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D.1 REDUCTION FORMULAE FOR THE COMPTON SCATTER-
ING AMPLITUDE

As we saw in Chapter 10, the generating functional that is obtained to
first order from the QED perturbative expansion can be written in the form!

—id , id id
57 (w) " 6J(u) dJn(u)
= ie/d4u C1,[JPICYT, J) Zo[ I, T, J] | (D.1)

Zy[Jr, J, J] = ie / d*u ZolJ*, J, J]

where Zy[J?, J,J] = Zg[JP)Zo[J, J] is the generating functional of the free
theory, equation (10.9),

CrlI") = — / A2 (@)A,(x — u) | (D.2)

CH[J, J| = fi’y“SF(ufu)f/d‘ly d*2J(y)SE(y—u)y"Sp(u—2)J(2), (D.3)

and we have introduced the notation Ay, (z —u) = gr,Ap(z — u;0).
To obtain the generating functional to second order, we must calculate the
expression
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526./07 v §J(v)7 57(0) 5JV(U)Z1[J L] (D.4)

The result of this operation is the sum of a large number of terms,

which correspond to the different physical processes discussed in Section 10.4.

Here, we only consider the contribution corresponding to the generating func-

tional from which the Compton scattering amplitude is obtained, denoted
Z8[Je, J, J).

1The presence of mass counterterms in the interaction Lagrangian is not relevant for the
result that we propose to derive, and will therefore be neglected.
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In this context the relevant functional derivative with respect to J” (v) can
operate only on Zy[.J?], with the result
i
0J¥(v)

ZolJ?] = — / Ao’ Ay (v —a') 7 (@) Z[J?] . (D.5)

while the functional derivatives with respect to J(v) and J(v) can operate,
respectively, on Co[J, .J] and Zy[J, J], or vice versa. In the first case we find
(for clarity, we make the Dirac indices explicit)

L, s : . ,
Vaﬂmcb[‘]v ‘]} = —’L/d42 VaﬁSFﬁzS(v - U)VgpSFpo(u - Z)JU(Z) ) (D6)
and
—i0 . - -
Al = = [ dy i wSraw -0zl . (D)

Combining equations (D.6)—(D.7) with the analogous expressions obtained
by differentiating Zy[J, J] with respect to J(v) and Cs[J, J] with respect to
J(v), we obtain

z$ = %(ie)2i/d4u dtvdz da'd*y d*z TN (@) Axu(z — u) Ay (v —2')J7 (')
< [J(y)Sr(y —v)y"Sr(v — u)y"Sp(u — 2)J(2) (D-8)

+y=z u=sv p=sv).
It is immediately seen that the two terms of (D.8) give identical contributions,

which together eliminate the factor % The final result can be written in the
form

zZ§ = (ie)? / d*ud*vDy,, [JP1DY ], J) ZoJ?, J, J] , (D.9)

with
Dy, 07 = / dzd*s’ JMNx)Ax(z — u)Ay, (v —2')J7 () (D.10)

and

DY, J] = i/d4yd4z J(y)Sr(y —v)ySr(v — u)y*Sp(u — 2)J(2) .
(D.11)

The Compton scattering amplitude is obtained, by means of the LSZ re-
duction formulae, from the four-point Green’s function

Gap(w1, 02,2, 75) = (0|T{Aa(21)Ap(21)P(22)(25)}0) , (D.12)
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which in the path integral formalism can be rewritten in the form

Gaﬁ(xlax27xl]_7'rl2) =

1 —i0 0 %) 0 =
= Z[JP, J,J . (D13
Z10,0,0] 57(za) 57(25) 372@r) 378y 21+ o] (D-13)

JP=J=J=0

Using the expression for the generating functional to second order, given
by equations (D.9)—(D.11), it is immediately seen that the two functional
derivatives with respect to J®(x1) and J#(x}) must operate on D;[J”], with
the result

i6 i6 .
57 () 5Py =
— [Bap(zr —w)Apy (v = 21) + Dpp (@) — w) A (v —21)] . (D.14)

We now take the functional derivatives with respect to J(z3) and J(x5)
which can operate only on D;[J, J]. The result obtained is

—10 20 -

5.7 (w2) 6.7 () Dol J]
S /d4 Sp(h — vy S (v — wy*Sp(u — 2)J(z)
_6J(x2) z Sp(xy —v)y'Sp(v —u)y*Sp(u — 2)J (2

= iSp(xh —v)ySp(v —u)y*Sp(u — x3) . (D.15)
From equations (D.13)—(D.15) it follows that
Gaplw1, w2, ), 75)
= —i(ie)? / d*ud*o [Agu(z1 — u)Ap, (v —2h) + Agu(2) — w)Auy (v — 1))
x Sp(ahy =)y Sp(v —u)y"Sp(u—a2) . (D.16)

Now we want to use the expression for the Green’s function, (D.16), to
obtain the amplitude of the process

V() +e(p,s) = (K1) +e(@,s) (D.17)

where (k,r), (K',7'), (p,s) and (p/,s’) are the 4-momenta and the electron
and photon polarisation in the initial and final states. Using the reduction
formulae discussed in Chapter 10, we can write the S-matrix element in the
form

Sif = N/dx1dx/1dx2das'267i(k”“+p”2>ei(’“/“3+p/w§)
—
x (k! r')ﬁz; u(p', s") (i — m)e, Gap(x1, T2, 2, 25)

X (=id — m)g,u(p,s) Ty, e (k) , (D.18)
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where N is a normalisation factor that we will discuss later. The integrals over
x1, 24, 2 and a4 are carried out by using the relations

O:Ap(z—y;0) = =6W (@ —y) , (i =m).Sr(z—y) =W (@—y), (D.19)
with the result
Sip = —i(ie)>’N / d*ud*v (D.20)
X {eii[(er'“)“*(p'*k’/)”]el,(k', ru(p', s' ) Sk (v — u)v*u(p, s)e.(k,r)
—}—67"[(7’7]“/)“7(1”/7’“)’“]e/,,(lc’7 ra(p', )Yy Sk (v — w)y*u(p, s)e, (k, r)} .
For the last two integrations, the new variables W = (v + u)/2 and w =
v — u are used. Integrating over W, the J-function expressing 4-momentum
conservation is obtained and, using the concise notation
enlb,r)=¢€,, e .r)=¢€,, ups)=u, a@p,s)=ua, (D21)

we can write the S-matrix element in the form
Sip =N @2m)*(k+p—K —p) ieQ/d4w

x [t ¢S (w) fu+ € 00T ¢S (w) ]
=N (27r)45(k: +p—K —p) it [}é/SF(p +k)¢+¢Sr(p— k')/é/] u,

(D.22)
with pr
m
=0 . D.2

Sr(p) p2 —m?2 +ie (D.23)

The normalisation factor in equation (D.20) has the form

1 1 1 1

N = (D.24)

V2732w, Z5 /(27)32w, Zo /(270)32wy Zs \/(270)32wy Z

which contains the normalisations of the states describing the particles in the
initial and final states, and we may set Zs = Z3 = 1 to the present perturbative
order.

Equation D.22 reproduces the Compton scattering amplitude to lowest
order, well known in the literature (see e.g. [1], equations (14.82) and (14.83)).



