LECTURE 2

2.0 Introduction

We will now start discussing the properties of matter in the density range relevant to neutron stars, whose cross
section is schematically illustrated in fig.1. Throughout these lectures we will always assume that neutron star matter
be at T = 0°K and transparent to neutrinos. The first assumption is justified by the fact that the typical neutron
star temperature is ~ 10° °K, to be compared to an average knetic energy of neutrons in the star interior in the range
10'1-10'2 °K. The second assumption is supported by the calculated values of the neutrino mean free path in neutron
matter, A >> 10 Km, largely exceeding the typical neutron star radius.

This lecture is focused on the region of subnuclear density, i.e. p < pg = 2x10'* g/cm?, corresponding to the outer
and inner crust of the star. At densities above 107 g/cm? and temperature below 108 °K, matter is expected to be a
solid, because the Coulomb interaction between ions is only weakly screened, and the Coulomb energy is minimized
by a Body Centered Cubic (BCC) lattice.
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FIG. 1. Schematic representation of a neutron star’s cross section.

Requiring that the fluctuation of the ions be small compared to average ion spacing r,, one finds that a solid is
expected to form at temperature T < T,, = Z2e?/(100r,). In the case of 6Fe, solidification occurs at density ~ 107
g/cm®. As the density further increases, 7, decreases, so that the condition for solidification continues to be fulfilled.
However, the large kinetic energy of the relativistic electrons shifts the energy balance, favouring inverse 3-decay that
leads to the appearance of neutron rich nuclei.

At density ~ 4 x 10! g/cm?®, the neutrons produced by electron capture are barely bound, the nuclide with the
largest neutron excess being '®Kr. This density correspond to the boundary between outer and inner crust of the
neutron star (see figure). At larger density the neutrons are produced in positive energy states: they are said to drip
out of the nuclei. As a consequence, the inner crust consist of a lattice of nuclei surrounded by a gas of electrons and
neutrons.

2.1 Inverse 3-decay and neutronization

The neutronization process is due to the occurrence of inverse S-decay (i.e. electron capture), turning protons into



neutrons through:
pte —n+uv,. (1)

Assuming neutrinos to be massless and non interacting, the above process is energetically allowed as soon as the
electron energy becomes equal to ¢2 times the neutron-proton mass difference

Ame? = mpc® — myc® = 939.565 — 938.272 = 1.293 MeV . (2)
As a consequence, the electron number density at which inverse S-decay sets in can be estimated from

V(pre)? + (mec?)? = Ame? ®3)

where (see Lecture 1)
pr = h(3rne)'* (4)
leading to

i (Amc?)? = (mec?)? 3/2
3 (7c)?

Ne = ~T7x10%%m™® . (5)

The corresponding mass density for a fully ionized helium plasma, having Y, = 0.5,is p =~ 2.4 x 107 g/cm?.

Let us consider a system of protons, electrons and neutrons in equilibrium through inverse 8-decay at temperature
T = 0. All interactions, except the weak interaction, will be neglected. Process (1) obviously conserves the baryon
number Ng (i.e. baryon number density) and electric charge. Hence

Ne =Ny , (6)
implying in turn (pr,. and pr, denote the electron and proton Fermi momentum, respectively)

PFe = PFp > (7)

and

Ng
np +n, =ng = —. (8)
Q
The requirement of equilibrium implies (e, €, and €. denote the energy densities of neutrons, protons and electrons,

respectively)
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and (use np =np — Ny = Ne)

8r 1 OpPF,a 2 _ +lfora=mn
(2m)? B ( ony ) Pra = { —lfora=e,p ’ (11)
we finally get
0
676 = \/(pF,nC)2 + (mn(;?)? — \/(pF,pC)z + (mnc2)2 _ \/(pF,eC)2 + (mecz)g -0. (12)



The above equations is nothing but the condition for chemical equilibrium, that can be rewritten in terms of the
chemical potentials p, = (0eq/Ony) as

Hn = HUp + pe - (13)

Eq.(13), together with the requirement of charge neutrality (eq.(7)), completely specifies the equation of state of a
mixture of non interacting protons, electrons and neutrons in equilibrium at 7" = 0. For any given matter density p
we can write

p=pB=pp+pn (14)
and define the proton and neutron fractions
Pp
z, =22 (15)
Pop
and
xnz%"zl—xp. (16)

Substitution of eq.(7) into eq.(13) then yields an equation for z,,.
Once the value of z,, is known, the neutron, proton and electron number densities can be evaluated and the pressure

P=P,+P,+P. (17)

can be obtained using eq.(23) of Lecture 1. Fig. 2 shows the proton and neutron number densities, n, and n,
(remember: ne = n,) as a function of matter density p.
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FIG. 2. Number density of noninteracting protons and neutrons in S-equilibrium as a function of matter density.

It can be seen that in the range 10° < p < 107 g/cm?® there are protons only and log(n,) grows linearly with log(p).
At p ~ 107 g/cm?® neutronization sets in and the neutron number density begins to steeply increase. At p > 107 n,
stays nearly constant, while neutrons dominate.

The equation of state of the S-stable mixture is shown in fig. 3. Its main feature is that pressure remains nearly
constant as matter density increases by almost two orders of magnitude, in the range 107 < p < 10° g/cm3. The
electron and neutron contributions to the pressure are shown in fig. 4. Note that, since charge neutrality requires
np=n,, the proton pressure is smaller than the electron pressure by a factor (m,/m.) ~ 2000.
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FIG. 3. Equation of state of a mixture of noninteracting neutrons electrons and protons in §-equilibrium.
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FIG. 4. Density dependence of the neutron and electron contributions to the pressure of S-stable matter.

2.2 Nuclear semi-empirical mass formula and stability of neutron-rich nuclei

The description of -stable matter in terms of a mixture of degenerate Fermi gases of neutrons, protons and electrons
is strongly oversimplified. In reality, electron capture changes a nucleus with given charge Z and mass number A into a
different nucleus with the same A and charge (Z—1). Moreover, the new nucleus may be metastable, so that two-step

processes of the type

can take place. Chemical equilibrium is driven by the mass difference between neighboring nuclei rather than the

neutron-proton mass difference.

56 56 56
sFe = 5sMn — 5;Cr
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FIG. 5. Nuclear charge distribution of 2°® Pb, normalized to Z/p(0) (Z = 82). The solid line has been obtained using the
parametrization of eq.(19), while the diamonds represent the results of a model independent analysis of electron scattering
data.

The measured nuclear masses, M (Z, A), and charge distributions exhibit two very important features:

e The charge density is nearly constant within the nuclear volume, its value being roughly the same for all stable
nuclei, and drops from ~ 90 % to ~ 10 % of the maximum over a distance T ~ 2.5 fm (1 fm = 10x10~'* c¢m),
independent of A, called surface thickness (see fig. 5). It can be parametrized in the form

1
pen(r) = po 1+ e(r—B)/D ° (19)

where R = rgA'/3, with ry = 1.07 fm, and D = 0.54 fm. Note that the nuclear charge radius is proportional to
A'/3_implying that the nuclear volume increases linearly with the mass number A.

e The (positive) binding energy per nucleon, defined as

B(Z,A 1
(A’ : A [Zmp02 + (A - Z)mn02 + Zmec® - M(Z’A)] ) (20)

where M(Z,A) is the measured nuclear mass, is almost constant for A> 12 | its value being ~ 8.5 MeV (see
fig. 6).

The A and Z dependence of B(Z, A) can be parametrized according to the semiempirical-mass formula

B(Z,A) 1 /3 z? (A —27)? 1
1~ 1 avA — asA% ~ ey TOAT gx +)\apm

(21)

The first term in square brackets, proportional to A, is called the volume term and describes the bulk energy of
nuclear matter. The second term, proportional to the nuclear radius squared, is associated with the surface energy,
while the third one accounts for the Coulomb repulsion between Z protons uniformly distributed within a sphere of
radius R. The fourth term, that goes under the name of symmetry energy is required to describe the experimental
fact that stable nuclei tend to have the same number of neutrons and protons. Moreover, even-even nuclei (i.e. nuclei
having even Z and even N = A — Z) tend to be more stable than even-odd or odd-odd nuclei. This property is
accounted for by the last term in the above equation, where A —1, 0 and +1 for even-even, even-odd and odd-odd
nuclei, respectively. Figure 6 shows the different contributions to B(Z,A)/A, evaluated using eq.(21).
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FIG. 6. Upper panel: A-dependence of the binding energy per nucleon of stable nuclei, evaluated according to eq.(21) with
av = 15.67 MeV, as = 17.23 MeV, ac = .714 MeV, aa = 93.15 MeV and ap, = 11.2 MeV. Lower panel: the solid line shows the
magnitude of the volume contribution to the binding energy per nucleon, whereas the A-dependence of the surface, coulomb
and symmetry contributions are represented by diamonds, squares and crosses, respectively.

The semi-empirical nuclear mass fomula of eq.(21) can be used to obtain a qualitative description of the neutron-
ization process. The total energy density of the system consisting of nuclei of mass A and charge Z arranged in a
lattice and surrounded by a degenerate electron gas is

np
er(ng, A7) = e+ (50 [M(Z,A)¢ +eu] (22)
where €, is the energy of the electron gas, given by eq.(24) of Lecture 1, ng and (np/A) denote the number densities
of nucleons and nuclei, respectively, and €r, is the electrostatic lattice energy per site. As a first approximation, the
contribution of €7, will be neglected.

At any given nucleon density np the equilibrium configuration corresponds to the values of A and Z that minimize

er(ng,A,Z),ie. to A and Z such that
Oer N Oer o
(a_z> -0 (a_A> =0 (23)

Combining the above relationships and using eq.(21) one finds
7~ 3.54 A2, (24)

Once Z is known as a function of A, any of the two relationships (23) can be used to obtain A as a function of ng.
The mass number A turns out to be an increasing function of npg, implying that Z also increases with ng, but at a
slower rate. Hence, nuclei become more massive and more and more neutron rich as the nucleon density increases.

The above discussion is obvioulsy oversimplified. In reality, A and Z are not continuous variables and the total
energy has to be minimized using the nuclear masses, rather than the parametrization of eq.(21), and including the
lattice energy, that can be written as

(25)

where r, is related to the number density of nuclei through (47/3)r? = (ng/A)~! and K = 0.89593 for a BCC lattice,
yielding the lowest energy. At fixed nucleon number density np we can write the total energy density in the form



ertns, A7) = e+ ("2) [M(Z,A)c2—1.4442(ze)2 (”KB)I/B] , (26)

where, for matter density exceeding ~ 10% g/cm?, the extreme relativistic limit of the energy density of an electron
gas at number density ne=Znpg/A (see Lecture 1) has to be used to evaluate e,:

3 np 4/3
=2 (ne) (222) . 2
=" (he) (2" (27)
Collecting together the results of eqs.(25)-(27) and expressing np in units of np, = 10~ fm 2 (the number density
corresponding to a matter density ~ 10% g/cm?®), the total energy per nucleon, er/np, can be rewritten in units of
MeV as

er  MZ,A) 1 s 2 ng \ '/
or_ AST8 73 — 2 . 2
g A T 04978 180.74| \np, (28)

The average energy per nucleon in a nucleus is about 930 MeV. It can be conveniently written in units of MeV
in the form M(Z,A)c?/A = 930 + A. As long as we are dealing with nuclides that are not very different from the
stable nuclides, the values of A are available in form of tables based on actual measurements or extrapolations from
the experimantal data.

In practice, er/np of eq.(28) is computed for a given nucleus (i.e. for given A and Z) as a function of np, and
plotted versus 1/np (see fig. 7). The curves corresponding to different nuclei are then compared and the nucleus
corresponding to the minimum energy at given np can be easily picked out. For example, the curves of fig. 7 show
the behavior of the energy per particle corresponding to 62Ni and %4Ni, having N = (A—Z) = 34 and 36, respectively.
It is apparent that a first order phase transition is taking place around the point where the two curves cross one
another. The exact densities at which the phase transition occurs and terminates can be obtained using Maxwell’s
double tangent construction. This method essentially amounts to drawing a straight line tangent to the convex
curves assocated with the two nuclides. In a first order phase transition the pressure remains constant as the density
increases. Hence, as all points belonging to the tangent of Maxwell’s construction correspond to the same pressure,
the onset and termination of the phase transition are simply given by the points of tangency. As expected, at higher
density the nucleus with the largest number of neutrons yields a lower energy.
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FIG. 7. Total energy per nucleon of a BCC lattice of °2Ni (dashed line) and 5*Ni (solid line) nuclei surrounded by an electron
gas, evaluated using eq.(28) and plotted versus the inverse nucleon number density.

It has to be pointed out that there are limitations to the approach described in this section. Some of the nuclides
entering the minimization procedure have ratios Z/A so different from those corresponding to stable nuclei (whose
typical value of Z/A is ~ 0.5) that the accuracy of the extrapolated masses may be questionable. Obviously, this
problem becomes more and more important as the density increases. The study of nuclei far from stability, carried
out with radioactive nuclear beams, is regarded as one of the highest priorities in nuclear physics research, and new
dedicated experimental facilities are currently being planned both in the U.S. and in Europe.

Table I reports the sequence of nuclides corresponding to the ground state of matter at subnuclear density, as a
function of matter density.



Nuclide V4 N=A-7 Z/A A Pmazx

[MeV] [g/cm’]
56Fe 26 30 4643 .1616 8.1 x 10°
62Nj 28 34 4516 1738 2.7 x 108
64Ni 28 36 4375 .2091 1.2 x 10°
84Ge 34 50 .4048 .3494 8.2 x 10°
82Ge 32 50 .3902 4515 2.1 x 10
847n 30 54 3750 6232 4.8 x 10%°
"8Ni 28 50 .3590 8011 1.6 x 10!
"6 Fe 26 50 13421 1.1135 1.8 x 10!
124Mo 42 82 3387 1.2569 1.9 x 10!
1227, 40 82 .3279 1.4581 2.7 x 10!
120G, 38 82 .3166 1.6909 3.7 x 10!
18y, 36 82 .3051 1.9579 4.3 x 10

TABLE 1. Sequence of nuclei corresponding to the ground state of matter and maximum density at which they occur.
Nuclear masses are given by M(Z,A)c?/A = (930 + A) MeV.

2.3 Neutron drip

Table I shows that as the density increases the nuclides corresponding to the ground state of matter become more
and more neutron rich. At p ~ 4.3 x 10! g/cm? the ground state corresponds to a Coulomb lattice of 1*®Kr nuclei,
having proton to neutron ratio ~ 0.31 and a slighltly negative neutron chemical potential (i.e. neutron Fermi energy),
surrounded by a degenerate electron gas with chemical potential pu, ~ 26 MeV. At larger densities a new regime sets
in, since the neutrons created by electron capture occupy positive energy states and begin to drip out of the nuclei,
filling the space between them.

At these densities the ground state corresponds to a mixture of two phases: matter consisting of neutron rich nuclei
(phase I), with density pnuc, and a neutron gas of density png (phase II).

The equilibrium conditions are

and
fp = Hn — fle (30)

where (un)r and (un)rr denote the neutron chemical potential in the neutron gas and in the matter of nuclei,
respectively.

The details of the ground state of matter in the neutron drip regime are specified by the densities p, pnuec and png,
the proton to neutron ratio of the matter in phase I and its surface, whose shape is dictated by the interplay between
surface and Coulomb energies.

Recent studies suggest that at densities 4.3x10° < p < .75x10! g/cm® the matter in phase I is arranged in
spheres immersed in electron and neutron gas, whereas at .75x10 < p < 1.2x10™ g/cm? the energetically
favoured configurations exhibit more complicated structures, featuring rods of matter in phase I or alternating layers
of matter in phase I and phase IT. At p 2 1.2x10'* g/cm? there is no separation between the phases, and the ground
state of matter corresponds to a homogeneous fluid of neutrons, protons and electrons.



