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Outline

. Overview of neutron star structure

. Models of the equation of state (EOS) of neutron
star matter

. Constraints from static properties of neutron stars

. Nonradial oscillations and gravitational wave
(GW) emission from neutron stars

. Prospects and perspectives
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Overview of Neutron Star Structure

• recall: ρ0 ≈ 0.16 nucl/fm3 = 2.67 × 1014 g/cm3
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. ???: hyperons,
π-condensate,
K-condensate,
quark matter . . .

. note: most of the
neutron star mass
is in the region
ρ > ρ0
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Basic assumptions

• cold matter: T = 0 ◦K

Vela

. typical neutron star
temperature ∼ 109 ◦K

. to be compared to average
kinetic energies in the range

1011 < 〈T 〉 < 1012 ◦K

@ ρ0 < ρ < 4ρ0

• transparency to neutrino:

λν >> 10 Km @ T ∼ 109 ◦K
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Modeling neutron star matter @ ρ > ρ0

• Bottom line

. properties of matter it the outer and inner crust can be
inferred from data on neutron rich nuclei

. in the region of supranuclear density, ρ > ρ0, one has to
resort to extrapolations of theoretical models

. the Fermi gas model is incompatible with all measured
neutron star masses

. strong and weak interactions dynamics must be taken into
account

KRL, Caltech - November 5, 2004 – p.5/33



What are the right degrees of freedom ?

. proton charge distribution from a dipole fit of the measured
form factor

F (q) =
1

[1 + (q/q0)2]2
, q0 = 0.84 GeV

. two nucleons separated by 1 fm
still look like individual objects

. average NN separation in
nuclear matter

1.2 ∼> r0 ∼> 0.8 @ ρ0 ∼< ρ ∼< 4ρ0
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Models based on nucleon degrees of freedom

• Nonrelativistic approach

. pointlike nucleons interacting through the hamiltonian

H =
∑

i

p
2
i

2m
+

∑

j>i

vij +
∑

k>j>i

Vijk

. vij : π exchange + phenomenological short and intermediate
range interaction, strongly constrained by NN data (deuteron
properties and ∼ 4000 NN scattering phase-shifts, fitted
with χ2/N ∼ 1)

. Vijk(� vij): needed to reproduce the empirical equilibrium
density of nuclear matter and the measured binding energies
of the three-nucleon bound states
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Results of NMBT

. the energies of nuclei with A < 8 have been obtained using

the Green Function Monte Carlo (GFMC) method to solve

the Schrödinger equation (Pieper & Wiringa, 2001 )
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Results of NMBT (continued)

. energy per baryon of nucleon matter (Akmal, Pandharipande
& Ravenhall, 1998)

. note: calculated relativistic boost corrections to vij are
∼ 7% in 4He and ∼ 12 − 15% in neutron matter @
ρ ∼ (1 − 2)ρ0
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β-stable nucleon matter

. n, p and e in equilibrium with respect to the process

n ↔ p + e

µn − µp = µe

�
��

ρp = ρe

@
@I

equilibrium charge neutrality

. as ρ increases (typically just above ρ0) µe > mµ and muons

also appear through n ↔ p + µ , with µn − µp = µe = µµ

and ρp = ρe + ρµ

. at any given ρ equilibrium and charge neutrality determine

the proton fraction xp = ρp/ρ
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Results of NMBT (continued)

. β-stable matter of n, p, e and µ: energy-density and proton
fraction as a function of baryon number density (Akmal,
Pandharipande & Ravenhall, 1998)
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More complex models of hadronic matter

. appearance of heavier strange baryons through

p + e → Λ0 + νe

n + e → Σ− + νe

may become energetically favoured at large ρ

. example: equilibrium in matter including

n , p , e , µ, Λ0 , Σ−

requires

µn = µΛ0 µp = µn − µe µΣ− = µn + µe
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Including hyperons in NMBT

. Problem: YN and YY interactions largely unknown

. Example: using the Nijmegen potential Σ− appearance has
been predicted at ρ ∼ 2ρ0 (Vidana et al, 2000)
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EOS of hadronic matter

. for any given value of baryon number density the EOS is
determined by minimizing the energy E

. energy density and pressure are trivially related to E through

ε(ρ) =
E

V
= ρ

E

N

P (ρ) = ρ2 ∂

∂ρ

E

N

. EOS can be classified according to their “stiffness”

Γ =
d ln P

d ln ρ
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From hadronic matter to quark matter

. @ ρ ∼ 1015 g/cm3 quarks are no longer clustered into
nucleons or hadrons

. the EOS of quark matter can be estimated using the bag
model
◦ noninteracting quarks confined to a finite region of space

(the bag)
◦ bag volume limited by a pressure B (the bag constant)

. example: noninteracting massless quarks

ε = B +
3

4π2

Nf
∑

i=1

p4
Fi

, P = −B +
1

4π2

Nf
∑

i=1

p4
Fi
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Quark and lepton densities as a function of ρ

• baryon number density

ρ = 3
∑

q

ρq

• charge neutrality
∑

q

Qqρq =
∑

`

Q`ρ`

• weak equilibrium

µd − µu = µe = µµ

µs = µd
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From hadronic matter to quark matter (continued)

. nucleon matter vs quark matter

. as ρ → ∞
(

E

N

)

NM

∝ ρ

(

E

N

)

QM

∝ ρ1/3

. The transition takes place either at constant pressure or with
formation of a mixed phase
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EOS and properties of nonrotating neutron stars

. given the EOS, mass and radius of a nonrotating star can be
obtained from the Tolman-Oppenheimer-Volkov (TOV)
equations (hydrostatic equilibrium + Einstein eqs)

dP (r)

dr
= −G

[ε(r) + P (r)/c2] [M(r) + 4πr2P (r)/c2]

r2 [1 − 2GM(r)/rc2]

M(r) = 4π

∫ r

0

r′
2
dr′ε(r′) , ε(r = 0) = εc

. solving TOV equations one obtains a set of neutron star
configurations, characterized by the radius R, defined
through P (R) = 0, and the mass M = M(R)
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Maximum neutron star mass

. typical mass-central energy-density curve

. maximum mass given by

Mmax = M(εc) ,

(

dM

dεc

)

εc=εc

= 0
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Compilation of measured neutron star masses

. Hulse & Taylor: binary pulsar M = 1.441 ± .0007M�

. ∼ 20 accurate measurements of bynary systems yield
M = 1.35 ± 0.1M�

. a recent determination of the mass of the X-ray pulsar Vela
X-1 yields M = 1.87+0.23

−0.17M�
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Predicted maximum masses vs data

. bottom line: most EOS support a stable neutron star of mass
∼ 1.4 M�

. EOS based on nucleonic degrees of freedom predict
maximum masses typically ≥ 2 M�

. the presence of a core of deconfined quark matter lowers the
maximum mass by ∼ 10%

. the appearance of hyperons makes the EOS significantly
softer, typically leading to Mmax < 1.5M�

. if confirmed, the measured mass of Vela X-1 will rule out
soft EOS, thus leaving little room for the occurrence of
“exotic” matter
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New observational developments

. Iron and Oxygen transitions recently observed in the spectra
of 28 bursts of the X-ray binary EXO0748-676 correspond
to a gravitational redshift z = 0.35 (Cottam et al, 2002)

. z is related to the mass-radius ratio through

R(1 + z) = R

(

1 −
2GM

c2

1

R

)−1/2

yielding
M

R
= 0.153

M�

Km

i.e.

1.4 ∼< M/M� ∼< 1.8 ⇐⇒ 9 ∼< R ∼< 12 Km
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Predicted M/R ratios vs data
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Gravitational waves from neutron stars

. a neutron star emits GW at the (complex) frequencies of its

quasi-normal modes

◦ g-modes: main restoring force is the buoyancy force

◦ p-modes: main restoring force is pressure

◦ f-modes: intermediate between g- and p-modes

◦ w-modes: pure space-time modes

◦ r-modes: main restoring force is the Coriolis force

{ωgn} < ωf < {ωpn} < {ωwn}

. in newtonian theory the frequency of the f-mode is
proportional to the average density of the star
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GW emission and EOS

. how do neutron star oscillation modes associated with GW
emission depend upon the EOS ?

. example: the frequencies of axial (odd parity) w-modes are

eigenvalues of a Schrödinger-like equation, whose potential

V`(r) explicitly depends upon the EOS

V`(r) =
e2ν(r)

r3

{

`(` + 1)r + r3 [ε(r) − P (r)] − 6M(r)
}

dν

dr
= −

1

[ε(r) + P (r)]

dP

dr
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GW emission and EOS (continued)

. frequency of the 1st w-mode
vs star compactness (Benhar,
Berti & Ferrari, 1999)

. the pattern of frequencies reflects the stiffness of the EOS.
Softer EOS correspond to higher frequencies

. for a given EOS, the frequency depends weakly upon M/R
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GW emission and EOS (continued)

. f -mode frequency as a function of the neutron star mass
(Benhar, Ferrari & Gualtieri, 2004)
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GW emission and EOS (continued)

. a set of empirical relations linking the mode frequencies to
M and R can be inferred from the results of theoretical
calculations (Benhar, Ferrari & Gualtieri, 2004)
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Extracting M and R from GW frequencies

. empirical relations between frequencies and star parameters

can also be obtained for the p- and w- modes. For example

νw =
1

K

(

a + b
M

R

)

1

τw

= 10−3 M

[

c + d
M

R
+ e

(

M

R

)2
]

. symultaneous detection of GW signals associated with
different modes would provide up to five equations for the
two unknown R and M
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A numerical experiment (Andersson & Kokkotas, 1998)

• select a model polytropic
star and compute M and R

• compute frequency and
damping time of the
f-mode and the 1st w-mode

• plot the four lines
corresponding to the
empirical relations

• the intersection of the four
lines gives the correct M
and R with a few percent
accuracy
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Will GW from neutron stars ever be detected ?

. Assume that the f -mode of a neutron star with
νf = 1.9 kHz, τf = 0.184 s has been excited

. The signal emitted can be modeled as (Ferrari et al, 2003)

h(t) = Ae(tarr−t)/τf sin [2πνf (t − tarr)] ,

and the energy stored into the mode is

dEmode =
π

2
ν2 | h̃(ν) |2 dSdν

. Will the VIRGO interferometer be able to detect this signal ?
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Detection of GW from neutron stars (continued)

. VIRGO noise power spectral density (x = ν/ν0, ν0 = 500 Hz)

Sn(x) = 10−46 ·
{

3.24[(6.23x)−5 + 2x−1 + 1 + x2]
}

Hz−1,

with x = ν/ν0 and ν0 = 500 Hz

. Signal to noise ratio

SNR = 2

[

∫

∞

0

dν
|h̃(ν)|2

Sn(ν)

]1/2

. SNR = 5 requires Emode ∼ 6 × 10−7 M� for a source in our

galaxy and ∼ 1.3 M� for a source in the VIRGO cluster
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Conclusions

. Neutron star structure, reflected by the EOS, affects the
frequencies of oscillations leading to GW emission

. Observation of GW emission from neutron stars may
provide considerable new insight on the EOS of strongly
interacting matter

. While the emitted signal is likely to be out of reach of the
existing interferometers, second generation detectors,
expected to be more sensitive at frequencies above
1 ÷ 2 kHz, may be able to detect f -mode oscillations.

. Development of better theoretical models, particularly of
“hybrid” stars, are strongly needed (critical densities for
appearance of hyperons and quarks, role of color
superconductivity, nature of the phase transitions . . . )
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