Quantum Electrodynamics

Omar Benhar

Spring Semester, 2019

• Textbook

Nicola Cabibbo, Luciano Maiani & Omar Benhar: An Introduction to Gauge Theories. Suggestions for further readings can be found in the Bibliography.

Syllabus

1. The Feynman Path Integral

Transition amplitude in quantum mechanics. Lattice approximation. The classical limit. Time as a complex variable. Statistical Mechanics. Green's Functions. Towards a field theory. Generating functional for the free scalar field.

2. Perturbation theory of $\lambda \phi^4$ theory

Perturbative expansion of the generating functional. Connected parts and vacuum diagrams. Two-point Green's function in perturbation theory.

3. Spectral representation of the two-point Green's function

4. Scattering processes and the S-matrix

Asymptotic "in" and "out" states. Scattering amplitude and the S-matrix. LSZ reduction formulae for the $\lambda \phi^4$ theory. Feynman rules for the S-matrix elements.

5. The electromagnetic field

Gauge fixing. The deWitt-Faddeev-Popov method. Generating functional and propagator.

6. Fermion fields

Anticommuting variables. Definition and properties of Grassmann variables. Generating functional and propagator of the free Dirac field.

7. Quantum Electro-Dynamic (QED)

Reduction formulae for QED. Calculation of the Compton scattering amplitude. Renormalisation of QED. Significance of renormalisation in quantum field theory. Dimensional regularisation. Order α correction to the free photon propagator. Charge renormalisation. The full propagator and vacuum polarisation. Electron propagator and vertex to order α . Ward identity.

8. Applications of QED Scattering in an external field. Bremsstrahlung and infrared divergence. Lamb shift. One-loop calculation of the vacuum polarisation tensor. The anomalous magnetic moment. Renormalisation group of QED. The Gell-Mann and Low equation.