0, y = y0, (11.85)

1) 2=0, y=y0[l+A,] (11.86)

2) y=0, z=20[1— Ay].
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It is now clear that a small ring of particles centered at the origin, will suffer
some deformation transforming into a prolate and oblate ellipse in the way
indicated in figure (11.2)

Let us now see what happens if Ay #0 and A, =0 :
hyy = by =0, hyy = hyy = 24 cosw(t — =), (11.87)
c

Comparing with eq. (11.78) we see that a generic particle initially at P =

(Yo, 20), when ¢ > 0 will move according to the equations

1 T
Y=Y + §z0hyz = yo + 20Ax cosw(t — =), (11.88)

80

1
2 =29+ i’yohzy =2y + y()AX COSLL)(t — ;)

Let us consider four particles disposed as indicated in figure (11.3) and that

|Yo| = |20| = r. Suppose that the initial time ¢ = 0 corresponds to w(t—%) =

5 - The position of the particles will be
1) y=r, z=r, (11.89)
2) Y= -, zZ=r,
3) y=-r, z ==,
4) y=r, z = -—T,

z

After a quarter of a period (cosw(t — £) = —1), the particles will have the
following positions
1) y=r[l— Ayl z=r[l— Ayl (11.90)
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2) y=r[—-1—A«], z=r[l+ A,
3) y=r[—1+ A.], z=r[-1+ A,],

4) y=r[l+ Ay z=r[-1-A.],

After half a period cosw(t — %) = 0, and the particles go back to the initial

positions. After three quarters of a period, when cosw(t —%) =1

1) y =r[l+ A, z=r[l+ ALl (11.91)
2) y=r[—1+ A«], z=r[l - A,

3) y=r[-1- A, z=r[-1-A],

4) y=r[l— Ayl z=r[-14+ A,

The motion of the particles is indicated in figure (11.3).

It follows that a small ring of particles centered at the origin, will again
become an ellipse, but rotated at 45° (see fig. 11.4) with respect to the
case previously analysed. In conclusion, we can define A, and A, as the
polarization amplitudes of the wave. The wave will be linearly polarized

when only one of the two amplitudes is different from zero.
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11.7 Appendix A

We want to show that if the harmonic-gauge condition is not satisfied in a
reference frame, we can always find a new frame where it is, by making an

infinitesimal coordinate transformation
' = gt 4 et (11.92)

provided
onf  10h8
— % _ 778
Orep =55 =57, (11.93)

When we change the coordinate system the I''’s transform according to the

equation
axl)\ aleA
M= TP — g~ 11.94
oxP OxPOz°’ ( )
where
o I o A
LA 5.
oxP ox?
If gy =M + by (see footnote after eq. (11.14))
v k 1 v
D7 = g" TP = 1" (W = 5H i - (11.95)
Moreover
02z 0 (o0x* 0é
ey = 97 = 11.96
g 0xPOx° g [8:1:1’ <8x” + 83:")] ( )




therefore in the new gauge the condition I'"* =0 becomes

ozt 2 Oz

- l(m a@] lahﬁ 10h",

A

If we neglect second order terms eq.(11.97) becomes

o 10w,
ozt 2 Ozxk

FI)\ — n)\k [ _ DFG)\ — O

B

Contracting with 7, and remembering that ny,n** = 6* we finally find

oh*, B lah”y
oxt 2 0x@’

Upeq =

This equation can in principle be solved to find the components of ¢,,
which identify the coordinate system in which the harmonic gauge condition

is satisfied.
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Chapter 12

The stress-energy pseudotensor

The divergenceless equation satisfied by the stress-energy tensor can be writ-

ten in the following form

1 o0(T",\/—g9) 109,
A— - — TF = (. 12.1
Vit & oxH 2 Ozv 0 ( )

Let us choose a coordinate system such that all first derivatives of the metric

are zero (we know we can do it because of the equivalence principle). In this

frame eq. (12.1) becomes

oT*,
=0 12.2
Ox+ ’ (12.2)
or, in the contravariant form
oTH
=0. 12.3
OxH (12:3)

and consequently T* can be expressed as

)
T = T, (12.4)

197



where n#7 is antisymmetric in the indices p and . In order to find
the explicit expression of 7**7 we shall start writing the Einstein equations

v ct R
T =%<R -9 R) (12.5)

and, remembering that the Riemann tensor is

R ([ P% P4 Pon P
e 9 \ 9gvoxy  OxkOx®  Oxv0x®  OxrOTY

+gap (0T, — T2, I%)

(12.6)

vyt po vo© py

it follows that in the locally inertial frame

0”948 gas  0%9ys  0%gap (12.7)
0xe0zxd =~ Ox70xP  Ox*0xP  Ox70x% )’ '

1
R = 5 g gwi 975

By using this expression, eq. (12.5) becomes

, 0 ¢ 1 0 o o
™=5 {167@ Cg) 2P [(=9) (99°" — g"*g ﬂ)]} (12.8)

The expression in parentheses is antisymmetric in the indices v and «

and it is the quantity n**? we were looking for. Since g,,, =0 we can

extract the factor ﬁ and write eq. (12.8) as

ac,uua _ »
o = (—g)T™, (12.9)
where
4
¢ = s [0 (7 =) 20)
167G 0P

It should be reminded that eq. (12.9) has been derived under the assumption

that all first derivatives of the metric tensor vanish. In any other reference
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the difference 6§Z(Vf —(=g)T* isnot zero. Let us call the difference (—g)t*”

ie.
8(“1/&
—q) (TH +t*) = . 12.11
(—g) (T 4+ 1) = (12.11)
The quantities ¢* are symmetric because both 7™ and % are

symmetric in g4 and v. By expressing T* in terms of Einstein’s
equations and by using eq. (12.10) it is possible to find, after some careful
elaboration of the equations

C4

= o {(2MapT 55 = T0aoT7 5 = T00sT55) (9"*9" — 9"9*)

+ guagﬂd (Fuaaraﬂé + Fyﬁdraaa - Fuéaraaﬁ - FVaBFUJU)

+ guagﬂd (F“aaFU,BJ + F“,Bcirgao - Fuéorgaﬂ - Fua,BFUJJ)
+ gaﬂgda (FMOL(SFV,BU - FN&,BFVJU)}
Let us consider for example the metric of a plane gravitational wave propa-

gating along the z-axis, in the T'T-gauge. Let us assume that the metric has

only one polarization

) (=) () (2)
1 0 0 0
hw=1 0 -1 0 0 : (12.12)
0 0 —[1+hi(u) 0
0 0 0 [~ hy ()]

where w =t —2x, and h(u) << 1. The non-vanishing Christoffel
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symbols are

1 A 1.
v, =-TY, = ~ —h, 12.13
ty Y7 2(14h) 2 ( )
1 h 1.
I z = _Fzmz Py ——h,
! 2(=14+h) 2
rt,, =1, = 5h, rt,=r%,=—--h

It is then easy to show that in this case the energy flow across a surface

perpendicular to the direction of propagation is

£ = 1607; [iz(u)Z] . (12.14)

In general, if both polarization are present and

(t) (x) () ()
1 0 0 0
b =1 0 -1 0 0 , (12.15)

]
]
>
X
<
~
|
j—y
|
>=
+
—
S
=

= & h () + by ()] (12.16)
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Chapter 13

Symmetries

H. Weyl: “Symmetry, as wide or as narrow as you may define its meaning, is
one idea by which man through the ages has tried to comprehend and create
order, beauty, and perfection.”

The solution of a physical problem can be considerably simplified if it
allows some symmetries. Consider for example the newtonian equations of
gravity. It is easy to find a solution which is spherically symmetric, but it may
be difficult to find the analytic solution for an arbitrary mass distribution.

In euclidean space a symmetry is related to an invariance with respect to
some operation. For example plane symmetry implies invariance of the phys-
ical variables with respect to translations on a plane, spherically symmetric
solutions are invariant with respect to translation on a sphere of constant

radius, and the equations of newtonian gravity are symmetric with respect
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to time translations

' >t+T.

Thus a symmetry corresponds to invariance under translations along certain
lines or over certain surfaces. This definition can be applied and extended to
Riemannian geometry. We say that a solution of Einstein’s equations has a
symmetry if there exists an n-dimensional manifold of points with 1 <n <4
, such that the solution is invariant under translations which bring a point
of this manifold into another point of the same manifold. For example, for
spherically symmetric solutions the manifold is the 2-sphere, and n=2. This
is a simple example, but we may have more complicated four-dimensional
symmetries. These definitions can be made more precise by introducing the

notion of Killing vectors.

13.1 The Killing vectors

—

Consider a vector field &(z*) defined at every point z¢

of a region of

— —

spacetime. ¢ identifies a symmetry if an infinitesimal translation along ¢

leaves the metric unchanged. ¢ is the tangent vector to some curve z*(N)

é-a — o™

, 1.e. “% » therefore an infinitesimal translation in the direction of

5 is an infinitesimal translation along the curve

o = a" 4 ozt (13.1)
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Let us consider the 2-dimensional space indicated in the following figure

P = (z',2?)

P' = (z' + 6z, 2* + 02°)

. &% >
Since
dz’ dz?
1_ T oy _ g1 2 _ 0T\ _ 2
oz = 0 dA\=¢&d\ and Oz o dX\ = £°d (13.2)
eq. (13.1) becomes
ot = gt + Ehd. (13.3)

When we go from P to P’ the metric changes as follows

) 99a
0as(P)) = gas(P)+ ag)\ﬂd)\Jr... (13.4)

= ga,B(P) + goe/a’,,ufud)‘a
hence
59(1,8 = gaﬂ,ugﬂd)\- (135)

If there is a symmetry associated to a translation along 5 the line-element
should not change

§(ds?) = 6(gapdr®sz?) = 0, (13.6)
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hence

09ap01°01” + gap [0(02°)02” + 2°6(527)] = 0. (13.7)
Since
§(6z%) = d(6z®) = d(E*dN) = dE*dA (13.8)
= %(hud)\ = €23zt d),

using egs. (13.8) and (13.5) eq. (13.7) becomes
G uE AT + gop €200 NP + €8027dN02%] = 0. (13.9)
After relabelling the indices it becomes
[9apu€" + 955E5 + Gas€ls] 620 dN = 0. (13.10)

Finally, a solution of Einstein’s equations will be invariant under translations

along f if and only if

Gop " + €0 + 9astly = 0 (13.11)

In order to find the Killing vectors of a given a metric g, we have to
solve eq. (13.11), which is a system of differential equations for the compo-
nents of £(z#) . If eq. (13.11) admits no solution, the spacetime has no
symmetries. It may look like eq. (13.11) is not covariant, since it contains

partial derivatives, but it is easy to show that it is equivalent to the following

equation (see appendix A)

€8 + Epa = 0. (13.12)
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This is called the Killing equation.
The variation of a tensor in the direction of a tensor field E is called
Lie-derivative ( E must not necessarily be a Killing vector), and it is

indicated as Lg .
LiTop = Tapu€" + Tsp€l + TasEs- (13.13)
For the metric tensor

Lggap = Gop " + 955E0 + 9asEs = Eap + Epias (13.14)

and if 5 is a Killing vector the Lie-derivative of g,s must vanish.

The existence of Killing vectors remarkably simplifies the problem of
choosing the coordinate system. For example if 5 is a timelike vector,
we may choose the time axis aligned with E in such a way that the time
coordinate line coincides with the worldline to which € is tangent and
consequently

£ = (£°,0,0,0). (13.15)
If, in addition, §_' is a Killing vector from eq. (13.11) it follows that

agaﬂ -0

o (13.16)

This means that if the metric admits a timelike Killing vector, it
is independent on time (A similar procedure can be used if the metric

admits a spacelike, or a null killing vector). The map
foM— M
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under which the metric is unchanged is called an isometry, and the Killing
vector field is the generator of the isometry.

£ is the tangent vector to some curve z*(A) ,ie. £*= 5;—; ,

Given a vector field E we can find the corresponding congruence of

worldlines by integrating the equations

dxH

- = em(z9). (13.17)

13.2 Examples

1) The Killing vectors of flat spacetime
The Killing vectors of Minkowski spacetime can be obtained very easily
in cartesian coordinates. Since all Christoffel symbols vanish, the Killing

equation becomes

a8+ &80 =0. (13.18)
If one combines the following equations
gaaﬂ'y + gﬂ,a’)’ = O’ gﬂa’ya + g’Y:ﬁa = 0’ €7aaﬂ + ga,'yﬂ = 0’ (13'19)

by using eq. (13.18) we find

Eapy = 0, (13.20)

whose general solution is

o = Co + €07 (13.21)
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Substitution into eq. (13.18) gives
€ayT]p + €py L), = €ay0j + €870) = €ap + €40 =0
Therefore eq. (13.21) is the solution only if
€af = —€8a (13.22)

Thus flat spacetime possesses ten linearly independent Killing vectors (the 4
constants ¢, and the six independent components of ¢€,5 ).
2) The Killing vectors of a spherical surface

Consider a sphere of unit radius
ds® = df? + sin’0dy® = (dz')? + sin’x' (dz?)”. (13.23)
The Killing equation written in the form of eq. (13.11)
Gapul™ + 95pE0 + aslsy =0
gives
1) a=B=1 20:&5=0-¢,=0 (13.24)
2) a=1,8=2 g5&) +g€h =0 &, +sin’0¢% =0
3) a=08=2 gn&'+ 2952§f52 =0 — cos ¢! + sin 0{“’22 =0.
The general solution is
&' = Asin(p + a), &2 = Acos(ip + a)cotf + b. (13.25)

Therefore a spherical surface admits three linearly independent Killing vec-

tors depending on the choice of the integration constants (A, a,b).
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13.3 Conserved quantities in geodesic motion

In Chapter 6, section 2, we showed that geodesics are those curves which

parallel-transport their own tangent vector.
VU =0, (13.26)
or

dU®
dr

+ T, UPUY = 0. (13.27)

(see egs. (6.11) and (6.12)). If we consider a particle moving along a geodesic,
and choose the affine parameter as being the proper time, the tangent vector
will be the four-velocity of the particle U= %. Let us assume that the

metric admits a Killing vector £. If we contract eq. (13.27) with £ we

find
du* d(€U*") d€a
e, UPyY| = =22 2 _pge=2 4 e bure,. 13.2
&a ar + 1%, U°U dr U e + I3, U UE, ( 3 8)
Since
u dr =v dr v ozx¥ dr =uvv orv’ (13.29)
and eq. (13.28) becomes
d(&U?) d&s
—2= 2 _UPUY |22 —T9%,&,| =0, 13.30
dr ldm" pré ( )
or
AU
% - UPU &5, = 0. (13.31)
-

208



Since &g, is antisymmetricin 3 and v , when contracted on UPUY

which is symmetric, gives zero as a result. Finally eq. (13.31) becomes

d(&,U?)
——= =0. 13.32
dr ( )
This means that the quantity
£U® = const, (13.33)

is a constant of motion for the particle. Thus in mechanics for every Killing
vector there is an associated conserved quantity. For example, if 5 is a
timelike Killing vectors and we choose the coordinates in such a way that

£* = (£°,0,0,0), eq. (13.33) becomes
&U® = const, (13.34)

which expresses the conservation of the energy of the particle.
However in Riemannian spaces there may exist conservation laws which
cannot be traced back to the presence of a symmetry, and therefore to the

existence of a Killing vector field.

13.4 Killing vectors and conservation laws

In the chapter on the stress-energy tensor, we have shown that it satisfies
the “conservation law”

™., =0, (13.35)



and we have shown that in general this is not a genuine conservation law. If

the spacetime admits a Killing vector, then
&1, =&, T + T, = 0. (13.36)

In fact the second term vanishes because of eq. (13.35) and the first vanishes
because §,, is antisymmetric, and T* is symmetric. But now the

quantity (£,7*) is a vector, and according to eq. (8.57)

VY, = L aiv (v=gv"), (13.37)

3

therefore eq. (13.36) is equivalent to

V—g 0z [\/——g (SHTWJ)] =0, (13.38)

and accordingly, a conserved quantity can be defined as

T = V=9 (§T") da' da’da®, (13.39)

(29=const)

as we showed in the chapter on the stress-energy tensor. (For a more de-
tailed discussion of Gauss’ theorem see the next chapter). If the Killing
vector is timelike , the associated conserved quantity will be called energy.
(Remember that in classical mechanics energy is conserved when the hamil-
tonian is time independent, thus conservation of energy is associated to a
symmetry with respect to translations in time, which is precisely what the

existence of a timelike Killing vector means, except that now ‘time’ means
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the z%-coordinate). Thus the energy of a gravitational system can be defined
in a non ambiguous way only if there exists a timelike Killing vector field.
Similarly when there is a spacelike Killing vector the associated conserved
quantities are called momentum or angular momentum, though this is more

a matter of definition.

13.5 Hypersurface orthogonal vector fields

Given a vector field V it identifies a congruence of worldlines, i.e. the
set of curves to which the vector is tangent at any point of the considered
region. If there exists a family of surfaces f(z") = const such that at
each point the worldlines are perpendicular to that surface, we say that 1%
is hypersuface orthogonal. If this is the case, V should be parallel to
the gradient of the family of surfaces. Let us clarify what do we mean. As
we described in chapter 2, page 43, the gradient of a surface f(z#) is a

one-form

af af  of

df = (3:1:0’ oxl’ " oxm

) =A{fa}- (13.40)

When we say that V must be parallel to df we mean that the one-form

dualto V ,ie. V — {9a5V? = V,} must satisfy the equation

of

% = /\Vaa or Va = f7a. (1341)

1
A
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If this is true, it follows that

)

Vap = Ve = (E) — <&) (13.42)
A B A o
1 _ _
- X (f’a;ﬂ - f,/o’;a) + f,oe()‘ 1);/5 - f,ﬂ()‘ 1);oc =
1 A Aa
= X (f,a,ﬁ - f,ﬂ,a - F'u,Baf,u + F'uaﬂf,u) + f,a(_/\_’gﬂ) - f,/J’(_ )\’2
Ao Ag
= Vi— — Va_”
b\ A
ie.
Aa A
Vs — Vg = Vg— — V,—2=. 13.43
8~ Vaia = Vo 3 (13.43)
If we now define the following quantity
1
w = ZePHV 5V, (13.44)

2
which we call rotation, remembering the definition of the antisymmetric unit

pseudotensor €**’# given in Appendix B, one can show that
w’ =0. (13.45)

This is the Frobenius theorem, which states the sufficient and necessary con-
dition for V' to be a hypersurface-orthogonal vector field.

What do we do with hypersurface-orthogonal vectors? In general, if we
have any vector field, for example a timelike vector field V*(z#), we can
choose the worldlines of V as coordinate lines such that at any point the

vector field takes a very simple form
Ve(zh) — (V2(2*),0,0,0), (13.46)
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and by means of a coordinate transformation z% = z%(z*) we canset V0 =
1. (Similarly, if V is spacelike we can set  V*(z#) — (0, V1(z*),0,0,0) ).
If V isthe four-velocity of some matter, we say that we choose a comoving
coordinate system. It is always possible to choose coordinates such that 1%
takes the simple form (13.46), but the corresponding transformation for the
dual one-form V

Vala#) = (Vo(a*),0,0,0), (13.47)

is possible only if V is hypersurface-orthogonal. In fact, eq. (13.47) is equiv-
alent to Vo = Vpal,, i.e. if (13.47) holds, V is hypersurface-orthogonal
and viceversa (remember that 2% = 0§ ). The existence of an hypersurface-
orthogonal vector field allows to choose coordinates in such a way that the

metric can be considerably simplified. Given a three-dimensional spacetime

(2°, zt,2?)
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be 1,2,3, the worldlines of a vector field V , and be S; and S, the projections
of the surfaces to which V is orthogonal. We can choose the remaining
basis vectors as the tangent vectors to some curves lying on the surface, and

€(0) parallel to 1% , so that

9oo = 9(€0), €)) = €(0) €0y # 0 (13.48)

and the metric takes the form
ds* = goo(dz°)? + gir(dz")(dz"), ,k=1,3 (13.49)

This is possible provided V is not a null vector, otherwise ¢oo would be
zero. The generalization of this example to the four-dimensional spacetime

is immediate, and the surface S will now be a hypersurface.

13.6 Appendix A

We want to show that eq. (13.11) is equivalent to eq. (13.12).
fa;ﬁ = (ga“é‘ﬂ);ﬂ (1350)
= gaug;% = Gau (553 + FN(S,BgJ) )
hence

é‘a;ﬂ + gﬂ;a = Gau (g,ﬂﬁ + Fu&ﬂgs) (13'51)
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+ gou (€4 + T as’)
= gaué-f;j + gﬂug,ljx + (ga,urudﬁ + gﬂul—wad) 65-

The term in parenthesis can be written as

% (90u9"7 (950,58 + 9op,56 — 958.0) + 959" (ao,s + Gos,0 — Gaso)]

= % [(52 (950,86 + o856 — 958,0) + 05 (9ao,s + Goba — ga(;,,,)] (13.52)
= % [950,8 + 9aps — 9s.a + Gap,s + 86,0 — Gas,g]

= Yap,s;

and eq. (13.51) becomes

aip + Epra = gauf,“ﬂ + gﬂufﬁ; + gag,(sfé (13.53)

which coincides with eq. (13.11).

13.7 Appendix B: The Levi-Civita completely
antisymmetric pseudotensor

We define  €*'™ as an objects whose components change sign under in-
terchange of any pair of indices, and whose non-zero components are =+1.
Since it is completely antisymmetric, all the components with two equal in-
dices are zero, and the only non-vanishing components are those for which

all four indices are different. We set
1B =1, (13.54)
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Suppose we are in Minkowski spacetime. If we rotate the coordinate system,
one can show that €*™ behaves as a tensor, but if we reverse the sign of
one coordinate, the components of €*™ do not change, since they have
been defined as being the same in all coordinate systems, while for a generic
tensor some components do change sign. This is the reason why €*'™ igs a
pseudotensor, in the sense that it behaves as a tensor only for a selected class

of coordinate transformations. If all this is true in a locally inertial frame, it

must be true in any coordinate system.

216



