Equation of State of Neutron Star Matter and Gravitational Wave Emission

Omar Benhar

INFN & Department of Physics, Università "La Sapienza", Roma

Outline

- Overview of neutron star structure
- Models of the equation of state (EOS) of neutron star matter
- Constraints from static properties of neutron stars
- Nonradial oscillations and gravitational wave (GW) emission from neutron stars
- Prospects and perspectives

Overview of Neutron Star Structure

• recall: $\rho_0 \approx 0.16 \text{ nucl/fm}^3 = 2.67 \times 10^{14} \text{ g/cm}^3$

- ???: hyperons,
 π-condensate,
 K-condensate,
 quark matter . . .
- note: most of the neutron star mass is in the region
 - $\rho > \rho_0$

Basic assumptions

• cold matter: $T = 0 \circ K$

- ▷ typical neutron star temperature $\sim 10^9 \circ K$
- to be compared to average kinetic energies in the range

 $10^{11} < \langle T \rangle < 10^{12} \ ^{\circ}K$

(a) $\rho_0 < \rho < 4\rho_0$

• transparency to neutrino:

 $\lambda_{\nu} >> 10 \text{ Km} \quad @ T \sim 10^9 \,^{\circ} K$

Modeling neutron star matter @ $\rho > \rho_0$

• Bottom line

- properties of matter it the outer and inner crust can be inferred from data on neutron rich nuclei
- ▷ in the region of supranuclear density, ρ > ρ₀, one has to resort to extrapolations of theoretical models
- the Fermi gas model is incompatible with all measured neutron star masses
- strong and weak interactions dynamics must be taken into account

What are the right degrees of freedom ?

proton charge distribution from a dipole fit of the measured form factor

$$F(q) = \frac{1}{[1 + (q/q_0)^2]^2}$$
, $q_0 = 0.84 \text{ GeV}$

- two nucleons separated by 1 fm still look like individual objects
- average NN separation in nuclear matter

 $1.2 \gtrsim r_0 \gtrsim 0.8 @ \rho_0 \leqslant \rho \leqslant 4\rho_0$

Models based on nucleon degrees of freedom

- Nonrelativistic approach
 - pointlike nucleons interacting through the hamiltonian

$$H = \sum_{i} \frac{\mathbf{p}_i^2}{2m} + \sum_{j>i} v_{ij} + \sum_{k>j>i} V_{ijk}$$

- ▷ v_{ij} : π exchange + phenomenological short and intermediate range interaction, strongly constrained by NN data (deuteron properties and ~ 4000 NN scattering phase-shifts, fitted with $\chi^2/N \sim 1$)
- ▷ $V_{ijk}(\ll v_{ij})$: needed to reproduce the empirical equilibrium density of nuclear matter and the measured binding energies of the three-nucleon bound states

Results of NMBT

▷ the energies of nuclei with A < 8 have been obtained using the Green Function Monte Carlo (GFMC) method to solve the Schrödinger equation (Pieper & Wiringa, 2001)

Results of NMBT (continued)

 energy per baryon of nucleon matter (Akmal, Pandharipande & Ravenhall, 1998)

▷ note: calculated relativistic boost corrections to v_{ij} are ~ 7% in ⁴He and ~ 12 - 15% in neutron matter @ $\rho \sim (1-2)\rho_0$ \triangleright *n*, *p* and *e* in equilibrium with respect to the process

 $n \leftrightarrow p + e$

- ▷ as ρ increases (typically just above ρ_0) $\mu_e > m_\mu$ and muons also appear through $n \leftrightarrow p + \mu$, with $\mu_n - \mu_p = \mu_e = \mu_\mu$ and $\rho_p = \rho_e + \rho_\mu$
- ▷ at any given ρ equilibrium and charge neutrality determine the proton fraction $x_p = \rho_p / \rho$

Results of NMBT (continued)

 β-stable matter of n, p, e and μ: energy-density and proton fraction as a function of baryon number density (Akmal, Pandharipande & Ravenhall, 1998)

More complex models of hadronic matter

▷ appearance of heavier strange baryons through

$$p + e \to \Lambda^0 + \nu_e$$

$$n + e \rightarrow \Sigma^- + \nu_e$$

may become energetically favoured at large ρ

example: equilibrium in matter including

$$n, p, e, \mu, \Lambda^0, \Sigma^-$$

requires

$$\mu_n = \mu_{\Lambda^0}$$
 $\mu_p = \mu_n - \mu_e$ $\mu_{\Sigma^-} = \mu_n + \mu_e$

Including hyperons in NMBT

- Problem: YN and YY interactions largely unknown
- ▷ Example: using the Nijmegen potential Σ^- appearance has been predicted at $\rho \sim 2\rho_0$ (Vidana et al, 2000)

EOS of hadronic matter

- for any given value of baryon number density the EOS is determined by minimizing the energy E
- \triangleright energy density and pressure are trivially related to *E* through

$$\epsilon(\rho) = \frac{E}{V} = \rho \frac{E}{N}$$
$$P(\rho) = \rho^2 \frac{\partial}{\partial \rho} \frac{E}{N}$$

▷ EOS can be classified according to their "stiffness"

$$\Gamma = \frac{d\ln P}{d\ln\rho}$$

From hadronic matter to quark matter

- $\triangleright~@~\rho \sim 10^{15}~{\rm g/cm^3}$ quarks are no longer clustered into nucleons or hadrons
- the EOS of quark matter can be estimated using the bag model
 - noninteracting quarks confined to a finite region of space (the bag)
 - bag volume limited by a pressure B (the bag constant)
- example: noninteracting massless quarks

$$\epsilon = B + \frac{3}{4\pi^2} \sum_{i=1}^{N_f} p_{F_i}^4 \quad , \quad P = -B + \frac{1}{4\pi^2} \sum_{i=1}^{N_f} p_{F_i}^4$$

Quark and lepton densities as a function of ρ

• baryon number density

$$\rho = 3\sum_{q} \rho_q$$

• charge neutrality

$$\sum_{q} Q_q \rho_q = \sum_{\ell} Q_\ell \rho_\ell$$

• weak equilibrium

$$\mu_d - \mu_u = \mu_e = \mu_\mu$$

$$\mu_s = \mu_d$$

From hadronic matter to quark matter (continued)

nucleon matter vs quark matter

The transition takes place either at constant pressure or with formation of a mixed phase

EOS and properties of nonrotating neutron stars

 given the EOS, mass and radius of a nonrotating star can be obtained from the Tolman-Oppenheimer-Volkov (TOV) equations (hydrostatic equilibrium + Einstein eqs)

$$\frac{dP(r)}{dr} = -G \frac{\left[\epsilon(r) + P(r)/c^2\right] \left[M(r) + 4\pi r^2 P(r)/c^2\right]}{r^2 \left[1 - 2GM(r)/rc^2\right]}$$
$$M(r) = 4\pi \int_0^r r'^2 dr' \epsilon(r') \quad , \quad \epsilon(r=0) = \epsilon_c$$

▷ solving TOV equations one obtains a set of neutron star configurations, characterized by the radius R, defined through P(R) = 0, and the mass M = M(R)

Maximum neutron star mass

▷ typical mass-central energy-density curve

▷ maximum mass given by

$$M_{max} = M(\overline{\epsilon}_c) \quad , \quad \left(\frac{dM}{d\epsilon_c}\right)_{\epsilon_c = \overline{\epsilon}_c} = 0$$

Compilation of measured neutron star masses

- ▷ Hulse & Taylor: binary pulsar $M = 1.441 \pm .0007 M_{\odot}$
- $\triangleright \sim 20$ accurate measurements of bynary systems yield $M = 1.35 \pm 0.1 M_{\odot}$
- ▷ a recent determination of the mass of the X-ray pulsar Vela X-1 yields $M = 1.87^{+0.23}_{-0.17} M_{\odot}$

Predicted maximum masses vs data

- $\triangleright\,$ bottom line: most EOS support a stable neutron star of mass $\sim 1.4~M_{\odot}$
- \triangleright EOS based on nucleonic degrees of freedom predict maximum masses typically $\geq 2~M_{\odot}$
- ▷ the presence of a core of deconfined quark matter lowers the maximum mass by $\sim 10\%$
- ▷ the appearance of hyperons makes the EOS significantly softer, typically leading to $M_{max} < 1.5 M_{\odot}$
- if confirmed, the measured mass of Vela X-1 will rule out soft EOS, thus leaving little room for the occurrence of "exotic" matter

New observational developments

- ▷ Iron and Oxygen transitions recently observed in the spectra of 28 bursts of the X-ray binary EXO0748-676 correspond to a gravitational redshift z = 0.35 (Cottam et al, 2002)
- \triangleright z is related to the mass-radius ratio through

$$R(1+z) = R\left(1 - \frac{2GM}{c^2}\frac{1}{R}\right)^{-1/2}$$

yielding

$$\frac{M}{R} = 0.153 \; \frac{M_{\odot}}{\mathrm{Km}}$$

i.e.

$$1.4 \leq M/M_{\odot} \leq 1.8 \iff 9 \leq R \leq 12 \text{ Km}$$

Predicted M/R ratios vs data

- APR2, BBS1: nucleons only, nonrelativistic ; APRB120, APR2B200: APR2 + quark matter core
- BBS2: nucleons + hyperons, nonrelativistic ; G₂₄₀: nucleons + hyperons, relativistic mean fi eld ; SS1, SS2: strange stars (with and without crust)

Gravitational waves from neutron stars

- a neutron star emits GW at the (complex) frequencies of its quasi-normal modes
 - g-modes: main restoring force is the buoyancy force
 - p-modes: main restoring force is pressure
 - f-modes: intermediate between g- and p-modes
 - w-modes: pure space-time modes
 - r-modes: main restoring force is the Coriolis force

$$\{\omega_{gn}\} < \omega_f < \{\omega_{pn}\} < \{\omega_{wn}\}$$

in newtonian theory the frequency of the f-mode is proportional to the average density of the star

GW emission and EOS

- b how do neutron star oscillation modes associated with GW emission depend upon the EOS ?
- ▷ example: the frequencies of axial (odd parity) w-modes are eigenvalues of a Schrödinger-like equation, whose potential $V_{\ell}(r)$ explicitly depends upon the EOS

$$V_{\ell}(r) = \frac{e^{2\nu(r)}}{r^3} \left\{ \ell(\ell+1)r + r^3 \left[\epsilon(r) - P(r)\right] - 6M(r) \right\}$$
$$\frac{d\nu}{dr} = -\frac{1}{\left[\epsilon(r) + P(r)\right]} \frac{dP}{dr}$$

GW emission and EOS (continued)

frequency of the 1st w-mode
 vs star compactness (Benhar,
 Berti & Ferrari, 1999)

- the pattern of frequencies reflects the stiffness of the EOS. Softer EOS correspond to higher frequencies
- \triangleright for a given EOS, the frequency depends weakly upon M/R

GW emission and EOS (continued)

f-mode frequency as a function of the neutron star mass (Benhar, Ferrari & Gualtieri, 2004)

 stars containing hyperons and strange stars have much higher frequencies

GW emission and EOS (continued)

a set of empirical relations linking the mode frequencies to M and R can be inferred from the results of theoretical calculations (Benhar, Ferrari & Gualtieri, 2004)

Extracting M and R from GW frequencies

empirical relations between frequencies and star parameters can also be obtained for the p- and w- modes. For example

$$\nu_w = \frac{1}{K} \left(a + b \frac{M}{R} \right)$$
$$\frac{1}{\tau_w} = 10^{-3} M \left[c + d \frac{M}{R} + e \left(\frac{M}{R} \right)^2 \right]$$

symultaneous detection of GW signals associated with different modes would provide up to five equations for the two unknown R and M

A numerical experiment (Andersson & Kokkotas, 1998)

- select a model polytropic star and compute M and R
- compute frequency and damping time of the f-mode and the 1st w-mode
- plot the four lines corresponding to the empirical relations
- the intersection of the four lines gives the correct M and R with a few percent accuracy

Will GW from neutron stars ever be detected ?

- ▷ Assume that the *f*-mode of a neutron star with $\nu_f = 1.9 \text{ kHz}, \tau_f = 0.184 \text{ s}$ has been excited
- ▷ The signal emitted can be modeled as (Ferrari et al, 2003)

$$h(t) = \mathcal{A}e^{(t_{\rm arr}-t)/\tau_f} \sin\left[2\pi\nu_f \left(t - t_{\rm arr}\right)\right] ,$$

and the energy stored into the mode is

$$dE_{\text{mode}} = \frac{\pi}{2} \nu^2 |\tilde{h}(\nu)|^2 \, dS d\nu$$

▷ Will the VIRGO interferometer be able to detect this signal ?

Detection of GW from neutron stars (continued)

▷ VIRGO noise power spectral density ($x = \nu/\nu_0$, $\nu_0 = 500$ Hz)

 $S_n(x) = 10^{-46} \cdot \left\{ 3.24 \left[(6.23x)^{-5} + 2x^{-1} + 1 + x^2 \right] \right\} Hz^{-1},$

with $x = \nu / \nu_0$ and $\nu_0 = 500 \text{ Hz}$ > Signal to noise ratio

$$SNR = 2 \left[\int_0^\infty d\nu \; \frac{|\tilde{h}(\nu)|^2}{S_n(\nu)} \right]^{1/2}$$

▷ SNR = 5 requires $E_{\text{mode}} \sim 6 \times 10^{-7} M_{\odot}$ for a source in our galaxy and $\sim 1.3 M_{\odot}$ for a source in the VIRGO cluster

Conclusions

- Neutron star structure, reflected by the EOS, affects the frequencies of oscillations leading to GW emission
- Observation of GW emission from neutron stars may provide considerable new insight on the EOS of strongly interacting matter
- While the emitted signal is likely to be out of reach of the existing interferometers, second generation detectors, expected to be more sensitive at frequencies above 1 ÷ 2 kHz, may be able to detect *f*-mode oscillations.
- Development of better theoretical models, particularly of "hybrid" stars, are strongly needed (critical densities for appearance of hyperons and quarks, role of color superconductivity, nature of the phase transitions ...)