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D.1 REDUCTION FORMULAE FOR THE COMPTON SCATTER-
ING AMPLITUDE

As we saw in Chapter 10, the generating functional that is obtained to
first order from the QED perturbative expansion can be written in the form1
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and we have introduced the notation ��µ(x� u) = g�µ�F (x� u; 0).
To obtain the generating functional to second order, we must calculate the
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The result of this operation is the sum of a large number of terms,
which correspond to the di↵erent physical processes discussed in Section 10.4.
Here, we only consider the contribution corresponding to the generating func-
tional from which the Compton scattering amplitude is obtained, denoted
ZC
2

[J⇢, J̄ , J ].

1The presence of mass counterterms in the interaction Lagrangian is not relevant for the
result that we propose to derive, and will therefore be neglected.

281



282 ⌅ INTRODUCTION TO GAUGE THEORIES

In this context the relevant functional derivative with respect to J⌫(v) can
operate only on Z
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[J⇢], with the result

i�

�J⌫(v)
Z
0

[J⇢] = �
Z

d4x0 ��⌫(v � x0)J�(x0)Z
0

[J⇢] , (D.5)

while the functional derivatives with respect to J̄(v) and J(v) can operate,
respectively, on C
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(for clarity, we make the Dirac indices explicit)

�⌫↵�
i�

�J̄�(v)
C

2

[J̄ , J ] = �i
Z

d4z �⌫↵�SF ��(v � u)�µ�⇢SF ⇢�(u� z)J�(z) , (D.6)

and

�i�
�J↵(v)

Z
0

[J̄ , J ] = �
Z

d4y J̄⇠(y)SF ⇠↵(y � v)Z
0

[J̄ , J ] . (D.7)

Combining equations (D.6)–(D.7) with the analogous expressions obtained
by di↵erentiating Z

0

[J̄ , J ] with respect to J̄(v) and C
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+(y ↵ z, u ↵ v, µ ↵ ⌫)] .

It is immediately seen that the two terms of (D.8) give identical contributions,
which together eliminate the factor 1

2

. The final result can be written in the
form
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The Compton scattering amplitude is obtained, by means of the LSZ re-
duction formulae, from the four-point Green’s function
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which in the path integral formalism can be rewritten in the form
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Using the expression for the generating functional to second order, given
by equations (D.9)–(D.11), it is immediately seen that the two functional
derivatives with respect to J↵(x
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We now take the functional derivatives with respect to J̄(x
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From equations (D.13)–(D.15) it follows that
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Now we want to use the expression for the Green’s function, (D.16), to
obtain the amplitude of the process
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where (k, r), (k0, r0), (p, s) and (p0, s0) are the 4-momenta and the electron
and photon polarisation in the initial and final states. Using the reduction
formulae discussed in Chapter 10, we can write the S-matrix element in the
form
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where N is a normalisation factor that we will discuss later. The integrals over
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with the result
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For the last two integrations, the new variables W = (v + u)/2 and w =
v � u are used. Integrating over W , the �-function expressing 4-momentum
conservation is obtained and, using the concise notation
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we can write the S-matrix element in the form
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The normalisation factor in equation (D.20) has the form
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which contains the normalisations of the states describing the particles in the
initial and final states, and we may set Z

2

= Z
3

= 1 to the present perturbative
order.

Equation D.22 reproduces the Compton scattering amplitude to lowest
order, well known in the literature (see e.g. [1], equations (14.82) and (14.83)).


